MSD Status Report after GSI 2021

Gianluigi Silvestre on behalf of the MSD Group at Perugia

08 September 2021

GSI 2021 MSD Setup

GSI 2021 MSD Setup

GSI 2021 MSD Setup

- Aluminium enclosure box
 - 3 XY detector pairs with dedicated ADC board + DE10Nano
 - 1 ADC + DE10Nano spare pair in the electronic stack
 - The spare pair was used after a ≈20 minutes work in the cave
 - Investigation on Pair 3 malfunction is ongoing
 - XY pair can be replaced if necessary (just remove the box from the structure)
 - No need to replace it during data taking arised
- Holes on the box closed by aluminium tape
- Shielded ETH cables
- Signal cables shielded with aluminum tape

GSI 2021 MSD Noise Performance

- Pedestals and mean sigma values comparable with measurements in the lab @ PG
- Mean pedestal value set to around 350 to maximize dynamic range
 - Values were chosen with a predicted signal value ≈ 1500 ADC
- Strips at the border of a readout ASIC are a bit noisier
 - Problem observed also with Protons @ Trento
 - Investigation ongoing on the impact on S/N

GSI 2021 MSD Noise Performance

- The metallization of the back of the sensor is a good enough shielding from light
- Parameters (and type) of common mode computation algorithm need to be tweaked

GSI 2021 MSD Event Display

GSI 2021 MSD Event Display

- Preliminary results with high thresholds for cluster reconstruction (around 5 MIPs)
 - Most of the times all the detectors have a cluster
 - It is possible to correctly reconstruct the beam profile (example: 400MeV with no target)

GSI 2021 MSD Readout Strategy

- AC-coupled silicon microstrip sensor read-out by ASIC chips
- Active area segmented in 1920 strips with a 50µm implantation pitch
- Readout pitch: 150µm, with 2 "floating strips"
- Total number of readout strips: 640
- Floating strips help with charge collection between readout strips
- Charge collection efficiency expected to be non linear between two readout strips

- Double peak structure for cluster ADC distribution
- Charge collection efficiency depends on the impact position with respect to readout strips
- Variation due to different ASICS is negligible (pic on the right: signal mostly contained in 2 chips)

Cluster with a single strip for sensor 0

Cluster with more than two strips for sensor 0

- Charge collection efficiency depends on the impact position with respect to readout strips
 - Higher signal peak mostly from single strip clusters
 - Lower peak mostly from larger clusters
- Spurious noise strips mainly add to the single strip clusters

Subsample: clusters with 2 strips

- Family of clusters where the position non-linearity is mostly evident
- Fractional part of the cluster center of gravity as an indicator of impact position
- Correction needed with 'eta' function
 - Real eta function needs an external reference
 - Hopefully soon to be measured at a future beam test (probably CERN SPS)

$$pos = rac{ADC_1 * Strip_1 + ADC_2 * Strip_2}{ADC_1 + ADC_2}$$

GSI 2021 MSD: some correlation plots

Cluster ADC MSD 0 vs MSD 1

- Charge correlation affected by the eta non-linearity
 - Results as expected in 4 point accumulation points
- Spatial correlation ok with SHOE alignment parameters
 - MSD 0 and MSD 2 read the same coordinate
- Position correlation is present with VTX detector

Cluster pos VTX on MSD sensor 0

Cluster pos MSD 0 vs MSD 2

GSI 2021 MSD:ToDo list

- Analysis of all the different configs at GSI 2021
- Correlation with other detectors (TW, Calo etc.)
- Eta function measurement at CERN
- Implement a stronger clustering algorithm in SHOE
- Implement tracking in SHOE
- Start work on MSD MC with SHOE
- Calculate parameters for clustering and Common Noise mode
- Solve the noisy strips problem for next data takings
- Fix the problem with the faulty ADC board