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Available (lightweight) files in 
/gpfs_data/local/foot/Simulation/Tutorial/CNAO2020
/gpfs_data/local/foot/Simulation/Tutorial/Fulll

12C at 200 MeV/u on C (5 mm r=1.83 g/cm3):

12C_C_200.root (from Txt2Root) 
12C_C_200shoe.root (from Txt2NtuRoot)
CNAO2020: 1339 events
Full:              1706 events

CNAO2020 campaign

Full detector (magnets etc.)
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Introduction

This short tutorial is meant to explain how to use the MC data output produced
for FOOT (Electronic Spectrometer).
The purpose is not to teach how to perform a correct FOOT Simulation using
FLUKA. In case there are people interested in that, a dedicated course can be
organized, provided that they have previously attended at least a FLUKA Basic
Course

The main topics today are:

• Give some basic info specific of FLUKA MC what everybody needs to know
• The structure of data produced by MC for FOOT
• Provide examples about the use and interpretation of these data, and the 

connection of detector hits and particle properties at MC-truth level

3



A few specific things of FLUKA MC that you need to know

Default units 
the most important are:

time➞ s, length ➞ cm, energy ➞ GeV, momentum ➞ GeV/c 
masses ➞ GeV/c2 B ➞ Tesla 

Particles: 
each particle is identified by a number

Reference frame: (cartesian, right-handed)
z is primary beam direction
y is pointing upwards z

y

x
It coincides with the global reference frame used in SHOE, with 
origin (0,0,0,) at the center of target
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A few specific things of FLUKA MC that you need to know
Fluka name     Fluka no.        Common name 
4-HELIUM       -6       Alpha
3-HELIUM -5 Helium-3
TRITON -4          Triton      
DEUTERON -3       Deuteron
HEAVYION -2          Generic heavy ion with Z > 2
OPTIPHOT          -1          Optical Photon
RAY           0 Pseudoparticle
PROTON             1          Proton
APROTON 2          Antiproton
ELECTRON 3          Electron
POSITRON 4          Positron
NEUTRIE 5          Electron Neutrino
ANEUTRIE 6          Electron Antineutrino
PHOTON             7          Photon
NEUTRON 8          Neutron
ANEUTRON 9          Antineutron
MUON+ 10          Positive Muon
MUON- 11         Negative Muon

Fluka name     Fluka no.        Common name 
PION+ 13          Positive Pion
PION- 14 Negative Pion 
KAON+              15          Positive Kaon
KAON- 16         Negative Kaon
LAMBDA 17          Lambda
ALAMBDA            18          Antilambda
KAONLONG 12          Kaon-zero long
KAONSHRT           19         Kaon zero short
NEUTRIM            27          Muon neutrino
ANEUTRIM           28          Muon antineutrino
TAU+               41          Positive Tau
TAU- 42          Negative Tau
NEUTRIT            43          Tau neutrino
ANEUTRIT           44          Tau antineutrino

Here only the most importat
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Since we are mostly interested to nuclear fragments, notice:

for p, n, d, t,3He, 4He there is a specific FLUKA  particle number

For A>4: FLUKA particle numbers is always -2, and nucleus is 
identified by Z and A

Very low energy fragments and nucleons originating in the 
“nuclear evaporation” phase are identified with a particle 
number in the range from -39 to -7. Again identified by Z and A. 

there would be also a way to identify isomers, but we can omit 
this now
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The concept of “Region”

FLUKA “Combinatorial Geometry”
Basic objects called bodies (such as cylinders, spheres,
parallelepipeds, etc.) are combined to form more complex
objects called Regions 1 complex object = REGION

• The user knows the region
usually by name, but internally
(and in SHOE) it is identified by a 
number

• to each region is assigned a 
single Material (chemical
element or compound or mixture)

3 basic
objects 
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“AIR2” is a region, filled with air (N, O, Ar @ STP)

Each “SCNnn” bar is a region, filled with EJ232 scintillator

Each “CALnnn” is a region, filled with BGO

Warning: The specific number identifier
of a region depends on which
CAMPAIGN you are using!
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Detector in CNAO2020 Campaign
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Where the FOOT user can retrieve relevant infos about 
geometry and materials used in simulation

For a given Campaign XXX: 
In shoe/build/Reconstruction/level0/config/XXXX/FootGlobal.par
you see the detectors selected for simulation (y or n in a list)
In  shoe/build/Reconstruction/level0/geomaps there are:

FOOT_geo.map which contains the positions (of the “center”), dimensions and 
rotation angles in global coordinates of all FOOT detectors and magnets
TA*detector.map which contain, for each single detector (or magnet system), 
the relative coordinates and rotation angle of every element composing the 
detector itself, together with the material description. 
TAGdetector.map contains info about target and primary beam
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inside FootGlobal.par you can see:

Example from config/CNAO2020
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TATWdetector.mapFOOT_geo.map

Examples from geomaps
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x y z Bx By Bz

magnetic map name and numbers for magnets are
in geomaps/XXXX/TADIdetector.map.

Configuration of Magnets

The map of magnetic file is contained in 
shoe/build/Reconstruction/fullrec/data
(at present is “AsymmetricDipoles.table”)
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Region Numbering for CNAO2020 Campaign
Region n.        1 BLACK   “Black Hole”
Region n.        2 AIR1    Air
Region n.        3 AIR2    Air
Region n.        4 AIR_CAL0 Air around Calo
Region n.        5 STC     Start Counter
Region n.        6 STCMYL1 Mylar foil in front of Start Counter
Region n.        7 STCMYL2 Mylar foil on the back of SC
Region n.        8 BMN_SHI BM Al Shield
Region n.        9 BMN_MYL0 BM Mylar foil at the entrance
Region n.       10 BMN_MYL1 BM Mylar foil at the exit
Region n.       11-46 BMN_C000 – BMN_C117 BM Cells
Region n.       47 BMN_FWI BM Field wires
Region n.       48 BMN_SWI BM Sense wires
Region n.       49 BMN_GAS BM gas (non – sensitive)
Region n.       50 TARGET  Target
Region n.       51-62 VTXE0 – VTXP3 All different parts of VTX
Region n.       63-80 MSDS0 – MSDM4 All different parts of MSD
Region n.       81-120 SCN000 – SCN119 TW bars
Region n.      121-129 CAL000 – CAL008 BGO crystals
Region n.      130 ACAL_00 AIR around the BGO crystals

At present not availble in SHOE
It can be useful in MC studies

14



Detector Full
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Region Numbering for FULL Campaign
Region n.        1            BLACK                                   “Black Hole”
Region n.        2            AIR1                                        Air
Region n.        3            AIR2                                        Air
Region n.        4-13       AIR_CAL0 - AIR_CAL9           Air around Calo
Region n.       14          STC                                         Start Counter
Region n.       15          STCMYL1                                Mylar foil in front of Start Counter
Region n.       16          STCMYL2                                Mylar foil on the back of SC
Region n.       17          BMN_SHI                                 BM Al Shield
Region n.       18          BMN_MYL0                             BM Mylar foil at the entrance
Region n.       19          BMN_MYL1                             BM Mylar foil at the exit
Region n.       20-55     BMN_C000 - BMN_C117        BM Cells
Region n.       56          BMN_FWI                                BM Field wires
Region n.       57          BMN_SWI                                BM Sense wires
Region n.       58          BMN_GAS                               BM gas (non – sensitive)
Region n.       59          TARGET                                  Target
Region n.       60-71     VTXE0 - VTXP3                       All different parts of VTX
Region n.       72-219   ITRE00 - ITRY112 All different parts of ITR
Region n.      220-237  MSDS0 - MSDM5                    All different parts of MSD
Region n.      238-241  MAG0 – MAG_SH1    Different parts of the Magnets
Region n.      242-281  SCN000 - SCN119                  TW bars
Region n.      282-569  CAL000 - CAL287                   BGO crystals
Region n.      570-601  ACAL_00 - ACAL_31               AIR around the BGO crystals

At present not availble in SHOE
It can be useful in MC studies
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The EVENT_STRUCT content 
(the one adopted in the traditional MC files)

Track (Particle) Structure

Detector 1 Structure

Detector 2 Structure

Detector 3 Structure

Etc..

“Crossings” Structure

For each 
recorded 
event

kinematics and properties of all 
particles (primary+ all secondaries) 
generated in the event

For each active detector:
all infos about “hits” (=energy 
releases) in the detector, and 
pointer to Particle Structure to 
connect to the particle 
generating the hits

All coordinates, kinematics for each 
particle at all ”crossing points” when 
passing from a region to another one. 
Pointer to connect to Track Structure

Warning: not yet imported in SHOE
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The particle structure Int_t EventNumber; 
Int_t TRn;
Int_t TRpaid[MAXTR];
Int_t TRgen[MAXTR];
Int_t TRcha[MAXTR];
Int_t TRreg[MAXTR];
Int_t TRbar[MAXTR];
Int_t TRdead[MAXTR];
Int_t TRfid[MAXTR];
Double_t TRix[MAXTR];
Double_t TRiyi[MAXTR];
Double_t TRiz[MAXTR];
Double_t TRfx[MAXTR];
Double_t TRfy[MAXTR];
Double_t TRfz[MAXTR];
Double_t TRipx[MAXTR];
Double_t TRipy[MAXTR];
Double_t TRipz[MAXTR];
Double_t TRfpx[MAXTR];
Double_t TRfpy[MAXTR];
Double_t TRfpz[MAXTR];
Double_t TRmass[MAXTR];
Double_t TRtime [MAXTR];
Double_t TRtof[MAXTR];
Double_t TRlen[MAXTR];

for each of the produced particles we register the info in arrays: i.e.
TRmass[2] is the mass of the 3rd produced particle

TRn= number of particles produced in the event
TRpaid= index in the part common of the particle parent
TRcha = charge (Z)
TRbar = barionic number (A)
TRfid = FLUKA code for the particle (for example: photon=7)
TRgen = generation number
TRreg = number of the region where the particle has been produced
TRix, TRiy, TRiz = production position of the particle (cm)
TRfx, TRfy, TRfz = final position of the particle (cm)
TRipx,TRipy,TRipz = production momentum of the particle (GeV/c)
TRifx,TRfpy,TRfpz = final momentum of the particle (GeV/c)
TRmass = particle mass (GeV/c2)
TRtime = production time of the particle (s)
TRtof = time between death and birth of the particle (s)
TRtrlen = Track lenght of the particle (cm) 

EventNumber = FLUKA event number:
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Retrieving the MC particle structure in SHOE
When processing a rootple obtained after processing with DecodeMC, you can use in your 
macro the methods defined in shoe/libs/src/TAMCbase (TAMCntuEve.hxx, TAMCntuEve.cxx)

TTree *tree;
tree->SetBranchAddress(TAMCntuEve::GetBranchName(), &mcNtuEve);

TAMCntuEve *mcNtuEve;
mcNtuEve = new TAMCntuEve(); gets the Event Structure
….
Somewhere inside a Loop on the events:
….
int  Nmctrack = mcNtuEve->GetTracksN();          retrieves TRn
for( Int_t iTrack = 0; iTrack < mcNtuEve->GetTracksN(); ++iTrack ) {  loop on the tracks in the event

TAMCeveTrack* track = mcNtuEve->GetTrack(iTrack); gets the track
Int_t FLid = track->GetFlukaID();    retrieves TRfid[iTrack]
Int_t Mid = track->GetMotherID(); retrieves TRpaid[iTrack]-1
Int_t Charge = track->GetCharge(); retrieves TRcha[iTrack]
Int_t BarNum = track->GetBaryon(); retrieves TRbar[iTrack]
Int_t BarNum = track->GetRegion(); retrieves TRreg[iTrack]
Double_t Mass = track->GetMass(); retrieves TRmass[iTrack]
TVector3 InitPos = track->GetInitPos(); retrieves TRix[iTrack], TRiy[iTrack], TRiz[iTrack] 
TVector3 FinalPos = track->GetFinalPos(); retrieves TRfx[iTrack], TRfy[iTrack], TRfz[iTrack] 
TVector3 InitP = track->GetInitP(); retrieves TRipx[iTrack], TRipy[iTrack], TRipz[iTrack] 
TVector3 FinalP = track->GetFinalP(); retrieves TRfpx[iTrack], TRfpy[iTrack], TRfpz[iTrack] 
etc. etc.

For example:
thanks to Y.D.
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An example 
Is the first entry of root file in CNAO2020, EventNumber (Fluka) = 158
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id = 0 is the primary. The first track in the structure (row=0)

For id>0: id-1 points to the parent particle (row id-1 in the structure)
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All particles with id = 1 have been generated by the primary (id=0)

These particles with id = 11 have been generated by the particle at row id-1 = 10 (a neutron 
which interacts in air far away) 22



Here is the point where that neutron at row = 10 interacts

Notice:
At present simulation 
is generic and does 
not include a realistic 
room size: this 
means, for example, 
that no possible 
back-splash from 
walls is considered 
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This proton has been generated by primary in the target, but dies in the target 

These particles exit from the geometry far away (z=900 cm)
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Our example

id = 0 ; 12C primary

id = 1 ; row=10 ; neutron

id = 1 ; row=3 ; 7Li

id = 1 ; row=4 ; 3He

id = 1 ; row=9 ; neutron

id = 1 ; row=8 ; neutron

id = 1 ; row=7 ; proton

id = 1 ; row=6 ; proton

id = 1 ; row=4 ; 4He

id = 1 ; row=2 ; d

id = 1 ; row=1 ; d
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Which events are recorded?

1) At present, our default is to write on file only the events in which the primary 
particle had an inelastic interaction in the Target Region (~1.2% of all primaries 
considered)

2) It is possible to perform other choices upon request (for example, in trigger or 
efficiency studies we write all events)

Warning:
Asking for an inelastic interaction in the Target does not mean that it is the only 
inelastic interaction there:
a) in (very) few cases you may have another secondary interacting in the target
b) Primary can perform an elastic interaction before the inelastic one (see later)
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What does it mean “Initial” or “Final”?

Initial coordinates: the coordinates of the point in the global reference frame where a 
particle is injected, or generated by interaction or decay

Initial momentum: the 3-vector P components at the point of injection or generation

Final coordinates: the coordinates of the point in the global reference frame where a 
particle “dies”. A particle dies when: 1) has an inelastic interaction; 2) decays; 3) exits 
from the geometry; 4) its energy goes below the transport threshold which has been 
set in simulation: it is then propagated to the end of the remaining CSDA range.

Final momentum: the 3-vector P components at the point of death. In case 4) Pfinal
components are 0.
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About the meaning of time:

In a single event, Time starts from 0 in the point where the primary particle is 
injected. 

TRtime: it has to be 0 for the primary. If the primary travels with velocity b, and 
interacts after a length L,  the secondaries will be generated at t= L/(b c) and that 
will be the value inside their TRtime

TRtof: it is the time difference between the ”death” (see slide before) and creation 
of a particle
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Data omitted in the event recording

1. Unfortunately, we never included (so far) Z, A of the target nucleus 
where interaction occur. At present Target Nucleus can be often 
reconstructed by checking Z and A conservation: ∑𝑍! of secondary 
particles having id=1 has to be equal to the sum of Z of primary and Z of 
target. The same for baryonic number conservation.

2. We have not marked in any way elastic scattering. Be careful when 
interaction occurs in materials where Hydrogen is present: the recoiling 
proton (H) from elastic scattering of the primary (or of a secondary 
fragment) may appear from coordinates where no inelastic interaction 
occurred…
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Elastic Interaction
N + p → N + p
with H nucleus

proton with TRpaid == 1  

Primary continues
with TRpaid == 0

Primary enter target with 
TRpaid == 0

TRpaid == 1

TRpaid == 1

TRpaid == 1

Inelastic
Interaction with 
C nucleus

You can find in the charge
balance an extra unit, but 2 
interactions have occurred in 
this piece of material

C2H4

An example of the “elastic interaction problem”
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The individual detectors structures

DETn = number of hits (energy releases) in the detector DET
DETid = to build the pointer to the particle responsible of the hit
DETxin, DETyin, DETzin = initial position of  hit
DETxout, DETyout, DETzout = final position of hit
DETpxin, DETpyin, DETpzin = initial momentum of hit
DETpxout, DETpyout, DETpzout = final momentum
DETde = energy release
DETtim = initial time of the energy release

For each detector with n energy releases (hits) the infos are stored in arrays
(x, p, DE, time, etc...) with the i-th component related to the i-th release . 

There can be specific variables depending on the type of DET when needed. 
For example: Layer, View, ….

Remember it is in GeV
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Int_t STCn;
Int_t STCid[MAXSTC]; 
Double_t STCxin[MAXSTC];
Double_t STCyin[MAXSTC];
Double_t STCzin[MAXSTC];
Double_t STCxout[MAXSTC]; 
Double_t STCyout[MAXSTC]; 
Double_t STCzout[MAXSTC]; 
Double_t STCpxin[MAXSTC]; 
Double_t STCpyin[MAXSTC]; 
Double_t STCpzin[MAXSTC]; 
Double_t STCpxout[MAXSTC];
Double_t STCpyout[MAXSTC];
Double_t STCpzout[MAXSTC];
Double_t STCde[MAXSTC]; 
Double_t STCal[MAXSTC]; 
Double_t STCtim[MAXSTC]; 

Start Counter: STC

Simple case of 
non-segmented detector
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Beam Monitor: BMN
Int_t BMNn;
Int_t BMNid[MAXBMN]; 
Int_t BMNilay[MAXBMN]; 
Int_t BMNicell[MAXBMN];
Int_t BMNiview[MAXBMN];
Double_t BMNxin[MAXBMN];
Double_t BMNyin[MAXBMN];
Double_t BMNzin[MAXBMN];
Double_t BMNxout[MAXBMN]; 
Double_t BMNyout[MAXBMN]; 
Double_t BMNzout[MAXBMN]; 
Double_t BMNpxin[MAXBMN]; 
Double_t BMNpyin[MAXBMN]; 
Double_t BMNpzin[MAXBMN]; 
Double_t BMNpxout[MAXBMN];
Double_t BMNpyout[MAXBMN];
Double_t BMNpzout[MAXBMN];
Double_t BMNde[MAXBMN]; 
Double_t BMNal[MAXBMN]; 
Double_t BMNtim[MAXBMN];

Layer

Drift Cell  (in a given layer)

View  (X or Y in a given layer)

This is a segmented detector
Additional specific variables are needed
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Int_t VTXn; 
Int_t VTXid[MAXVTX]; 
Int_t VTXilay[MAXVTX];
Double_t VTXxin[MAXVTX];
Double_t VTXyin[MAXVTX];
Double_t VTXzin[MAXVTX];
Double_t VTXxout[MAXVTX]; 
Double_t VTXyout[MAXVTX]; 
Double_t VTXzout[MAXVTX]; 
Double_t VTXpxin[MAXVTX]; 
Double_t VTXpyin[MAXVTX]; 
Double_t VTXpzin[MAXVTX]; 
Double_t VTXpxout[MAXVTX];
Double_t VTXpyout[MAXVTX];
Double_t VTXpzout[MAXVTX];
Double_t VTXde[MAXVTX]; 
Double_t VTXal[MAXVTX]; 
Double_t VTXtim[MAXVTX]; 

Vertex Tracker: VTX

This is a segmented (=pixelated) detector
One additional specific variable is enough

Layer (0,1,2,3)

Identify
the pixel
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Int_t ITRn; 
Int_t ITRid[MAXITR]; 
Int_t ITRsens[MAXITR];
Double_t ITRxin[MAXITR];
Double_t ITRyin[MAXITR];
Double_t ITRzin[MAXITR];
Double_t ITRxout[MAXITR]; 
Double_t ITRyout[MAXITR]; 
Double_t ITRzout[MAXITR]; 
Double_t ITRpxin[MAXITR]; 
Double_t ITRpyin[MAXITR]; 
Double_t ITRpzin[MAXITR]; 
Double_t ITRpxout[MAXITR];
Double_t ITRpyout[MAXITR];
Double_t ITRpzout[MAXITR];
Double_t ITRde[MAXITR]; 
Double_t ITRal[MAXITR]; 
Double_t ITRtim[MAXITR];

Inner Tracker:  ITR

Another pixelated detector with specific features

Identify
the pixel

Mimosa28 Chip (0 – 31)
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Int_t MSDn; 
Int_t MSDid[MAXMSD]; 
Int_t MSDilay[MAXMSD]; 
Double_t MSDxin[MAXMSD]; 
Double_t MSDyin[MAXMSD]; 
Double_t MSDzin[MAXMSD]; 
Double_t MSDxout[MAXMSD]; 
Double_t MSDyout[MAXMSD]; 
Double_t MSDzout[MAXMSD]; 
Double_t MSDpxin[MAXMSD]; 
Double_t MSDpyin[MAXMSD]; 
Double_t MSDpzin[MAXMSD]; 
Double_t MSDpxout[MAXMSD]; 
Double_t MSDpyout[MAXMSD]; 
Double_t MSDpzout[MAXMSD]; 
Double_t MSDde[MAXMSD]; 
Double_t MSDal[MAXMSD]; 
Double_t MSDtim[MAXMSD];

MicroStrip Detector: MSD

Another type of segmentation

Layer (0 – 6)

Identify the strip (X or Y)
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Tof Wall: SCNInt_t SCNn;
Int_t SCNid[MAXSCN]; 
Int_t SCNibar[MAXSCN]; 
Int_t SCNiview[MAXSCN]; 
Double_t SCNxin[MAXSCN]; 
Double_t SCNyin[MAXSCN]; 
Double_t SCNzin[MAXSCN]; 
Double_t SCNxout[MAXSCN];
Double_t SCNyout[MAXSCN];
Double_t SCNzout[MAXSCN];
Double_t SCNpxin[MAXSCN];
Double_t SCNpyin[MAXSCN];
Double_t SCNpzin[MAXSCN];
Double_t SCNpxout[MAXSCN];
Double_t SCNpyout[MAXSCN];
Double_t SCNpzout[MAXSCN];
Double_t SCNde[MAXSCN];
Double_t SCNal[MAXSCN];
Double_t SCNtim[MAXSCN];

SCN bar (0 – 19)
SCN view (0 – 1)

Another type of segmentation
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Int_t CALn;
Int_t CALid[MAXCAL]; 
Int_t CALicry[MAXCAL]; 
Double_t CALxin[MAXCAL]; 
Double_t CALyin[MAXCAL]; 
Double_t CALzin[MAXCAL]; 
Double_t CALxout[MAXCAL];
Double_t CALyout[MAXCAL];
Double_t CALzout[MAXCAL];
Double_t CALpxin[MAXCAL];
Double_t CALpyin[MAXCAL];
Double_t CALpzin[MAXCAL];
Double_t CALpxout[MAXCAL]; 
Double_t CALpyout[MAXCAL]; 
Double_t CALpzout[MAXCAL]; 
Double_t CALde[MAXCAL];
Double_t CALal[MAXCAL];
Double_t CALtim[MAXCAL]; 

Calorimeter: CAL

Crystal number

Most simple segmentation
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The crossing data structure
Not yet inherited in SHOE

Int_t CROSSn;
Int_t CROSSid[MAXCROSS];
Int_t CROSSnreg[MAXCROSS];
Int_t CROSSnregold[MAXCROSS];
Double_t CROSSx[MAXCROSS];
Double_t CROSSy[MAXCROSS];
Double_t CROSSzMAXCROSS];
Double_t CROSSpx[MAXCROSS];
Double_t CROSSpy[MAXCROSS];
Double_t CROSSpz[MAXCROSS];
Double_t CROSSm[MAXCROSS];
Double_t CROSSch[MAXCROSS];
Double_t CROSSt[MAXCROSS];

CROSSn = number of boundary crossing
CROSSid = position of the crossing particle in the particle block
CROSSnreg = no. of region in which the particle is entering
CROSSnregold = no. of region the particle is leaving
CROSSpx, CROSSpy, CROSSpz = mom. at the boundary crossing 
CROSSx, CROSSy, CROSSz = position of the boundary crossing
CROSSt = time of the boundary crossi
CROSSch = charge of crossing particle
CROSSm = mass of the crossing particle

This structure registers the info on the particles that cross the boundaries 
between the different regions of the setup (detector elements, air, target).

Very useful for many analyses about MC truth
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Retrieving MC HITS from Detector Structures in SHOE
When processing a rootple obtained after processing with DecodeMC, you can use in your 
macro the methods defined in shoe/libs/src/TAMCbase (TAMCntuHit.hxx, TAMCntuHit.cxx)

Int_t GetID()
Int_t GetTrackIdx()
Int_t GetSensorId()
Int_t GetBarId()
Int_t GetCrystald()
Int_t GetLayer()
Int_t GetView() 
Int_t GetCell()
TVector3      GetInPosition()
TVector3      GetOutPosition()
TVector3      GetInMomentum()
TVector3      GetOutMomentum()
Double_t GetDeltaE()
Double_t GetTof()

GetHitsN() returns the no. of hits for the selected detector in the event

returns DETid
returns pointer to the track that generated the hit
returns sensor no. when relevant (e.g. ITR)
returns bar no. (SCN)
returns CALicry
returns layer no. (meaning changes with detector}
returns SCNview
returns BMN cell
returns DETxin, DETyin, DETzin
returns DETxout, DETyout, DETzout
returns DETpxin, DETpyin, DETpzin
returns DETpxout, DETpyout, DETpzout
returns DETde (for TW is already converted in MeV !)
returns DETtim

(See later also slide #45)
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About the energy release in simulation - 1
Charged particles
Suppose for simplicity to neglect d-rays:
A ”hit” will be the energy lost during a “step” (with fluctuations of dE/dx properly considered in 
a continuous way)

These have to be introduced in 
your post-processing macros

No electronics/detector effects → no experimental resolution
No quenching factors introduced so far
Only physics intrisic fluctuations (i.e. ”Landau” fluct.)

Assume this is a single step of a particle in a crystal
CALxin, CALyin, CALzin
coordinates CALxout, CALyout, CALzout

coordinates

Example for DET=CAL 

CALpxin, CALpyin, CALpzin
are the momentum 
components of the particle 
releasing energy had at 
CALxin, CALyin, CALzin

Analogous for CALpxout, 
CALpyout, CALpzout
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About the energy release in simulation - 2

Hit 1

Hit 2

More complex cases Of course:
1) the energy released 

per event in the 
same detector is the 
sum of DE (here 
CALde) 

2) The energy released 
per event in a single 
element of the 
detector is obtained 
by restricting the 
sum to a selected 
element. In this case 
you could use 
CALicry to select a 
given crystal

Hit 3

The black track is a neutron: it does not 
deposit energy here

The yellow tracks are photons: here they 
deposit energy in the point where they stop 
by p.e. effect. Electron is below threshold.

Hit 4

Hit 5
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About the energy release in simulation - 3

There are cases in which the Hits (Energy depositions) have point-like space 
dimension.

In Fluka this may occurr in some cases. For example:
a) for e+/e-/photons which go below transport energy threshold (see Hit #4 and 

Hit #5 in the previous slide)
b) “Low Energy” neutrons (E<20 MeV) which deposit energy by kerma factors
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Connecting Hits in Detectors to Track Structure

To find which particle released energy in a detector we can build a pointer to 
the Particle structure. Given the j--th energy release in the detector DET, then we
build:

Double_t Mass    = pevstr->TRmass[pointer];
Int_t Charge = pevstr->TRcha[pointer];

Then the features of the particles responsible of the release (for example the
mass and the charge) can be retrieved from the Particle structure as in the 
following examples:

pointer= pevstr->DETid[j]--1;

To get the pointer in SHOE you make use of GetTrackIdx()
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Connecting Hits in Detectors to Track Structure: 
example in a SHOE macro

TAMCntuEve *mcNtuEve;
mcNtuEve = new TAMCntuEve(); gets the Event Structure

TAMCntuHit *bmNtuEve
bmNtuEve = new TAMCntuHit();
tree->SetBranchAddress(TAMCntuHit::GetBmBranchName(), &bmNtuEve); gets the Hits of BM
….
Somewhere inside a Loop on the events:
….
Int_t nbmMCHits=bmNtuEve->GetHitsN();  gets the number of Hits in the event

for(Int_t i=0;i<nbmMCHits;i++){    loop on the number of Hits
TAMChit* bmMChit=bmNtuEve->GetHit(i);  gets the Hit
TAMCeveTrack* mctrack=mcNtuEve->GetTrack(bmMChit->GetTrackIdx()-1); gets the pointer to the 

track (particle) which generated the Hit
Int_t charge mctrack->GetCharge(); retrieves the charge of the particle
….
etc. etc.

thanks to Y.D.
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On the question of associating Hits with Particles
The issus is not so simple.
In this example the incoming particle releases energy with 3 Hits Only one of them is 

directly associated to 
this particle (no. 1)

1
2

3
The other 2 Hits are 
associated to 
daughters of the 
incoming particle 
(products of an 
interaction)

Therefore a correct analysis of this kind, at the 
level of MC truth, has to be performed by 

implementing a logic in which the whole chain of 
daughters is to be considered

(think for instance at the case when d-rays are 
explicitely produced) 46



Possible Basic Exercises using SHOE
1. Make a plot of the multiplicity per event of tracks produced anywhere in the detector
2. Make a plot of the multiplicity per event of tracks produced by the primary in the 

target
3. Make the previous plot only for those particle which exit the target going in the 

forward region and are produced with E>50 MeV/u
4. Make a plot of the energy distribution of fragments produced in target for a few 

different Z and/or A
5. Make a plot of the energy released per event in the TW
6. Make a plot of the energy released per event in the CA and for a selected crystal of 

your choice

Slightly Increasing Difficulty:
7. Compare the distribution of energy released by p and 4He in the 1st layer of MSD (in 
the approximation that they do not produce daughters there)
8. Select particles produced in the target which arrive at TW and make a plot of the 
energy that they have lost in the path from target to TW
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