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Physics & Electronics

v" From an informal meeting about 25 years ago...

v" (Micro)El

ectronics Tools & Methods for Physics (HEP) applications?
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1. INTRODUC]

ION

Microelectronies tecliniques. originally aimed
al producing small and dense integrated cir
cuits. have been exploited by the particle phys
st community so oblain Jarge-arca,  high-
position-sensitive ras n deiecions
ces. although relying on very simple
operating principles. still pose some challenging
design prablems related to their perform-
i terins of 5/ ratio and radiation hardness
jon of on-hoard . sigaal-processing eir-

curtry o ligh-resistivity silicon chips represents.
a Turther. mon-trivial issue being faced i this
Tiched

chuology CAD tools {process and dev
ulshion) are being routinely used o d con-
ventional” integrated cireuits: they have instead
seldottn been applid to the design and optimiza-
tion of niiceostrip detectons (seeoeg. [L]). A norm-
ber of advantages can be obtained by exploitir
TCAD techniques to design such devices;

* pratotipization tine and costs can be signis
Reantly reduced

« nurerical simulation allows for inspecting
iternal” device behavior. making inforn
ations available which can hardly be extrac
sedd from actual devive measurements (eg.
field and mobile charge distribution). ~Vir-
il experinents can be carried out uider
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uaprachival conditions. allowg for cause
relationships to be more eas
cd This fostess the comprehension and
mterpretation of miany aperating details mv.l
allows for a cloge link o be

e

ULATION EXAMPLES

in with, the structure sketched in Fig. 1
considered. It consists of a single-sided,
led detector. Five strip have been con-
allowing for up-to-second neighbors in-
15 to be accounted for. A 2D simularion
carried out. thus neglecting fringing ef-
trip ends. p-strip implants have been de-
y means of a Gaussian doping profile, the
ers of which were extracted from device
ments and from process simulation [5].

between fabrication process and

deviee clectrical esponse

In this paper. we preliminanly report o the g
plication of a geusral-purpose device siculator
[HFIELDS [2]) 1o the analysis of silicon oi-
crostrip detectors bring developed in the frame
work of CMS collaboration. Relmble predictions
waz be obtaned fromdevic fed
<l | knowledge of p
device structure 15 availa
can be usually extracted from fabricated device
miensurements, as well as from oumerieal pro-
s stinmlation. Suitable physical models e alse
needed, embedded into the deviee simolator code.
With partirular reference 1o microstrip detestor.
E is played by the charge distribution
within oxide and ai the 5§ — Sith; inierface. as
well as by recombination dynanics.

In Sect. 2 below, the basic features of the sim-
nlation code we used are reviewed, and some of
the specific guestions posed by the simulation of
radiation detectors are addressed. & few, pre-
Liminzry simulation results are illustrated in Sect
i wheteas conelusions and future work plans are
discissed i

sltion. pr
sical aud g
o Such 4 knowlednp

Discretization mesh for the detector in
g 1

ows the discretization grid for the device
15 it counts 2200 meshpoints and 4100
ar elements. To this regard. it should be
zed that, despite the geometri rip-
he device at hand b rather simple,
‘tion of the discretization grid remains a
ucial task, which has strong influence on
reliability of simulation results and on
putational effort required. Unlike conven-
icroelectronic devices. in fact, microstrip
s “active region” spans over the whole
ickness. at the same time retaining some
size in the pm range. To resolve prop-

al de:
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erly such geometrical details, without introducing
excessive meshpoint redundancy, a strengly non-
uniform meseh is needed, as illustrated by Fig. 2
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Physics & Electronics (2)

v" TCAD Modelling of the interaction between radiation (partlcle)
& semiconductor devices. ...
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v' Read-out electronics mtegrated within sensor -> CMOS Active Pixel

Sensors

i :
o] p— The RAPSO01 chip: first Italian CMOS
Active Pixel Sensor for HEP (UMC 0.18um)
)
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Physics & Electronics (3)

v' Radiation damage effects in semiconductor devices:
TCAD "“University of Perugia” model.
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Micro/Nanoelectronics - R&D activities

VLSI Design and Characterization of integrated circuits

CMOS Active Pixel Sensors

Numerical Analysis and Physical Modeling

of solid-state devices.
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The CERN (Geneva, Switzerland) & Perugia...

The world's largest and most complex scientific instruments to study the ba5|c
constituents of matter =

,.Sums; S
I :Rwu =

§ CMS 220 mq? Sidetctors (Hamamatsu)
2] - Rad-Hard design solution @Perugia Model
9 RD53 Read-Out Electronics 65nm CMOS

LHC:- 2 7%kni- ' _ - e '-"\.‘P#




3D Vertical Scale CMOS Active Pixel Sensors

v 3D monolithically-stacked CMOS Active Pixel Sensor detector for single
ionizing particle trajectory and momentum identification.

.H!:' h‘i‘.;l

Stack of separate multi-layer CMOS APS detectors. Stack of monolithically integrated (vertical
Worries: multiple scattering and material budget... scale or 3D) CMOS APS detectors.




The 3D chip structures

v Tezzaron/GlobalFoundries
3D-IC Integrated 2-tier stack
130nm CMOS

AHELLERENLY

2D 3D Not Aligned 3D Aligned
(Ziptronix/Tezzaron).




Lab Facilities (@DI, @INFN PG)

v Advanced TCAD & VLSI Design Laboratory (@DI PG) | |
= 2 PowerEdge R640 Server Dell + 8 PCs A LT R I

v Optical Workbench IR, UV, VIS laser (@INFN P.,|
with p-focusing and p-positioning capabilities. w &
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Collaborations

v" CERN (Geneve, Switzerland)

v" Micron (USA), LFoundry, CﬁlcronQ .

. Technology for your ideas.

v Fondazione Bruno Kessler (FBK)

FONDAZIONE
BRUNO KESSLER

Science and
Technology

v" Rutherford Appleton Laboratory (UK) & Facilities Counci
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INFN & DI(EI): some numbers...

AN

More than 150 scientific papers on International Journals.

More than 50 contributions to International Conferences.

More than 80 among B.Sc., M.Sc.,
Ph.D. Thesis.

More than 10 Ph.D. Students
(CERN-doctoral, CERN-staff)-

Comprehy

Joint Organizafiqfr:
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Index Terms—Device simulation, particle physics. rad
damage effects.

1. INTRODUCTION

N RECENT years there has been much effort to im

the radiation tolerance of detectors to be used in hig
ergy physics (HEP) experiments, owing to the continua
crease of accelerators energy and efficicncy. As a referend
Large Hadron Collider (LHC) at CERN is planned to £
graded to aluminosity of 10% em? s~ Under these cond
the expected radiation fluence at the micro-vertex tracke
tance (R = 4 cm) from the impact point is expected tobe |
Ih.m JulD 1 Mc\-' r':utmncqn .\..J‘ nt per square centimelre
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substrate (V) can be inferred from the voltage required to

* Gbtam full depletion (Viyt)

device simalyor” 0SE-TCAD) and 3 purpo
of inerdefct charge eschangs. Deviaton from the medel are
comments made a o possible fuure directions for

expl
e ntgarion o s A0 provios

Index Terms—Position sensitive particle detectors, semicon-
ductor defects, semiconductor device radiation effects, slicon,
temperature.

L INTRODUCTION

at the CERN Large Hadron Collider
E (LHC) will make exteasive wse of silicon detectors for
pamicle tracking. The radistion environment will be chil-
lenging. with detectors predicted to receive hadron fluences of
p t0 ~10'” 1-MeV neutrons per square centimeter over their

Neg = 26V /(cd®) 6}

where ¢ is the electronic charge, o is the depth of the diode,

and - is the pemittivity of silicon. These doping changes have

‘been identified as the principal obstacle to long-term operation

because the depletion voltage ultimately increases beyond the

breakdown voltage of the device, Under these circumstances,
depl

collected charge.

In the period after irradiation, two distinct annealing phases
are observed. There is initially a reduction in negative space
charge, which tzkes place over ten days or 50 at foom temper-
ature. This process is known as “beneficial” annealing. In the
loages tesmn, these ase such larger mereases in negative space
eharge, even though no irradiation is taking place. This process
is known s reverse” or “amti-"annealing. The rates of both ben-
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Main Projects

v INFN (RAPS, SHARPS, VIPIX, SEED, TIMESPOT, ...)

v MILR Q000
= 4DInSiDe

v EU
European Commission

= Horizon 2020 (Advanced European Infrastructures for Detectors at
Accelerators - AIDA 2020), Horizon Europe (AIDA INNOVA)

@) AIDA
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CHIPS On DIAmond

v" Novel silicon-on-diamond (SoD) material obtained by laser processing.

Pressione y Portacampione
~800 atm 1tmosfera di Ar)

ar— 4

b
yuarnizione

A=355 nm
20 ps/l16 mJ ¢

diamond

molla

INFN Firenze Superficie del diamante window

ohmic contact

biological cells

SoD as particle detector. SoD as bio-sensor.
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CHIPS On DIAmond (2)

v" Novel silicon-on-diamond (SoD) material obtainedt
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Biosensori - BIOFET

v BIioFET operating principle: if target molecules bind to the receptors,
a change in the surface charge density occurs.

v This change alters the (electrical) potential in the semiconductor and
thus the conductivity in the channel of the field-effect transistor.

Doping (cm*-3) _',.,-4‘
1,00e+1%

- L 718413 Ref. Electrode 0.50um
2.92e+07

L 5,00e+01 Electrolyte
=2, 92e+03

l-'l,?li-rﬂ'?
=1,008+15

0.25um

Charge localization at the SiO, surface
alters the the conductivity in the channel
of the field-effect transistor.
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CMQOS Active Pixel Sensor — SEED PG

A= rania- e
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Sensori di radiazione LGAD

v Low Gain Avalanche Diode (LGAD).

v" Sensori di radiazione allo stato dell’arte basati su controllo del
guadagno (moltiplicazione di carica).

\/ Effettl del dannegglmento Junctiqn Termination o+ cathode
da radiazione. AR . o propray_

DC analysis: Electric field
P+ anode
* DC polarization

o h+ cathode: 0V o] F
o p+anode: -400 V

Cl=>cutX=-5pum
C2=>cutX=-35pum

Abs(ElectricField-V) (V*emA-1) 20
9.48e+04

7.90e+04
6.32e+04
4.74e+04
3.16e+04 40

1.580+04
6.36 w

tum ¥ fum]
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