- When: 15-16 july 2021 (confirmed @80%)
- Beam: ¹⁶O @200 and 400 MeV/u
- Data taking duration: 6 slots of 8 hours each
- Beam duty cycle: 50%

1

- Number of primaries (supposing beam frequency 1 KHz) : 1.5 x 10⁶ /hour
- FOOT acquisition rate: 1 KHz

Time schedule

2

ALIGNMENT

WITHOUT TARGET

ALL DETECTORS IN PARALLEL

Measurements:

Alignment, Tests

 evaluate fragmentation in air and in detectors

~450kevts (> statistics without Target in GSI 2019) Is it enough?

Time: 15 minute In the final table quoted 1 hour

TRIGGER REQUESTS

veto on TW central bars when energy deposit is over threshold

Not considered trigger with also another hit somewhere that has more bias

Important: trigger calibration is performed parasitically no dead time

Measurements:

- **Trigger request:**
 - □ Step 1: ~ minimum bias → 1 hour (Useful also for physics)
 □ Evaluate the pulse height for TW central channels
 - Step 2: apply threshold and restart the run (trigger prescaled)
 - Test different thresholds (1 minute stop for each change)
 - **Step 3**: measure fragmentation trigger rates
 - **Step 4**: start with fragmentation run

Supposing 3 thresholds tested \rightarrow after 3 hours of minimum bias \rightarrow TRIGGER ON

TRIGGER PERFORMANCE

Empty events decrease by factor 10

□ Efficiency \rightarrow 100% for fragments ≠ from beam

In principle we can work with a beam frequency @ 10 KHz but \rightarrow pile up problems \rightarrow too many tracks on vtx \rightarrow increase dead time by a factor ~ 2

beam @ 4KHz \rightarrow number of interacted events increased by factor 4

TOF WALL

SCAN

- - All detectors in place at the end of the data taking

detectors moved

from beam?

necessary enough statistics in each cell (problem in periphery?)

In the final table quoted 1 hour per target

CALORIMETER

- Crystal inhomogeneity \rightarrow better to calibrate all
- How much statistics for each crystal?
- How much time to move detectors?

Hours

In the final table quoted 2 hours per target

CALIBRATION

PHYSICS

	2	24 h	24h			
Energy	200	MeV/u	400 MeV/u			
Target	С	C ₂ H ₄	С	C_2H_4		
Thickness (mm)	5	5 (10?)	5	5 (10?)		
Density (g/cm ³)	1.83	0.94	1.83	0.94		
Distance Target-TW (cm)	180	180	180 (more?)	180 (more?)		

2 possible cross section measurements

NO CALO involved

Only charge determination

Integral charge cross section Differential charge x sect wrt angle

Integral cross section

Cross section formula

$$\sigma_{i,t} = \frac{Y_{i,t}}{N_p} \frac{A_t}{N_A \rho_t \,\delta_t}$$

With:

 $\sigma_{i,t}$ = cross section to produce fragment i on target t [cm²] $Y_{i,t}$ = Number of fragments of type i [] A_t = molecular mass of target [g mol⁻¹] N_p = number of primary particles [] N_A = Avogadro's number [mol⁻¹] ρ_t = density of target [g cm⁻³] δ_t = thickness of target [cm⁻¹]

$$\sigma_{i,C} = \frac{Y_{i,C}}{N_p} \frac{A_C}{N_A \rho_C \delta_C} \qquad \sigma_{i,C_2H_4} = \frac{Y_{i,C_2H_4}}{N_p} \frac{A_{C_2H_4}}{N_A \rho_{C_2H_4} \delta_{C_2H_4}} \qquad \sigma_{i,H} = \frac{1}{4} \left(\sigma_{i,C_2H_4} - 2\sigma_{i,C} \right)$$

Uncertainty on Cross section depends on statistics

 $\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}} \sim \frac{1.08}{0.33} \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}} \sim 3.3 \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}} \qquad \text{primary (C}_2H_4) = \text{primary (C)}$ $\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}} \sim 2.5 \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}} \qquad \text{primary (C}_2H_4) = 2 \text{ x primary (C)}$ $\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}} \sim 2.1 \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}} \qquad \text{primary (C}_2H_4) = 4 \text{ x primary (C)}$

Integral charge cross section: MC statistics evaluation

MC 12 C @200 MeV/u (is similar for 16 O) :

Target C: Target: Z = 5 mm, ρ = 1.83 g/cm³, A_t = 12, A_t / ρ_t = 6.5

Target C_2H_4 : Target: Z = 5 mm, ρ = 0.94 g/cm³, A_t = 28, A_t/ρ_t = 29.8

Z of fragment i	Y _{i,C}	Y_{i,C_2H_4}	$\frac{Y_{i,C}}{Y_{i,C_2H_4}}$
1	334288	207099	1.61
2	274852	197885	1.39
3	28158	22329	1.26
4	15405	13240	1.16
5	32617	26699	1.22
6	26183	26396	0.99

Statistics reached with 10⁷ primaries for each target

₽

~6+6 hours of Beam time @ 1 kHz, 50% duty cycle with minimum bias

 $Y(C) > Y(C_2H_4)$ but $\sigma(C) < \sigma(C_2H_4)$ due to A_t / ρ_t

More statistics on C₂H₄ target, to have enough statistics for cross section in H

primary $(C_2H_4) = 2 \times primary (C)$ or enlarge the target depth of C_2H_4

NO Statistical problem: for integrated cross section 2+2 hour is enough

Differential fragment cross section

Calorimeter

- \Box evaluate the energy \rightarrow differential cross section
- \Box Evaluate mass \rightarrow isotopic identification

- Solid angle reduction (calo with only 1 module)
- **Z** reconstruction:
 - IMeV thereshold on TW
 - Same E loss (inside 5%) in front and rear slab
- Mass reconstruction: 10 MeV thereshold on CALO
 - Sum over 4-6-9 crystals
 - Not considered non-homogeneity of the Calo

$$A = \frac{E_{calo}}{931.5(\gamma - 1)}$$

Differential fragment cross section: 200 MeV/u

MC sample: ${}^{16}O(200 \text{ MeV/u})$ on C and C₂H₄ targets

Statistic: 10⁶ primaries (~ 40 minutes of minimum bias) for each target

We have to decrease these numbers by the reconstruction efficiency

Differential fragment cross section: 400 MeV/u

С

Statistics evaluated on MC sample: ${}^{16}O(400 \text{ MeV/u})$ on C and C₂H₄ targets Statistic: 10⁶ primaries (~ 40 minutes of minimum bias) for each target

We have to decrease these numbers by the reconstruction efficiency

Yeld (400 MeV/u) > Yeld (200 MeV/u) In general: σ (400 MeV/u) < σ (200 MeV/u)

	Scenario 1: use only Minimum bias											
1	2	3	4	4		5		6	7		8	1º clot
Machine setup Alignment					Physics C target							
1	2	3	4		5			6 7		8		2° dot
Machine setup	Physics C ₂ H ₄ Target										2 3101	
1	2	3	4	4 5				6	7	8		2º alat
Machine setup	Phy	Physics C ₂ H ₄ Target				TW Calo calibra calibration out all d			tion moving spare etectors		are	3 SIOL
					Ζ	C		C2H4		Z	С	C2H4
All acquired events		—	1	870	00	13000	MeV/u)	1	19000	26000		
with minimum bias			Ň	2	190	00		32000	2	36000	63000	
			Me	3	3100	00		5000	3	5600	10000	
reconstruction efficiency		,	8	4	160	00	2800	00	4	3600	6200	
)(2)	5	44(00	8000	0(4)	5	7500	15000
If target depth 1 cm → statistics doubled			16	6	140	00	28000	16	6	21700	41000	
				7	280	00	46000		7	33000	65800	
					180	00	40000		8	20000	44000	

Scenario 2: use of trigger

1	2	3	4	5	5		6	7		8	1º clot	
Machine setup Alignment Physi			Physics (C target	Minin	num	Bias	Phy	I SIOL			
1	2	3	4	5			6 7			8	7 0 - 1 - +	
Machine setup	Physics C ₂ H	Physics C ₂ H ₄ Target TRIGGER							2° slot			
1	2	3	4	5			6	7		8		
Machine setup	Physics	C ₂ H ₄ Target T	RIGGER	TW Calo calibration o		o calibrat out all de	ion movi etectors	ng	spare	3° slot		
				Z	С		C2H4		7	C	C2H4	
docroaco thoco numbors by				1	128	00	27000		1	27800	54000	
reconstruction efficiency			2	277	00	67000	n//	2	53000	130000		
reconstruction entciency			/e/	3	460	00	10000	1e/	3	8200	20000	
	20	4	240	400 5800		20	4	5300	12800			
If target depth 1 cm				5	640	00	17000	(40	5	11000	31000	
\rightarrow statistics doubled		16 O	6	207	00	57000	16 O	6	31200	84000		
			7	416	00	95000		7	48000	135000		
				8	270	00	83000		8	29000	91000	

Conclusions

Am I missing something?