UPDATE ON THE ANALYSIS OF GSI1 ¹⁶O (200 MEV ON C₂H₄)

A. Alexandrov, A. Di Crescenzo, G. De Lellis, <u>G. Galati</u>, A. Iuliano, A. Lauria, M.C. Montesi, A. Pastore, V. Tioukov

> Università di Napoli 'Federico II'', INFN Napoli <u>Università di Bari ''Aldo Moro''</u>, INFN Bari

Physics Meeting, ZOOM, 5/10/2021

Outline

- Status of the analysis
 - Scanning/Alignment/Tracking Progresses
 - Tracks and vertices reconstruction in the whole brick

SCANNING/ALIGNMENT/TRACKING PROGRESSES

Status

• 2019 (GSI1, GSI2, GSI3, GSI4):

• scanning: 100%

•alignment:

GSI1: 100%

S1+S2+S3: quality checks completed GSI2: 100%

S1+S2+S3: quality checks completed GSI3: 100%

S1+S2+S3: quality checks on-going GSI4: 100%

• tracking: GSI1: S1-S7: completed GSI2: S1-S7: completed

• 2020 (GSI5, GSI6):

• scanning: 328/328 (100%)

TRACKS AND VERTICES RECONSTRUCTION GSI1 AND GSI2 (MC + DATA)

Tracking

• Tracking for each section (S1 - S7) with appropriate tracking parameters from upstream plate to downstream plate

• Some tracks reaching their end are splitted because of large angle scattering

Tracking

• Track reconstruction is based on Kalman algorithm: going in the upstream→ downstream direction improves the reconstruction

• Tracks belonging to a vertex which are still splitted or go through more than one stack are merged later with a specific algorithm

Examples of vertices reconstruction (before improvements)

Examples of vertices reconstruction (after improvements)

9

Examples of vertices reconstruction

Examples of vertices reconstruction

GSI2 MC DATA

Vertices Impact Parameters

12

Some results on "improved" reconstructed vertices

ome results on improved reconstructed vertices				
				PRELIMIT
	GSI1 MC	GSI2 MC	GSI1 DATA	GSI2 DATA
Beam track added to vtx	516	751	304	590
Extra Daughters found	535	552	1685	1723
tracks merged	31809 OK: 31211 (98.1%)	26630 OK: 26038 (98.7%)	3577	2139
Final number of Reconstructed vertices	4101 with n≥3 (MC true: 5031)	4523 with n≥3 (MC true: 5875)	7099 with n≥3	6556 with n≥3

Plots normalized at the same number of beam particles Requirement: at least 3 tracks in the vertex (beam included, if reconstructed)

• Comparison between TRUE MC (solid line) and reconstructed MC (dashed crosses)

Plots normalized at the same number of beam particles Requirement: at least 3 tracks in the vertex (beam included, if reconstructed)

• Comparison between reconstructed MC (dashed line) and DATA (solid crosses)

Plots normalized at the same number of beam particles Requirement: at least 3 tracks in the vertex (beam included, if reconstructed)

• Comparison between GSI1 and GSI2 in TRUE MC

Comparison between GSI1 and GSI2 in DATA

Fragments' multiplicity

Plots normalized at the same number of beam particles

Requirement: at least 3 tracks in the vertex (beam included, if reconstructed)

• Comparison between TRUE MC (solid line) and reconstructed MC (dashed crosses)

GSI1: Carbon Target

Fragments' multiplicity

Plots normalized at the same number of beam particles

Requirement: at least 3 tracks in the vertex (beam included, if reconstructed)

• Comparison between reconstructed MC (dashed line) and DATA (solid crosses)

GSI1: Carbon Target

GSI2: C2H4 Target

Possible explanation: one vertex reconstructed as many lower-multiplicity vertices

Fragments' multiplicity

Plots normalized at the same number of beam particles Requirement: at least 3 tracks in the vertex (beam included, if reconstructed)

• Comparison between GSI1 and GSI2 in TRUE MC

Comparison between GSI1 and GSI2 in DATA

Vertexing

- Good vertices reconstruction is one of the key point to evaluate cross section
- Efficiencies for cross section measurement will be obtained:
 - comparing True and Reconstructed Monte Carlo
 - data control sample ← ongoing
- Reconstructed Monte Carlo has to reproduce detector response:
 - angle smearing
 - data-driven inefficiencies
 - introduction of data-driven background
- New improvements of vertexing algorithm after visually inspecting many displays of reconstructed MC and DATA: other "pathologies" now have been cured

Conclusions

- Efforts for good tracking of S3-S7: still space to improve → next step will be momentum measurement
- Vertices reconstruction further improved → next step will be cross section measurement

Plots normalized at the same number of beam particles Requirement: at least 3 tracks in the vertex (beam included, if reconstructed)

• Comparison between TRUE MC (solid line) and DATA (solid crosses)

Fragments' multiplicity

Plots normalized at the same number of beam particles

• Comparison between TRUE MC (solid line) and DATA (solid crosses)

GSI1: Carbon Target

GSI2: C2H4 Target