
Software tutorial:

 framework session

A. Sarti

https://agenda.infn.it/event/24595/

02/21 A. Sarti Software tutorial

Framework: why?
➡ FOOT is a big particle physics experiment, composed of many

subsystems

➡ The full event reconstruction proceeds in steps: starting from the

decoding of the data/MC ‘raw’ information the different sub-
detectors process the information and ‘complex’ objects are built in a
sequence of actions.. Eg in the VTX detector:

– pixels are combined in clusters

– clusters in tracks

– tracks are used to form a vertex…..

– starting from the tracks associated to a given vertex a full event is

reconstructed ‘forward-projecting’ the tracks in the other detectors (IT, MSD,
TW, Calo…)

2

02/21 A. Sarti Software tutorial

Framework: how?
➡ To provide an ‘easy’ access to a) input data processed through a b)

chain of actions producing c) output data the ROOT framework has
been chosen

➡ You ‘only’ need to define

– Which object you want to create, what input is needed and how you want to

create it.

– ROOT does the rest: ‘automagically’ organises the actions that are needed, in

proper order, and

• Pre-configures what is needed (if needed)

• Executes, on an event-by-event basis, the actions

• runs a post-configuration action (if defined)

– The information about the input and output objects is ‘updated’ and ‘cleared’
for each event

3

02/21 A. Sarti Software tutorial

Parameters…
➡ Beside what changes on an event-by event basis, there are some

informations that are needed to ‘reconstruct’ the objects, but that are
not changing in each event. There are the ‘parameters’.

➡ Eg: to reconstruct a ‘track’ starting from the information of a ‘pixel’
detector one needs to know the 3D position of each pixel
(“geometry”)… Other examples of useful information: the
‘configuration’ of a detector, its ‘calibration’ and the mapping of the
readout channels…

– All these are ‘TAGparaDsc’ objects.

➡ Together with the ‘data’ [TAGdataDsc] and the actions [TAGaction] the
parameters are completing everything that is done in shoe.

– All the rest is ‘examples’ :) … ok ok .. I’m over-simplifying a little bit.

4

02/21 A. Sarti Software tutorial

The simplest job…
➡ main chain:

– First of all you need to define ‘the input’ (usually a ROOT file) and what you
want to use out of it

– Then you pre-load all the information that is not changing ‘event by event’,
define the objects that you want to build, and the actions that are needed for
doing so

– Then you execute the actions ‘pre-configuration’ step

– You process all the events and execute the post-configuration step

– You close the output files, and it’s done!

➡ Disclaimer: it’s not trivial or easy. E.g. you’ll see that in ROOT the
‘order’ in which you do things matters!

– Eg. you need to define the objects you want to read before opening the file
that contains it, or you’ll end up with a lot of random numbers :)

5

02/21 A. Sarti Software tutorial

Reverse engineering! (I)
➡ Let’s try to understand how things are done in shoe by starting .. from

the output!

➡ Imagine that someone has already used shoe to process some

MC or data collection of events (../../bin/DecodeMC -in Tutorial/Full/

12C_C_200shoe.root -out test.root -nev 1500 -exp 12C_200 -run 1).

➡

6

➡ The output will be a ROOT file containing three
main objects useful for your investigations:

– An ntuple, a run info object, a collection of histograms

➡ Let’s see how we can understand who produced what
and how we can put our hands on the algorithms and
‘tune/change’ them to change the info or add some
info according to our needs…

02/21 A. Sarti Software tutorial

The ‘easy’ part: histograms
➡ E.g. I’d like to

understand what
I can ‘get’ about
BM
reconstruction.

➡ there are plenty
of histograms:
how are built?
filled? saved?

➡ E.g.
bmMcHitPlane:
how can I find
info about it?

7

02/21 A. Sarti Software tutorial

Reverse engineering: grep (II)
➡ Beside the ‘google’ interpretation of GIYF, you’ll learn that also ‘grep’ is your

friend!

– shoe has MANY classes, packages, tons of lines of code. How can I understand where my

favourite code is kept?

• ‘names’ should help :) … Eg. if I’m looking for BM - related info, a good place to start is the

TABMbase package.

• however from time to time there are algorithms that are shared btw different subsystems

(e.g. the decoding of the WaveDream output is shared among SC, TW and CALO)… what
can I do?

➡ G(rep)IFY!

– grep bmMcHitPlane libs/src/TA*/* will try to look for the ‘bmMcHitPlane’ string

inside the base classes of shoe located inside libs/src.

– Issued from shoe one gets: grep bmMcHitPlane libs/src/TA*/*

– libs/src/TABMbase/TABMactNtuHitMC.cxx: fpHisPlane = new TH1I("bmMcHitPlane",

"plane index; index; Counter", 6, -0.5, 5.5);

– libs/src/TABMbase/TABMactNtuMC.cxx: fpHisPlane = new TH1I("bmMcHitPlane", "plane

index; index; Counter", 6, -0.5, 5.5);

8

02/21 A. Sarti Software tutorial

Reverse engineering: grep (III)
➡ Good! We found what we need and we can get already some

interesting info:

– libs/src/TABMbase/TABMactNtuHitMC.cxx: fpHisPlane = new

TH1I("bmMcHitPlane", "plane index; index; Counter", 6, -0.5, 5.5);

– libs/src/TABMbase/TABMactNtuMC.cxx: fpHisPlane = new

TH1I("bmMcHitPlane", "plane index; index; Counter", 6, -0.5, 5.5);

➡ The histograms are defined inside an action (TABMactNtu*) that is
executed on an ‘event by event basis’ [as expected]. The line of code
we found is related to the declaration of the hits (new TH1I(….)) and
to see how the histo is used, we need to look inside the file and search
for fpHisPlane!

– Before understanding how an action works, a tougher task: there are two
actions… How can I understand which one was used to create the histo I am
looking at right now???

9

02/21 A. Sarti Software tutorial

Reverse engineering: grep (IV)
➡ which one?

– libs/src/TABMbase/TABMactNtuHitMC.cxx: fpHisPlane = new
TH1I("bmMcHitPlane", "plane index; index; Counter", 6, -0.5, 5.5);

– libs/src/TABMbase/TABMactNtuMC.cxx: fpHisPlane = new
TH1I("bmMcHitPlane", "plane index; index; Counter", 6, -0.5, 5.5);

➡ Depends! If there are two actions, it means that both are doing
specific things.. that can be used by the user to perform specific
actions. Which one was used creating the output?

– If you are using a macro.. it’s easy! Look inside the macro and see which
action you’re calling :)

– If you are using the shoe executables.. Not easy to answer! That is the hardest
part you’ll encounter… You need to know a little bit about shoe executables
to understand who is called.. But, once again… GIYF.

10

02/21 A. Sarti Software tutorial

Reverse engineering: grep (V)
➡ which one?

– libs/src/TABMbase/TABMactNtuHitMC.cxx or libs/src/TABMbase/
TABMactNtuMC.cxx

➡ The classes used to code the executables are kept inside TAGfoot. Let’s
try grep once again:

– If you are using a macro.. it’s easy! Look inside the macro and see which action you’re
calling :)

– If you are using the shoe executables.. Not easy to answer! That is the hardest part you’ll
encounter… You need to know a little bit about shoe executables to understand who is
called.. But, once again… GIYF.

– From TAGfoot: grep TABMactNtuHitMC *

• LocalRecoNtuMC.cxx: fActNtuRawBm = new TABMactNtuHitMC("bmActNtu",

fpNtuMcBm, fpNtuMcEve, fpNtuRawBm, fpParConfBm, fpParCalBm, fpParGeoBm, fEvtStruct);

– From TAGfoot: grep TABMactNtuMC *

• LocalRecoMC.cxx: fActNtuRawBm = new TABMactNtuMC("bmActNtu", fpNtuRawBm,

fpParConfBm, fpParCalBm, fpParGeoBm, fEvtStruct);

11

02/21 A. Sarti Software tutorial

Executables in shoe!
➡ which one?

– libs/src/TABMbase/TABMactNtuHitMC.cxx or libs/src/TABMbase/
TABMactNtuMC.cxx

➡ This means that the real choice is btw:

– LocalRecoNtuMC.cxx and LocalRecoMC.cxx.. Once again using grep we

find out that

• The class is directly implemented inside the executables inside Reconstruction/

level0

• DecodeMC contains both:

• if (!obj && !test) locRec = new LocalRecoMC(exp, runNb, in, out);

• else locRec = new LocalRecoNtuMC(exp, runNb, in, out);

– So: the user can decide wether (s)he wants to process root objects as input
(obj flag) or if, instead, as input expects a simple ‘ROOT tree’.

12

02/21 A. Sarti Software tutorial

An example: DecodeMC
➡ Depending on what you need to do, there are already several options

available at your hand…

– You want to process MC simulation output from FLUKA? DecodeMC is what

you’re looking for.

– If you are looking at ‘old’ tuples, with the old structure format, (e.g. Full/

12C_C_200.root file) you should use the LocalRecoMC class, otherwise if you are
processing the new rootfiles (e.g. Full/12C_C_200shoe.root file) in which the info
is already tupled using the shoe framework and objects, you should use
LocalRecoNtuMC.

➡ How to tell your executable what you want to do?

– There’s a configuration file for it [config/12C_200/FootGlobal.par]. And you should

spend some time trying to understand what each line of it is doing..

– The one we are interested in right now is:

• EnableRootObject: n

• [default is ’n’: old root format.. to process ‘shoe’ files you should put it to ‘y’]

13

02/21 A. Sarti Software tutorial

The config file…
➡ Configuration files are kept

under config/XXX/*

– More info on XXX will come

later in a session dedicated to
the CampaignManager.

– Eg. of XXX are: CNAO2020,
12C_200, etc etc

➡ easy flags:

– IncludeXX: include a specific

subsystem

– Enable* : almost self-

explaining.. tree (saves the
ntuple) histo (saves the
histograms)…

14

02/21 A. Sarti Software tutorial

Back to histograms!

15

➡ Now that we have understood who is creating the histogram… Let’s
have a look at the action! (we use as example TABMactNtuHitMC
assuming that you are processing the ‘shoe’ MC files, -obj flag on)

– the actions comes with a CreateHistogram() where the histo are created/
booked. This method is called inside the TAGfoot package, BaseReco class, if
the histogram output is enabled [EnableHisto: y line in the config file]

– the fpHisPlane pointer is created and used inside the ‘action’:

• Inside TABMactNtuHitMC::Action() [method executed on an event-by-event

basis] we call:

• fpHisPlane->Fill(p_hit->GetPlane());

• that takes the ‘plane’ info from MC and stores it inside the histogram.

➡ Take home message:

– If I want to change anything in the histo, I go to TABMactNtuHitMC, change

what I need and recompile/rerun…!

02/21 A. Sarti Software tutorial

Action ex. : TABMactNtuHitMC
➡ The action defines the input data

(ntuMC and ntuEve) the out
data (ntuRaw) the
‘conditions’ (config, calibration,
geometry)…

➡ The action ‘fills’ the histograms
(ValidHistogram() is needed to
verify that the user wants to save
the histo information)

➡ The ‘logging’ is handled by
FootDebugLevel()… more on
that later..

➡ The action ‘ends’ declaring that
the ‘out’ data is fine ntuRaw-
>SetBit(kValid)

16

02/21 A. Sarti Software tutorial

Action ex. : TABMactNtuHitMC
➡ The global geometry

is handled by
geografo, while the
local one from
TABMparGeo.

➡ Event by event one

– ‘initialise’ the data

(SetupClones)

– use the config/geo

information

– creates and fill a new

‘BM’ hit (digitizer-
>Process())

– fills the histograms

17

02/21 A. Sarti Software tutorial

Before and after loops..

18

➡ The framework structure is the following:

– After the ‘initialisation phase’ you have three

steps beforeEL, loop, afterEL.

➡ Coded inside BaseReco.cxx inside
TAGfoot. Go and have a look! :)

– beforeEL loads the geometry, calibration,
configuration files.. and creates all the objects
needed during the loop and the related
actions. It also handles the ‘reading’ of the
input file.

– LoopEvent is quite simple! It ‘only’ calls
‘NextEvent()’ the method that triggers the
sequential running of all the Actions()
defined in before EL

02/21 A. Sarti Software tutorial

More interesting: objects!
➡ Beside histograms one has also access to a ntuple.. That contains the

full information.. But in a ‘shoe’ format :)

19

➡ Most information ‘is
clickable’ … for quick
plotting.. but not all of
it.

➡ Getting access to the
full info from the tuple,
is a ‘tough’ job.. we will
see it in detail..

02/21 A. Sarti Software tutorial

Reverse engineering VI
➡ Who is ‘saving’ the branch I am interested in and what it contains?

– e.g.: the ‘bmrh’ branch…

➡ So.. inside shoe/libs/src..

– grep bmrh TA*/* -> returns -> TABMbase/TABMntuRaw.cxx:TString

TABMntuRaw::fgkBranchName = “bmrh.";

➡ Each ‘dataDsc’ fundamental object in shoe has a fgkBranchName..
Look for it in order to use it and understand how the object it is built!

➡ Usually:

– you have several ‘ntuXXX’ classes. There’s a class that is holding the list of

objects (e.g. in TABMntuRaw it holds the list of TAMBntuHit) and the
methods to retrieve all the objects…

– and there’s the class that describe each object: TABMntuHit.

20

02/21 A. Sarti Software tutorial

A closer look inside BMntu
➡ TABMntuHit.hxx content…

21

02/21 A. Sarti Software tutorial

TAGdataDsc inside a tree
➡ So: ROOT can save TAGdataDsc objects directly inside a tree!

– My action will ‘build’ the object I have defined, fill it with the relevant
information and, on an event-by-event basis, store it inside the ntuple.

➡ The advantages are clear!

– Eg: you can store ‘a vertex’ inside the tree and you can as to the given vertex

which are the associated tracks! Not only double/ints or vectors.. but real
‘shoe objects’ can be stored.

– Once you get your hands on a given pointer, you can use all the methods of
the class to perform whatever action you want (eg. you can directly retrieve
the tracks associated to a vertex using: TAVTvertex methods like GetTracksN,
GetListOfTracks and GetTrack .. the last one returns a TAVTtrack* !)

22

02/21 A. Sarti Software tutorial

Debugging
➡ How to add a debug info? A printout? How to control the messages from

shoe?

– To debug the code from time to time you’ll need to add a ‘printout’ in your code.

The level of verbosity can be checked using ‘FootDebugLevel(XX)’..

– XX is a number: if the ‘debug’ option passed inside FootGlobl.par is > than XX

then the message will be printed. Eg:

is printed only if the debug level is >0. The higher the number, the larger is the verbosity of
the output.. use it carefully!

➡ In order to better handle the debugging of different classes it is possibile
to enable the ‘debug’ option only for ‘one class’ at a time.

– See the talk from C. Finck tomorrow to ‘tune’ the output of each class!

23

02/21 A. Sarti Software tutorial

Doing ‘your’ stuff..
➡ Now you should be able to contribute to the development of shoe. If

you want to perform some kind of analysis or development of
algorithms to be used in the shoe reconstruction (either level0 or
fullrec)

– Identify the package that provides the initial tools that you need

– Identify the action that implements the algorithm you need, the input data

and the output data as well as eventual geometrical/calibration and
configuration information that you need.

– Then you can code the action, and include it in the shoe executables using the
BaseReco* implementation: you need to take care of understanding wether
you need to end up inside the *MC* reco classes, the global reconstruction,
the raw data reconstruction or else..

➡ But putting your hands inside shoe framework is not the only way to
‘play’ with the data and perform your analysis….

24

02/21 A. Sarti Software tutorial

How to play with the output?
➡ Beside root interactive browser… Two main ways:

– A ROOT macro or an executable

➡ For a quick access/check to the data, the macro solution is easier to implement and

faster.. but if you need to perform complex analysis steps involving several classes, you
might want to prepare a ‘main’ and compile it. [See tomorrow’s talk from C. Finck]

➡ In the hands-on session we will be practicing macros.. just few forewords:

– You can always try to look at the available macros under Reconstruction/level0 to get

inspiration :)

– the standard ‘MakeClass()’ approach on the root tree that contains shoe objects won’t

work: you need to play inside build/Reconstruction/level0 (to take advantage from the
rootlogon.C macro) and remember to use the shoe objects and TAGroot framework to
read the file.

– You can always have a look at TAGfoot/*Reco* classes to understand how to code the
building blocks of a macro!

– And remember: if the task gets too complicated.. best to go for executables that
inherit from BaseReco!

25

02/21 A. Sarti Software tutorial

Troubleshooting
➡ Installation

– Always look at the FOOT software twiki page.

– Always give extended information about the step you went through, the

architecture and computing environment (e.g. output of the g++ --version;
uname -a; echo $ROOTSYS; root-config --cflags..)

➡ Runtime

– that’s a lot harder!!! :) there is plenty of things that can go wrong ..

– Always give details about what input you are processing, which software you

are using (macro, executable, etc), what are the config files that you are using
(to provide this info you need to get your hands on the campaign manager..
not easy!) and what you are doing (data reco? MC reco? glb reco? from which
campaign?.. etc etc)

26

02/21 A. Sarti Software tutorial

Working with git
➡ The shoe software is in constant evolution!

➡ We use git to maintain the code. The baltig interface from INFN provides

a web tool to ‘navigate’ the code and its changes. Otherwise you can use
plain ‘git’ commands from command line to keep your code up to date.

➡ There’s a wiki page documenting how to ‘contribute’ to shoe http://
arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTDevelopers
and play with git.

➡ Just three main recommendations:

– keep your master branch up-to-date, keep your branch up-to-date with the

master one. If the distance btw your branch and the master becomes too large,
merging the algorithms will become a huge pain in the end!!

– Observe the coding conventions as much as possible. This will ease the merging
of your code within shoe!

– Do not reinvent the wheel! we have tons of lines of code and examples. Just ask!

27

http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTDevelopers
http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTDevelopers

