

L. Servoli, P. Placidi

Active pixel sensors for medical applications

Clinical Applications of Ionizing Radiation

Ionizing Radiation in Medicine

- Diagnostics
- . Therapy
- Dosimetry

Clinical Applications of Ionizing Radiation

- Sensors
- . DAQ
- . Calibration
- Quality Assurance

Why Active Pixel Sensors?

Sensors (Active or Passive): Materials: Gas, semiconductors, films, scintillating crystals or fibers,...

Typical active mode:

energy deposition measurement → *current mode*

Why Active Pixel Sensors?

Unique properties of APS from sensing point of view: single interaction detection \rightarrow counting mode or analog sum mode

- \rightarrow low noise (ENC ~ few electrons)
- \rightarrow small pixel size (~ few micrometer)
- \rightarrow thin sensitive layer (~ few micrometer ~ pixel size)
- \rightarrow low cost if CMOS Image Sensors (CIS)
- \rightarrow high S/N for charged particles (> 20 for MIPs)
- \rightarrow detection efficiency for charged particle \sim 100%
- \rightarrow detection efficiency for interacting photons > 98 %
- \rightarrow various form factor and number of pixels (0.05 \rightarrow 14 Mpixels)
- \rightarrow low power supply, low power consumption

335 340 345 350 35.

1. Probe for radioguided surgery

Scenario: Oncological Radioguided Surgery procedures (INFN + UNIPG + Sapienza)

Working principle:

- \rightarrow Radiopharmaceuticals administration ($\beta^{-} \rightarrow {}^{90}Y$)
- \rightarrow Uptake from 4 to 30 times in tumor than in healthy tissues
- → Detecting probe (CMOS Image Sensor : VGA type)

• Need to verify in real-time the complete resection of a tumor before closing the surgical incision

Requirements:

- millimetric spatial resolution
- significant help to intraoperative visual
- minimise the removed healthy tissue
- reduce the probability of tumor recurrence

 \rightarrow almost blind to photons, 100% detection efficiency for electrons

Probe for radioguided surgery

Results

Tumour detection \rightarrow 1 mm spot:

Limited by vertical distance of sensor from emission spot

Collim. diameter [mm]	Time to reach 3σ [sec]
1	24.6 ± 0.7
3	0.458 ± 0.002
5	0.31 ± 0.03
7	0.088 ± 0.007

Limited by protection layer thickness in front of sensor.

50 μm thickness

Probelike PCB finger

2. Radiotherapy beam characterization

Scenario: Quality Assurance of Radiotherapy Photon and Electron Beams

Measurement of radiation beam profile point by point

50 electrons/10000 pixel

Coordinat 1880 1881

1840 1820 1820

1800

1300

1320

1340

1360

1380

1400

1420

Row Coordinate

Uncertainty below 1% up to 10-20 MHz/cm² 1 deposited patent

3. High Dose Rate Brachytherapy Quality Assurance

Scenario (Quality Assurance for High Dose Rate Brachytherapy procedures)

Brachytherapy consist in using radioisotopes sources to irradiate within the human body the tumour volume contouring it.

Breast phantom with 12 catheters to contour the tumour region.

¹⁹²Ir source will travel through them one at time, with 31 irradiation points along each catheter.

Problem: evaluate the time of irradiation for each point and the contribution during source movement outside these points,

SENSORE RAPID

Use VGA sensors with 200 ms integration time.

Scenario (Quality Assurance for High Dose Rate Brachytherapy procedures)

disponibili oggi con altri sensori.

4. Interventional Radiology application

Implementation of a portable system based on commercial CMOS image sensors for monitoring the absorbed dose of medical operators during Interventional Radiology procedures 11

Interventional Radiology application

Scenario (Interventional Radiology procedures)

- high exposure of operators to scattered X-ray radiation
- legal restriction on total absorbed dose
- personal monitoring by using Passive Dosimeters (i.e. *Thermoluminescent Dosimeter* (TLD))
 - \circ certified devices
 - energy range 10-3000 keV
 - o no real time dose/dose rate measurement

Commercial Active Personal Dosimeters

- semiconductor based sensors
- real time dose/dose rate measurement
- alarm (educational dosimetry)
- energy range_{min}
- performance in "pulsed operation"

Device name	Energy range	Dose rate range
Unfors EDD-30	14-120 ±10% keV	0.03-2000 mSv/h
Philips DoseAware	48-100 ±30% keV	0.04-300 mSv/h
EPD Mk2+	15-10000 ±20% keV	0-4000 mSv/h
Dosilab EDM III	20-6000 keV	0.0005-1000 mSv/h
Atomtex T3509C	15-10000 keV	100 -5000 mSv/h
RaySafe i2	33-101 keV	0.004-300 mSv/h

[ORAMED project: http://www.oramed-fp7.eu] [E. Conti et al., IEEE Trans. on Instr. and Meas., 2013] 12

Research Activity

System Architecture (1)

Commercial CMOS image sensor: MT9V011 Monolithic Active Pixel Sensor (640 x 480 pixels, 5.6 x 5.6 µm² pixel size (307200 pixels))

- Sensor characterization
 - characterization in laboratory (dark condition, known X-ray sources)
 - characterization in operating room
 - characterization at certified calibration center (*Comecer*, Italy)

System Architecture (2)

- Commercial CMOS image sensor with a data reduction algorithm
- Reuse of development boards -> integration of all the components in a single board (Personal Sensor Node, PSN)

System Architecture (3)

PSN Prototypes (#1, #1.5, #2, #3)

- optimization of the power consumption (55 mA@3.6 V)
- wireless interface and its interaction with the human body (distance greater than 1.5 cm)
- integration of all the components in a single board
- -> network of 4-PSNs

Experimental results (1)

• INFN laboratory (dark condition, known X-ray sources) and facilities

• operating room (also during IR procedures)

• open space (Packet Errore Rate, antenna radiation diagram)

Experimental results (2)

• Absorbed dose measurements

• Time profile of irradiation

Linear correlation:

- slope \approx 1 (accuracy);
- precision is better than TLD precision

• Mapping of absorbed dose

Experimental results (3)

- The commercial CMOS image sensor is a candidate for a portable dosimetric system
- A final portable version of the system prototype has been produced, implementing data reduction algorithm, as element of a Wireless Dosimeter Network
- The final prototype has been validated in operating room during several IRad procedures with performances comparable to the passive dosimeters

Device name	Energy range	Dose rate range	Dimensions	PSN
Unfors EDD-30	14 – 120 (± 10%) keV	30 - 24000 mSv/h	$6 \times 11 \times 22 \text{ mm}^3$	no
Philips DoseAware	48 - 118 (± 20%) keV	0.04 - 300 mSv/h	$45 \times 45 \times 10 \ mm^3$	yes
Thermoscientific EPD Mk2+	15 - 10000 (± 30%) keV	0 - 4000 mSv/h	85 × 63 × 19 mm³	no
Dosilab EDM III	20 - 6000 keV	0.0005 - 1000 mSv/h	n.a.	no
RaySafe i2	33 - 101keV	0.040 - 300 mSv/h	$45 \times 45 \times 10 \text{mm}^3$	yes
Atomtex AT3509C	15 - 10000 keV	0.0001 - 5000 mSv/h	105 × 58 × 23 mm ³	no
RAPID System	2 - 150 keV	0.0003 - 11000 mSv/h	86 X 46 X 16 mm ³	yes

Outcome of the RAPID research activity

- Research grants: 230 $k \in (70 \ k \in \text{ for material}; 160 \ k \in \text{ for people})$
 - Real Time Active PIxel Dosimeter RAPID (INFN Project), Research Grant funded by Regione Umbria (Progetto POR Umbria FSE 2007-2013), Research Project (Fondazione Cassa di Risparmio di Perugia)
 - o # grants for PostDoc: 2
 - # grants for post-laurea students: 5
- Papers
 - # Conference talks and posters: 13 (Physics, Engineering, Medical, Nurse);
 - # Papers and Proceedings: 13
- Activities for students:
 - \circ # of Bachelor and Master Thesis: 2+2
 - # of PhD Thesis: 2 (1 UNIPG + 1 UNIMORE)
 - Alternanza Scuola Lavoro: 8 students (1 month each)
- Technology Transfer
 - o 1 "knowledge transfer" agreement with a medical device firm is ongoing

Outcome of the other research activities in this field

- Amount of research grants (100 $k \in$: 60 $k \in$ for material; 40 $k \in$ for people)
 - *# grants for post-laurea students: 1*
 - *# grants for PostDoc: 1*
- Papers
 - *# Conference talks and posters: 10*
 - *# Papers and Proceedings: 7*
- Activities for students:
 - *# of Master Thesis: 4*
- Technology Transfer: 1 INFN patent

Thank you for your attention

Hospital and ASL (8 staff): Perugia, Foligno, Terni, Città di Castello, Viterbo INFN (2 staff) : Sezione di Perugia UNIPG (6 staff): Dip. Fisica e Geologia Dip. Ingegneria Dip. Medicina Other Institutions (6 staff): Sapienza Univ. Modena-Reggio Univ. Florence Univ. Manchester Univ.