:

Software tutorial:

| framework session

A. Sarti

DIPARTIMENTO DI SCIENZE

DT BASE E APPLICATE &L SAPIENZA
CEE UNIVERSITA DT ROMA

PER I INGEGNERIA

https://agenda.infn.it/event/24595/

| Framework: why?

= FOOT is a big particle physics experiment, composed of many

subsystems

= The tull event reconstruction proceeds in steps: starting from the
decoding of the data/MC ‘raw’ information the different sub-
detectors process the information and ‘complex’ objects are built in a
sequence of actions.. Eg in the VTX detector:
— pixels are combined in clusters
— clusters in tracks
— tracks are used to form a vertex.....

— starting from the tracks associated to a given vertex a full event is
reconstructed ‘forward-projecting’ the tracks in the other detectors (I'T, MSD,

TW, Calo...)

02/21 A. Sarti Software tutorial

| Framework: how?

= To provide an ‘easy’ access to a) input data processed through a b)

chain of actions producing c) output data the ROOT framework has

been chosen

= You ‘only’ need to define

— Which object you want to create, what input is needed and how you want to
create it.
— ROOQOT does the rest: ‘automagically’ organises the actions that are needed, in
proper order, and
* Pre-configures what is needed (if needed)
* Executes, on an event-by-event basis, the actions

* runs a post-configuration action (if defined)

— The information about the input and output objects is ‘updated’ and ‘cleared’

for each event I

02/21 A. Sarti Software tutorial

| Parameters...

= Beside what changes on an event-by event basis, there are some

informations that are needed to ‘reconstruct’ the objects, but that are

not changing in each event. There are the ‘parameters’.

= Eg: to reconstruct a ‘track’ starting from the information of a ‘pixel’
detector one needs to know the 3D position of each pixel
(“geometry”)... Other examples of usetul information: the
‘configuration’ of a detector, its ‘calibration’ and the mapping of the
readout channels. ..
— All these are “TAGparaDsc’ objects.

= Together with the ‘data’ [TAGdataDsc] and the actions [TAGaction] the

parameters are completing everything that is done in shoe.

— All the rest is ‘examples’ :) ... ok ok .. 'm over-simplitying a little bit. I

02/21 A. Sarti Software tutorial

4

| The simplest job...

= main chain:

— First of all you need to define ‘the input’ (usually a ROOT file) and what you

want to use out of it

— Then you pre-load all the information that is not changing ‘event by event’,
define the objects that you want to build, and the actions that are needed for
doing so

— Then you execute the actions ‘pre-configuration’ step

— You process all the events and execute the post—configuration step

— You close the output files, and it’s done!
= Disclaimer: it’s not trivial or easy. E.g. you’ll see that in ROOT the
‘order’ in which you do things matters!

— Eg. you need to detine the objects you want to read before opening the file

that contains it, or you’ll end up with a lot of random numbers :) I

02/21 A. Sart Software tutorial 5

| Reverse engineering! (1)

= Let’s try to understand how things are done in shoe by starting .. from

the output!

= Imagine that someone has already used shoe to process some
MC or data collection of events (../../bin/DecodeMC -in Tutorial /Full/

12C_C_200shoe.root -out test.root -nev 1500 -exp 12C_200 -run 1).
= The output will be a ROOT file containing three
main objects useful for your investigations:
— An ntuple, a run info object, a collection of histograms
= Let’s see how we can understand who produced what
and how we can put our hands on the algorithms and
‘tune/change’ them to change the info or add some

info according to our needs. ..

02/21 A. Sarti Software tutorial

‘_AROOT Files
=-“i test.root

The easy’ part: histograms

= E.g. I'd like to
understand what
[can ‘get’ about
BM

reconstruction.

= there are plenty
of histograms:
how are built?
filled? saved?

= LE.g
bmMcHitPlane:

how can I find

info about it?

02/21 A. Sarti

ROOT Object Browser

Browser | File Edit View Options Tools Help

Files | Canvas_1 IEJ| Editor 1 ||

8l V& Draw Option:] plane index

(droot -

[IPROOF Sessions 5 3050

{AROOT Files =|| e

=-TBtest.root 3 bmMcHitPlane
TS o Entries 18089
E-BM;1 Mean 2.508
¢ i|a bmMcHitCell; 1 3040 S e

| &4 bmMCHitView;1 :

| 44 bmMCcHitPlane;1

| ja bmMcHitDischargedRdrift; 1
-] 44 bmMCcHitRdrift; 1 3030
|44 bmMCcHiDistribution;1
|4 bmMCHitFake;1

I bmTrackResidual;1
M bmTrackTargetMap;1
h bmTrackCenter;1 3020
|4 bmTrackAngleX;1
|4 bmTrackAngleY;1
|44 bmTrackStatus;1 >
|44 bmTrackNtotHitsxTrack;1

| 4a bmTrackNXHitsxTrack;1
|kmerackNYHitsxTrack;1

{k bmTrackNhitsRejectedxTrack;1
-] 4a bmTrackFakeHits;1

|4 bmTrackChi2Red;1 3000
{k bmTrackChi2xzView;1
| 4a bmTrackChi2yzView;1
| 4 bmTrackTotNumber;1

3010

.

_|IIII|IIII|IIII|IIII|IIII|

|
0 1 2 3 4 5
index

{A bmTrackXzviewNumber;1 v 2
|kmeracksziewNumber;1 Command ‘

|44 bmTrackMultiAngles;1

i..| b bmTrackMultiSenaration:1

+ | Command (local): ‘ z]

« I \ »

Filter: | All Files (") 7]

Software tutorial

| Reverse engineering: grep (1)

= Beside the ‘google’ interpretation of GIYF, you'll learn that also “grep’ is your
friend!

— shoe has MANY classes, packages, tons of lines of code. How can I understand where my

favourite code is kept?

* ‘names’ should help :) ... Eg. if I'm looking for BM - related info, a good place to start is the
TABMbase package.

* however from time to time there are algorithms that are shared btw different subsystems
(e.g. the decoding of the WaveDream output is shared among SC, TW and CALO)... what

can I do?

= Gep)lFY!
— grep bmMcHitPlane libs/src/TA*/* will try to look for the ‘bmMcHitPlane’ string
inside the base classes of shoe located inside libs/src.
— Issued from shoe one gets: grep bmMcHitPlane libs/src/TA*/*

— libs/src/TABMbase/TABMactNtuHitMC.cxx: fpHisPlane = new TH1I("bmMcHitPlane",
"plane index; index; Counter", 6, -0.5, 5.5);

— libs/src/TABMbase/TABMactNtuMC.cxx: fpHisPlane = new TH1I("bmMcHitPlane", "plane
index; index; Counter", 6, -0.5, 5.5);

02/21 A. Sarti Software tutorial

| Reverse engineering: grep (11I)

= Good! We found what we need and we can get already some

interesting info:

— libs/src/ TABMbase/ TABMactNtuHitMC.cxx: fpHisPlane = new
TH1I("bmMcHitPlane", "plane index; index; Counter", 6, -0.5, 5.5);

— libs/src/ TABMbase/ TABMactNtuMC.cxx: fpHisPlane = new
TH1I("bmMcHitPlane", "plane index; index; Counter", 6, -0.5, 5.5);

b/

= The histograms are defined inside an action (TABMactNtu*) that is
executed on an ‘event by event basis’ [as expected]. The line of code
we found is related to the declaration of the hits (new TH1I(....)) and
to see how the histo is used, we need to look inside the file and search
for fpHisPlane!

— Before understanding how an action works, a tougher task: there are two

actions. .. How can I understand which one was used to create the histo I am
looking at right now???

02/21 A. Sart Software tutorial 9

| Reverse engineering: grep (1V)

= which one?
— libs/src/ TABMbase/ TABMactNtuHitMC.cxx: fpHisPlane = new
TH1I("bmMcHitPlane", "plane index; index; Counter", 6, -0.5, 5.5);

— libs/src/ TABMbase/ TABMactNtuMC.cxx: fpHisPlane = new
TH1I("bmMcHitPlane", "plane index; index; Counter", 6, -0.5, 5.5);

= Depends! If there are two actions, it means that both are doing
specific things.. that can be used by the user to perform specitic
actions. Which one was used creating the output?
— If you are using a macro.. it’s easy! Look inside the macro and see which
action you're calling :)
— If you are using the shoe executables.. Not easy to answer! That is the hardest

part you’ll encounter. .. You need to know a little bit about shoe executables

to understand who is called.. But, once again... GIYF. I

02/21 A. Sart Software tutorial 10

| Reverse engineering: grep (V)

= which one?

— libs/src/ TABMbase/ TABMactNtuHitMC.cxx or libs/src/ TABMbase /
TABMactNtuMC.cxx

= The classes used to code the executables are kept inside TAGfoot. Let’s

try grep once again:
— If you are using a macro.. it’s casy! Look inside the macro and see which action you’re
calling D)
— If you are using the shoe executables.. Not easy to answer! That is the hardest part you’ll

encounter. .. You need to know a little bit about shoe executables to understand who is

called.. But, once again... GIYF.

— From TAGfoot: grep TABMactNtuHitMC *

* LocalRecoNtuMC.cxx: fActNtuRawBm = new TABMactNtuHitMC("bmActNtu",
fpNtuMcBm, fpNtuMcEve, fpNtuRawBm, fpParConfBm, fpParCalBm, fpParGeoBm, fEvtStruct);

— From TAGfoot: grep TABMactNtuMC *

* LocalRecoMC.cxx: fActNtuRawBm = new TABMactNtuMC("bmActNtu", fpNtuRawBm,
fpParConfBm, fpParCalBm, fpParGeoBm, fEvtStruct);

02/21 A. Sarti Software tutorial 11

| Executables in shoe!

= which one?

— libs/src/ TABMbase/ TABMactNtuHitMC.cxx or libs/src/ TABMbase /
TABMactNtuMC.cxx

= This means that the real choice is btw:

— LocalRecoNtuMC.cxx and LocalRecoMC.cxx.. Once again using grep we
find out that

* The class is directly implemented inside the executables inside Reconstruction/

levelO
* DecodeMC contains both:
* if (lobj && Itest) locRec = new LocalRecoMC(exp, runNb, in, out);
* else locRec = new LocalRecoNtuMC(exp, runNb, in, out);

— So: the user can decide wether (s)he wants to process root objects as input

(obj tlag) or if, instead, as input expects a simple ‘ROOT tree’.

|

02/21 A. Sarti Software tutorial 12

| An.example: DecodeMC

= Depending on what you need to do, there are already several options

available at your hand. ..
— You want to process MC simulation output from FLUKA? DecodeMC is what
you’re looking for.

— If you are looking at ‘old” tuples, with the old structure format, (e.g. Full/
12C_C_200.root file) you should use the LocalRecoMC class, otherwise if you are
processing the new rootfiles (e.g. Full/12C_C_200shoe.root file) in which the info
is already tupled using the shoe framework and objects, you should use
LocalRecoNtuMC.

= How to tell your executable what you want to do?

— There’s a configuration file for it [config/12C_200/FootGlobal.par]. And you should
spend some time trying to understand what each line of it is doing..

— The one we are interested in right NOw is:

* EnableRootObject: n

* [defaultis 'n’: old root format.. to process ‘shoe’ files you should put it to ‘y’] I

02/21 A. Sart Software tutorial 13

| The contig file. ..

- Configuration files are kept
under config/ XXX/ *

— More info on XXX will come
later in a session dedicated to

the CampaignManager.

— Eg. of XXX are: CNAO2020,
12C_200, etc etc

= easy ﬂags:
— IncludeXX: include a specitic
subsystem

— Enable* : almost self-
explaining.. tree (saves the
ntuple) histo (saves the
histograms). ..

Software

02/21 A. Sarti

H R

Includekalman: n
IncludeTOE: n
EnablelocalReco: n

Kalman Mode: ref
Tracking Systems Considered:
Reverse Tracking: false

YT Reso: 0,0006
IT PReso: 00,0006
MSD Reso: 0,003
TW Reso: 0,57

kKalman Particle Types: C
R
SR
EnableTree:

EnableHisto:
EnableTracking:

[l i

EnableSaveHits:
EnableRootlb ject
EnableTofimnc:
EnableTofCalBar:

OO 3

H R

IncludeDI:
IncludeST:
IncludeBM:
IncludeTG:
IncludeyT:
IncludeIT: I
IncludeMsD:
IncludeTl:
IncludeCAz:

Print OutputFile: true
Output Filename: RecoHistos,root

Print OutputNtuple: false
Output MNtuplename: RecoTree,root

FLUKA wversion: pro

Options for reconstruction

kalman Filter Control Parameters

VT IT M5D TW

EMD - Options for reconstruction

[ol (ol (ol (ol (o

[ol (ol (o

HHE R R

EMD - Kalman Filter Control Parameters #$##$ddEdda4dads
R EES S SRS ST

HHRHHHH R

14

| Back to histograms!

= Now that we have understood who is creating the histogram... Let’s
have a look at the action! (we use as example TABMactNtuHitMC
assuming that you are processing the ‘shoe” MC files, -obj tlag on)

— the actions comes with a CreateHistogram() where the histo are created/
booked. This method is called inside the TAGfoot package, BaseReco class, if
the histogram output is enabled [EnableHisto: y line in the config file]

— the fpHisPlane pointer is created and used inside the ‘action’:

* Inside TABMactNtuHitMC::Action() [method executed on an event-by-event

basis] we call:
* fpHisPlane->Fill(p_hit->GetPlane());
* that takes the ‘plane’ info from MC and stores it inside the histogram.

= Take home message:

— If I want to change anything in the histo, I go to TABMactNtuHitMC, change
what I need and recompile/rerun...! I

02/21 A. Sart Software tutorial 15

| Action ex. : TABMactNtuHitMC

TAEMactHtuHitMC s s TREMactHtuHitHC (const char% name,

. . . TAGdatalzck dscntuMC,
= The action defines the input data TAGdataDacs dacrbuEye,
THGdataDsc# dscrturaw,
(ntuMC and ntuEve) the out Tti|§|[5l:§lf"?[:|ijlfx 'ftf'ftf”':"f'f'r"
TRGparalsc dschmcal,
TAGparaDsc* dschngeo,
data (ntuRaw) the EVENT STRUCT* 2vtr)
) o ,])] : TAGaction(name, "TABMactMtUHitMC - NTuplize Tof raw data"),
conditions’ (config, calibration, FRNEUME (dsentulic),
foHtuE ve EdscntuE ve% ,
fpNtuRaw{dscnturaw),
geometry) ¢ e fpParCon{dschmcon),
, fpParCal{dschmcal),
. ¢ (e .
= The action ‘fills’ the histograms s
(ValidHistogram() is needed to
: if (ValicHistogran()){
verity that the user wants to save FPHLSHL ENUm-5F L1 (p_nturau->BetHitsN());
. .) for{Int_t i=0;i{p_nturaw->GetHitsN();++1i)1{
the histo 1nf()rmat10n) [TRBMAtUHIt* p_hit=p_nturaw->GetHit(i);
'FpHiSEell—>Eill(p_hit->Get%§%l()};
. . fpHisView->Fillip_hit-:GetView());
= The ‘logging’ is handled by foHisPlane—>F 111 (p_hit->GetPlane());
fpHisRdrift->Fill{p_hit->GetRdrift());
FootDebugLevel(). . more on fpgiisFakeIndex-;»Fill(p_hit->GetIsFake{});
that later.. :

= The action ‘ends’ declaring that ~ * {fventstret, = %0) {

. . fpHtuEve->SetBit (kialid);
the ‘out’ data is fine ntuRaw-
foMtuRaw->SetBit (kvalid);

= SetBlt(kVahd) if (FootDebuglevel{2))

cout<<"TABMactMtuHitMC : tAction () ¢ done without problems!"<<endl;

02/21 A. Sart Software tutorial 16

| Action ex. _

= The global geometry
is handled by
geografo, while the
local one from

TABMparGeo.

= Event by event one
— ‘initialise’ the data

(SetupClones)

use the config/geo

information

creates and fill a new
‘BM’ hit (digitizer-
>Process())

— fills the histograms

02/21 A. Sarti

- TABMactNtuHitMC

ol_t TAEMactMtuHitMC:Action()

{TAGzecTrafo* e TAGroot -»F indAct ion {TAGzeo Trafo ¢ tGetDefaultActNane O . Data(d);
{TAEMntuRaws) fpHtuRaw->0bject (O
{TAEMparConf*) fpParCon->0bject ()

TAGgeoTrafo* geoTrafo
TAEMntuRaws p_nturaw
TAEMparConf* p_bmncon

TABEMparGeox p_bmgeo { TAEMparGeox) fpParGeo->0hject{);
TAMCAtuHit® pHtuMC =03
TAMCrtuEves pHtuEve = 03

if (fEventStruct == 0ux0) |

pHtUMC = {TAMCrtuHit#) fphtuMC->0bject (s
} pNtuE?e = {TAMCrtuEves) fpHtuEve-»0bject();
elze
pHEuMC = TAMCE lukaParzer: :GetBmHits (fEventStruct, fpHtuMC);
pHtuEve = TAMCE lukaParszer::GetTracks (fEventStruct, fpHtuEve);

Int_t cell, view, lay, ipoint, cellid;
Double_t rdeift;

TWectord loc, gmom, mom, glo
p_nturaw->SetupClones (s

Sfloop for double hits and hits with energy less than enwcell cut:
for (Int_t 1= 0; i ¢ pNtuMC->GetHitsN{); i++)

TAMChit® hitHC = pHEuMC->GetHit(i);

Int_t trackId = hitMC-»GetTrackIdks()-1;

TAMCrtuEves pHtuEve
TAMCeveTracks* track

= (TAMCntuEves) fpNtuEve->0bject (s
= pHNtuEve->GetTrack (trackId);
if (track->GetCharge() != 0 && track->GetTrkLength() > 0,1){//selection criteria: no neutral particles@

, at least 0,1 mm

cell = hitMC->GetCell();

lay = hitMC->Getlayer();

view = hitMC->GetView() == -1 7 1:0;

cellid = p_bmgeo->GetBMHcell{lay, view, cell);

2lo,Set¥YZ (hitMC->GetInPosition () [0], hitMC-»GetInPosition()[1], hitMC->GetInPosition()[2]);
loc = geaTrafo->FromGlobalToBMLocaligla);
gman,Set¥YZ (hitMC->GetInMomentun () [0], hitMC->GetInMomentum()[1], hitMC->GetInMomentum()[2]);

if (gmom Mag () 1=0)
rdrift=p_bmgeo-bF indRdrift{loc, gmom, p_bmgeo->GetlirePos(view, lay,p_bmgeo->GetSenseldicell)),p_2

bmgeo->GetllireDir{view), falze);
Bool_t added=fDigitizer->Process(0, loc[0], loc[1], loc[2], O, 0, p_bmgeo->GetBMMcell(lay, view, @

cell), 0,
gnon[0], gmom[1], gmom[2]);
if {added) {

TAEMntuHit* hit = fDigitizer->GetCurrentHit();

hit-»SetIsFake{{ipoint==0) 7 0 1 1);

hit->AddMcTrack Id< (ipoint, 1)

if{ValidHistogran{) &% ladded)
fpDisRdrift->Fill{rdrift);
Softw

| Betore and after loops..

= The framework structure is the following: Tlf:?:'ﬁ'-'-'gi'ii*"t'-E?t'j"5
Waton,otar 3

— After the ‘initialisation phase’ you have three
locRec->»BeforeEventloop() ;

steps beforeEL, loop, afterEL. locRec->LoopEvent (nTotEv);

= Coded inside BaseReco.cxx inside locRec->AfterEventloop();

TAGfoot. Go and have a look! :) watch . Print();

— beforeEL loads the geometry, calibration,
configuration files.. and creates all the objects

i

needed during the loop and the related Vo1 BassRerot ioopEvent (Tt T HEvents)
. : { ..
actions. It also handles the ‘reading’ of the = Tt t fremency = 1;
. ful if {nEvents > 100000 frequency = 1000005
IIlI)llt 11€. elze if {nEvents > 10000} freguency = 10000;
glze if {nEvents > 1000% freguency = 1000;
elze if {nEvents > 100} freguency = 100;

‘NextEvent()’ the method that triggers the for (Int_t ientry = 03 ientry < nEvents; ientry++) |

. . . if(ientry & f =0
sequential running of all the Actions() e P et T Ve ety << endls
defined in before EL if (TAGroot->MextEvent (1) break;;

_ 1

02/21 A. Sart Software tutorial 18

| More interesting: objects!

= Beside histograms one has also access to a ntuple. . That contains the

full information.. But in a ‘shoe’ format :)

= Most information ‘is
clickable’ ... for quick
plotting.. but not all of
it.

= Getting access to the
full info from the tuple,
is a ‘tough’ job.. we will
see it in detail..

02/21 A. Sarti

ROOT Object Browser

Browser | File Edit View Options Tools

Help

Files |

Canvas_1 [X] | Editor 1 [

8HY g

=-Tigtest.root
18T
IBM;1
VT
1T
~_IMSD;1
TWHA
(1CA;1
- % |tree;2
: Avtclus.
i vttrack.
e vivix.
Aitclus.
i lmsdclus.
e Eltwpt.
i #& bmtrack.
i caclus.
; Amctrack.
i Estrh,
i M mest.
E»Abmrh.
¢ - bmrh.TAGdata
& Albmrh.fListOfHits
4% bmrh.fListOfHits. TAGdata
%% bmrh. fListOfHits.fView
3% bmrh.fListOfHits.fPlane
3% bmrh. fListOfHits.fCell
: *bmrh.ILileints.fldCell
%% bmrh. fListOfHits.fChi2
% bmrh. fListOfHits.fRdrift
: ibmrh.fListOints.deriﬂ
3% bmrh. fListOfHits.fSigma
%% bmrh.fListOfHits.fResidual
i #& bmrh.fListOfHits.fWirePos

4% bmrh.fListOfHits.fWireDir
b B hearh f1 ietNFLL ite fleQalantad
I

Filter: [All Files (*.%) =]

(root
[L1PROOF Sessions
ZAROOT Files

bmrh.fListOfHits.fPlane

htemp

3050

3040

3030

3020

3010

_| Entries 18089
Mean 2.508

Std Dev 1.709

1
2 3 4 5 6
bmrh.fListOfHits.fPlane

Software tutorial

19

| Reverse engineering VI

= Who is ‘saving’ the branch I am interested in and what it contains?

—e.g.: the ‘bmrh’ branch...

= So.. inside shoe/libs/src..

— grep bmrh TA*/* -> returns -> TABMbase/ TABMntuRaw. cxx: TString
TABMntuRaw::fgkBranchName = “bmrh.";
g

= Each ‘dataDsc’ fundamental object in shoe has a fngranchName..
Look tor it in order to use it and understand how the object it is built!

- Usually:

— you have several ‘ntuXXX’ classes. There’s a class that is holding the list of
objects (e.g. in TABMntuRaw it holds the list of TAMBntuHit) and the

methods to retrieve all the objects...

— and there’s the class that describe each object: TABMntuHit.

02/21 A. Sarti Software tutorial

20

A closer look inside BMntu

= TABMntuHit.hxx content. ..

class TREMntuHit @ public TAGdata {

public:
TAEMAtuHLL (s

TREMAtuHit (Int_t iv, Int t il, Int t ic,Int_t id, Double t r, Double t t, Double t =);

virtual

ClassDef (TABMAtuHit, 1)

private:
Int_t fiew;

“TABMAtuHit ()5

Sf0=hit relevant for yz plane (sense wire on » direction), 1= hit relevant {2

or =z plane {sense wire on y direction)

Int_t fPlane;
Int_t fCell;
Int_t fIdCell;
Double_t fChiZ;
Double_t fRdrifts
Double_t fTdrift;
Doukble t f =H
Double_t fResiduals
Vectord fllirePos;
TWectord flireDir;
Int_t flzSelected;

S MC paraneters

Int_t flsFake;
TArrayl fMCinces;
TArraul fMcTrack Ids

02/21 A. Sarti

F40-5 number of bn plane
SA0-2 number of cell
SA0-36 nunber that identify uniguely the cell

Jihit,time - TO - irtime (irtime iz the trigger timefstart counter time)
Sirdrift reszolution

fidifference between fRdrift and the fitted rdrift

SfPozition of the hit's wire

ffdirection of the hit's wire

Ff0=not zet, l=selected, -1=not selected

ff-1=rot =et, O=primary hit, l=secondary hit, Z=fake creator hit
£ Id of the hit created in the simulation
£ Id of the track created in the simulation

- #lbmrh. TAGdata
=~ bmrh.fListOfHits
. &lbmrh.fListOfHits. TAGdata

3% bmrh.fListOfHits.fPlane
& bmrh.fListOfHits.fCell

- ﬁ bmrh.fListOfHits.fldCell
-3k bmrh.fListOfHits.fChi2
& bmrh.fListOfHits.fRdrift
ﬁ bmrh.fListOfHits.fTdrift

..... & bmrh.fListOfHits.fSigma
& bmrh.fListOfHits.fResidual
ﬂ bmrh.fListOfHits.fWirePos

----- ﬂ bmrh.fListOfHits.fWireDir

‘ H : : ...l hmrh fl ictNfHite fleQalantad
4 11

Filter: | All Files (*.)

Software tutorial

21

| TAGdataDsc inside a tree

= So: ROOT can save TAGdataDsc objects directly inside a tree!
— My action will ‘build’ the object I have defined, fill it with the relevant

information and, on an event-by-event basis, store it inside the ntuple.

= The advantages are clear!

— Eg: you can store ‘a vertex’ inside the tree and you can as to the given vertex
which are the associated tracks! Not only double/ints or vectors.. but real
‘shoe objects’ can be stored.

— Once you get your hands on a given pointer, you can use all the methods of
the class to perform whatever action you want (eg. you can directly retrieve
the tracks associated to a vertex using: TAVTvertex methods like GetTracksN,
GetListOfTracks and GetTrack .. the last one returns a TAVTtrack*)

|

02/21 A. Sarti Software tutorial 29

| Debugging

= How to add a debug info? A printout? How to control the messages from

shoe?

— To debug the code from time to time you’ll need to add a ‘printout’ in your code.
The level of verbosity can be checked using ‘FootDebugLevel(XX)'..

— XX is a number: if the ‘debug’ option passed inside FootGlobl.par is > than XX
then the message will be printed. Eg:

if (FootDebuglevel(l)) |
cout<<"tar:"<<hita->GetTime()<<" thi:"<<hith->GetTine()<<" alpha::"<<FTofPropflpha<<endl @

cout<<"a::"<atrain<<" hi:"<<btrain<<endl;
cout<<"Eraw::"<<rawEnergy<<" posId::"<<PosId<<" lagyer::"<<Layer<<endl;
h

L

is printed only if the debug level is >0.The higher the number, the larger is the verbosity of
the output.. use it carefully!

= In order to better handle the debugging of different classes it is possibile
to enable the ‘debug’ option only for ‘one class’ at a time.

— See the talk from C. Finck tomorrow to ‘tune’ the output of each class!

02/21 A. Sart Software tutorial 23

| Doing ‘your’ stuff..

= Now you should be able to contribute to the development of shoe. If

you want to perform some kind of analysis or development of
algorithms to be used in the shoe reconstruction (either levelO or

tullrec)

— Identity the package that provides the initial tools that you need
— Identity the action that implements the algorithm you need, the input data

and the output data as well as eventual geometrical/ calibration and

configuration information that you need.

— Then you can code the action, and include it in the shoe executables using the
BaseReco* implementation: you need to take care of understanding wether
you need to end up inside the *MC* reco classes, the global reconstruction,

the raw data reconstruction or else..

= But putting your hands inside shoe framework is not the only way to
‘play’ with the data and perform your analysis. .. i

02/21 A. Sarti Software tutorial 24

| How to Elay with the output?

= Beside root interactive browser. .. Two main ways:

— A ROOT macro or an executable

= For a quick access/check to the data, the macro solution is easier to implement and
faster.. but if you need to perform complex analysis steps involving several classes, you
might want to prepare a ‘main’ and compile it. [See tomorrow’s talk from C. Finck]

= |n the hands-on session we will be practicing macros.. just few forewords:

— You can always try to look at the available macros under Reconstruction/levelO to get
inspiration :)
— the standard ‘MakeClass()” approach on the root tree that contains shoe objects won’t

work: you need to play inside build/Reconstruction/levelO (to take advantage from the
rootlogon.C macro) and remember to use the shoe objects and TAGroot framework to

read the file.

— You can alvvays have a look at TAGfoot/*Reco* classes to understand how to code the

building blocks of a macro!

— And remember: if the task gets too complicated.. best to go for executables that
inherit from BaseReco!

02/21 A. Sart Software tutorial 75

| Troubleshooting

= [nstallation

— Always look at the FOOT software twiki page.

— Always give extended information about the step you went through, the
architecture and computing environment (e.g. output of the g++ --version;
uname -a; echo $ROOTSYS; root-contig --cflags..)

= Runtime

— that’s a lot harder!!! :) there is plenty of things that can go wrong ..

— Always give details about what input you are processing, which software you
are using (macro, executable, etc), what are the contig files that you are using
(to provide this info you need to get your hands on the campaign manager..

not easy!) and what you are doing (data reco? MC reco? glb reco? from which

|

02/21 A. Sart Software tutorial 26

campaign?.. etc etc)

| Working with git

= The shoe software is in constant evolution!

= We use git to maintain the code. The baltig interface from INFN provides
a web tool to ‘navigate’ the code and its changes. Otherwise you can use
plain ‘ git’ commands from command line to keep your code up to date.

= There’s a wiki page documenting how to ‘contribute’ to shoe

and play with git.
= Just three main recommendations:

— keep your master branch up-to-date, keep your branch up-to-date with the
master one. If the distance btw your branch and the master becomes too large,

merging the algorithms will become a huge pain in the end!!

— QObserve the coding conventions as much as possible. This will ease the merging

of your code within shoe!
— Do not reinvent the wheel! we have tons of lines of code and examples. Just ask! i

02/21 A. Sart Software tutorial 27

http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTDevelopers
http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTDevelopers

