Voids in ACDM: Effects on Density Parameters

Arnaud de Lavallaz with M. Fairbairn King's College London

4th UniverseNet School

Lecce | Università del Salento September 2010

P

문 문 문

Outline

Introduction

- Basics of Swiss-Cheese Universe
- The Model: LTB Metric
- Test of our Model: Hubble Diagram

(2) Computational Model and Simulations

- Radial Photon Trajectories
- Clouds of Data Points
- Putting Results into Bins

Current Results and Prospects

- Comparing χ^2 Values with FRW Universes
- Range of Configurations Investigated
- Example of Results for $(\Omega_m, \Omega_{\Lambda}) = (0.27, 0.73)$
- χ^2 Comparison: Effects on Density Parameters

Conclusive Remarks

Further Investigations

Basics of Swiss-Cheese Universe The Model: LTB Metric Test of our Model: Hubble Diagram

Large Holes in Our Universe

'Standard' cosmological model:

homogeneous and isotropic \rightarrow Good explanation of observations

Swiss-Cheese Universe:

inhomogeneities in matter distribution \rightarrow More realistic at smaller scales

Main aim:

- Build a Swiss-Cheese model embedded in ACDM universe
- Study the effects of the voids on the density parameters Ω_m and Ω_Λ

Computational Model and Simulations Current Results and Prospects Conclusive Remarks Basics of Swiss-Cheese Universe The Model: LTB Metric Test of our Model: Hubble Diagram

Radial Inhomogeneities

Model based on Lemaître-Tolman-Bondi (LTB) metric:

- spherically symmetric solution of Einstein's equations
- only dust (pressureless matter)
- similar to Einstein-de Sitter, but with radial inhomogeneities

Construction of our model:

- 'Cheese' = usual FRW solution (spatially flat)
- 'Holes' = LTB solution

Computational Model and Simulations Current Results and Prospects Conclusive Remarks Basics of Swiss-Cheese Universe The Model: LTB Metric Test of our Model: Hubble Diagram

Radial Inhomogeneities

Model based on Lemaître-Tolman-Bondi (LTB) metric:

- spherically symmetric solution of Einstein's equations
- only dust (pressureless matter)
- similar to Einstein-de Sitter, but with radial inhomogeneities

Construction of our model:

- 'Cheese' = usual FRW solution (spatially flat)
- 'Holes' = LTB solution

Introduction Computational Model and Simulations Conclusive Remarks

Current Results and Prospects

Basics of Swiss-Cheese Universe The Model: LTB Metric Test of our Model: Hubble Diagram

Analytical Considerations

LTB metric can be written as (comoving coordinates) [1]:

$$ds^2=-dt^2+S^2(r,t)dr^2+R^2(r,t)(d heta^2+sin^2 heta d\phi^2)$$

with the following constraints:

$$S^{2}(r, t) = \frac{R'^{2}(r, t)}{1 + 2E(r)},$$
$$\frac{1}{2}\dot{R}^{2} - \frac{GM(r)}{R(r, t)} - \frac{1}{3}\Lambda R^{2} = E(r),$$
$$4\pi\rho(r, t) = \frac{M'(r)}{R'(r, t)R^{2}(r, t)}.$$

3

Basics of Swiss-Cheese Universe The Model: LTB Metric Test of our Model: Hubble Diagram

Parameters and Initial Conditions

Functions E(r) and M(r) are left arbitrary in LTB model:

- $E(r) \sim$ **spatial curvature**, depending on M(r) $E(r) = \frac{1}{2} \frac{H_{LTB}^2 a_{LTB}^2}{c^2} \left(r^2 - \frac{3}{4\pi} \frac{M(r)}{r\rho_m}\right)$ where $H_{LTB} = H(z_{LTB})$ and $a_{LTB} = a(z_{LTB}), z_{LTB} = 1100$
- M(r) ~ mass inside sphere of comoving radial coordinate r, depending on the initial density contrast ρ(r, t₀)

Initial density contrast = Kostov's model [2]:

$$ho(r,t_0)=ar
ho(t_0)\left\{A_1+A_2 anh\left[lpha\left(r-r_1
ight)
ight]-A_3 anh\left[eta\left(r-r_2
ight)
ight]
ight\}$$

Computational Model and Simulations Current Results and Prospects Conclusive Remarks Basics of Swiss-Cheese Universe The Model: LTB Metric Test of our Model: Hubble Diagram

Parameters and Initial Conditions

A. de Lavallaz [KCL]

Voids in ACDM: Effects on Density Parameters

Computational Model and Simulations Current Results and Prospects Conclusive Remarks Basics of Swiss-Cheese Universe The Model: LTB Metric Test of our Model: Hubble Diagram

Parameters and Initial Conditions

Computational Model and Simulations Current Results and Prospects Conclusive Remarks Basics of Swiss-Cheese Universe The Model: LTB Metric Test of our Model: Hubble Diagram

Fitting SN Ia Data (Union2)

Radial Photon Trajectories Clouds of Data Points Putting Results into Bins

Simulations: Obtaining Redshifts

Computation process (1/2):

- Creating look-up tables for M(r) and R(r, t)
- Setting initial conditions (r_{in} and t_{in})
- Sending first photon $\rightarrow t_{now}$ Calculating distance sourceobserver r_{obs}
- Sending second photon from $t_{in} + \Delta t_{in} \rightarrow r_{obs}$, integrating

$$t(r) = R'(r,t) / [c(1+2E(r))]^{1/2}$$

where $R'(r, t) = \partial R(r, t) / \partial r$ and obtaining $t(r_{obs})$

Radial Photon Trajectories Clouds of Data Points Putting Results into Bins

Simulations: Calculating Distance Modulus μ

Computation process (2/2):

- Calculating Δt at t_{now} $\Delta t = t(r_{obs}) - t_{now}$
- Obtaining redshift $z(r_{in}, t_{in}) = \Delta t / \Delta t_{in} 1$
- Calculating distance modulus $\mu = 5 \cdot log_{10} (dL/10 \text{ pc}),$ with luminosity distance $dL = a_0 r_{obs} (1 + z)$

Radial Photon Trajectories Clouds of Data Points Putting Results into Bins

Random Initial Positions of Sources

Our plan:

- Study the redshift of sources situated in the 'walls' (overdense regions)
- Consider many (*r_{in}*, *t_{in}*) in order to construct Hubble diagram

Avoid arbitrary choice \Rightarrow Statistical treatment

Distribution of sources \sim Density distribution

Transition 3-D bubble \rightarrow 2-D profile

 \Rightarrow Obtaining clouds of data for many (r_{in}, t_{in})

Radial Photon Trajectories Clouds of Data Points Putting Results into Bins

Taking Account of Random Initial Positions

Radial Photon Trajectories Clouds of Data Points Putting Results into Bins

Taking Account of Random Initial Positions

A. de Lavallaz [KCL] Voids in ACDM: Effects on Density Parameters

æ

Comparing χ^2 Values with FRW Universes Range of Configurations Investigated Example of Results for $(\Omega_m, \Omega_\Lambda) = (0.27, 0.73)$ χ^2 Comparison: Effects on Density Parameters

Evaluating Effects on Density Parameters

Fitting simulations to observations:

- Calculating **means** and standard deviations
- Comparing to SCP "Union2" SN Ia compilation [3] \rightarrow 557 sources considered
- Adding systematic error on simulation redshift
- Obtaining χ^2 values for all sets $(\Omega_m, \, \Omega_{\Lambda})$

Doing the same for FRW universes with similar $(\Omega_m, \Omega_{\Lambda})$

Comparing χ^2 Values with FRW Universes **Range of Configurations Investigated** Example of Results for $(\Omega_m, \Omega_h) = (0.27, 0.73)$ χ^2 Comparison: Effects on Density Parameters

Different Cosmologies Tested

Chosen initial geometry of the voids:

- $r_1 = 7 \text{ Mpc}, r_2 = 15 \text{ Mpc}$ [4]
- Initial density contrast $A_1 = 0.997$
- Final underdensity (at t_{now}) \approx 20% of average density [5]

Range of density parameters:

- $0.20 < \Omega_m < 0.40$
- \bullet 0.80 $< \Omega_{\Lambda} < 0.60$

Different values of Hubble parameter:

• $H_0 = 69-71 \text{ km/s/Mpc}$

Comparing χ^2 Values with FRW Universes Range of Configurations Investigated Example of Results for $(\Omega_m, \Omega_\Lambda) = (0.27, 0.73)$ χ^2 Comparison: Effects on Density Parameters

Global Shift from Λ CDM Solution

Comparing χ^2 Values with FRW Universes Range of Configurations Investigated Example of Results for $(\Omega_m, \Omega_\Lambda) = (0.27, 0.73)$ χ^2 Comparison: Effects on Density Parameters

Influence of Parameter H_0

Comparing χ^2 Values with FRW Universes Range of Configurations Investigated Example of Results for $(\Omega_m, \Omega_\Lambda) = (0.27, 0.73)$ χ^2 Comparison: Effects on Density Parameters

Influence of Parameter H_0

Comparing χ^2 Values with FRW Universes Range of Configurations Investigated Example of Results for $(\Omega_m, \Omega_\Lambda) = (0.27, 0.73)$ χ^2 Comparison: Effects on Density Parameters

$H_0 = 69 \text{ km/s/Mpc}$

Comparing χ^2 Values with FRW Universes Range of Configurations Investigated Example of Results for $(\Omega_m, \Omega_\Lambda) = (0.27, 0.73)$ χ^2 Comparison: Effects on Density Parameters

$H_0 = 70 \text{ km/s/Mpc}$

Comparing χ^2 Values with FRW Universes Range of Configurations Investigated Example of Results for $(\Omega_m, \Omega_\Lambda) = (0.27, 0.73)$ χ^2 Comparison: Effects on Density Parameters

$H_0 = 71 \text{ km/s/Mpc}$

Further Investigations

Wider Range of Cosmologies/Configurations

Conclusions:

- $\bullet\,$ Swiss-Cheese universes cannot eliminate $\Lambda\,$
- Realistic cosmologies including voids are plausible
- Consistency with observations $\sim \Lambda \text{CDM}$

Next steps in our study:

- Investigate different geometries for the voids assuring consistency with cosmological constraints
- $\bullet\,$ Widen range of density parameters and H_0
- Consolidate results with refined statistics

Further Investigations

References

- T. Biswas, R. Mansouri and A. Notari, "Nonlinear Structure Formation and 'Apparent' Acceleration: an Investigation", arXiv:astro-ph/0606703v2
- V. Kostov, "Average luminosity distance in inhomogeneous universes", arXiv:0910.2611v3
- R. Amanullah et al., "Spectra and Light Curves of Six Type la Supernovae at 0.511<z<1.12 and Union2 Compilation", arXiv:1004.1711v1</p>
- W. Valkenburg, "Swiss Cheese and a Cheesy CMB", arXiv:0902.4698v3
- R. Van de Weygaert and E. Platen, "Cosmic Voids: Structure, Dynamics and Galaxies", arXiv:0912.2997v1
- V. Marra et al., "On cosmological observables in a swiss-cheese universe", arXiv:0708.3622v3

Thank you for your attention!

3