VTX Simulation

Pixel distributions

Charge sharing

Simulations

Conclusions

Charge sharing

Digital values vs number of electrons

• Data and fonction provided by Jérôme, W. Ren et al.

Simulations (iii)

Inputs:

- Maximum range (charge nb electrons) given by studied reactions
- Fluctuations : using Fano factor (0.115)
- ADC depth: 6-8-9-10 bits
- Cluster shape (Gaussian) :
 - height given by previous slide
 - width extrapolate from M22.
- Pitch: M28
- 7 clusters per track required out of 8 sensors
- G4 simulation: ¹⁶O+¹²C @200 MeV/u, 8mm thickness (~15 kevts fragmented)

Mean charge distribution: M22SX (i)

Design

- 128 x 256 pixels with 22 µm pixel pitch
- 18 μm epitaxial layer, resist. > 1 k Ohm.cm

Mean charge distribution: M22SX (ii)

→ Proton @ 25 MeV: (M. Kachel)

Extrapolate value for ¹⁶O @ 200 MeV

Mean charge distribution: 8 sensors (i)

♣ ADC depth: 7 bits

• Disentangle clearly Z = 1, 2 and guess Z = 3-8

Mean charge distribution: 8 sensors (i)

♣ ADC depth: 8 bits

• Disentangle clearly Z = 1, 2 and guess Z = 3-8

Mean charge distribution vs ToF (i)

* ADC depth: 7 bits vs ToF (external)

Could help?

Mean charge distribution vs ToF (ii)

* ADC depth: 7 bits vs ToF (external)

• Try to fit with the Bethe-Bloch formula (under progress)

Conclusions

- Digitizer update: new parametrization of the Gaussian height
 - not depleted need 7bits ADC depth
 - when fully depleted need 8bits ADC depth or 7bits with help of a ToF
 - → Find compromise between ADC depth and depletion.