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Motivation and background

• As observations improve (PLANCK) we are driven to consider higher

order statistics

• Multi-field models have been proposed which give rise to a large

non-Gaussianity

e.g. Byrnes et al. (2008), Kim, Liddle and Seery (2010)

• A number of methods for calculating local non-Gaussianity in

multi-field models currently exist, why do we need another one?

n.b. Lyth and Rodriguez (2005), Rigopoulos et al. (2006), Vernizzi and Wands (2006), Choi et al.

(2007), Battefeld and Easter (2007), Yokoyama et al. (2008), Langlois and Vernizzi (2007)

– Favoured δN method numerically inconvenient

– δN gives no direct evolution equation for the level of

non-Gaussianity



• How do we measure non-Gaussianity?

– ζ is the curvature perturbation on uniform density hypersurfaces

– The non-Gaussianity of ζ is often measured by
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• How do we calculate 〈ζζζ〉 and 〈ζζ〉?

– δN method
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n.b. Starobinsky (1985), Sasaki and Stewart (1996)

– Gives
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Lyth and Rodriguez (2005)



• How might we do things differently?

– The obvious alternative is to evolve the moments directly

– But how?



Moment transport equations

– Any joint probability distribution P (x, τ) satisfies the transport

equation (when no interaction)

∂P (x, τ)
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– The distribution can be expanded in its moments

– For zero mean, independent, nearly Gaussian variables z

P (z) = Pg(z)
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– Can be generalised to x, using zi = A−1

ij (xj − Φj)



– Velocity can be expanded about mean

ui(x, τ) = ui0 + ui,j(xj − Φj) +
1

2
ui,jk(xj − Φj)(xk − Φk) + · · ·

where
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• Ordinary differential equations for the moments

– Substitute expanded velocity and distribution into transport

equation to give

dΦi
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= ui0 +
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+ cyclic permutations i → j → k

– Identify x with ζ, φi. 〈ζζ〉 = Σζζ , 〈ζζζ〉 = αζζζ etc.



Examples

• Method in practice

– Potential 1
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∑
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– Potential 2
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Dimopoulos et al. (2005), Kim et al. (20010)
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Conclusions

– I have sketched a new method for calculating the non-Gaussianity

produced in multiple field models

– It has some conceptual advantages over existing methods

– And a considerable computational advantage

– Provides an evolution equation for measures of non-Gaussianity

such as fnl


