

GSI2021 Campaign: studying the case by simulation

G. Battistoni (INFN Milano), A. Kraan (INFN Pisa), S. Muraro (INFN Milano)

Outline

- 1. The case for a thicker C₂H₄ target
- 2. Energy loss in detectors and air
- 3. Background interactions
- 4. The case of ¹⁴O and ¹⁵O production

1. The case of a thicker C₂H₄ target

In comparison to our 5 mm thick C target, can we use a thicker C2H4 target without problems, in order to gain time and statistics?

Main issues:

- 1. Energy loss of primary and secondaries
- 2. Uncertainty in position and time of flight
- 3. Probability of multiple interactions

Energy Loss of primary

Energy loss of ¹⁶O

 $dE/dx (C_2H_4) \sim 0.6 dE/dx (C) \rho(C)/\rho(C_2H_4) = 0.51 but Z/A(H) = 1 while Z/A(C) = 0.5$

Energy Loss of secondaries - 1

Energy loss of ¹²C

Energy Loss of secondaries - 2

Energy loss of ⁴He

C₂H₄ target 5 mm

C target 5 mm

 $\Delta E/E = 3.9 \pm 2.2 \%$

C₂H₄ target 5 mm

$$\Delta E/E = 2.3 \pm 1.3 \%$$

z [cm]

C₂H₄ target 10 mm

C target 5 mm

Energy Loss in Target for primary vs zint Prim_edep_vs_z_py 37721 **Entries** Mean 123.8 100 Std Dev 70.6 200 300 350 E [MeV]

 $\Delta E/E = 3.9 \pm 2.2 \%$

C₂H₄ target 10 mm

$$\Delta E/E = 4.7 \pm 2.8 \%$$

Depth of primary interaction in target

0.5

-0.5

ToF fluctuations at TW for different (Z,A) (16O 200 MeV/u)

ToF fluctuations at TW for different (Z,A) (16O 200 MeV/u)

ToF fluctuations at TW for different (Z,A) (16O 200 MeV/u)

1. Conclusions

- 1) There are no appreciable cons in using a thicker C₂H₄ target
- 2) Actually, using 5 mm for both C and C₂H₄ targets resulted in a somewhat unbalanced situation

2. Energy Loss in Detectors and Air

- In the GSI2021 detector configuration, the reconstruction of A is mainly based on the combination of ToF and Energy in calorimeter.
- Energy loss of secondaries in detectors elements and in air, from target to Calo, may bias the value of reconstructed A (see Aafke's talk)
- 3. MC can be used to study the needed corrections

Example 1: Z=3 A=6. Energy at generation

Z=3 A=6. Energy loss in detectors

Z=3 A=6. Energy loss in detectors + air

Example 2: Z=7 A=14. Energy at generation

Z=7 A=14. Energy loss in detectors

Z=7 A=14. Energy loss in detectors + air

2. Conclusions

- 1. The higher is Z, the higher is the energy loss in detectors and air (both in absolute and percentage)
- 2. The energy loss in air is not negligible

3. Background Interactions

¹⁶O 200 MeV/u TARGET C UNTRIGGERED

Primary interacts with the following rates:

Total no. of Processed Events: 10⁶

No. of interactions in Air: 6471 No. of interactions in STC: 597 No. of interactions in BM: 467 No. of interactions in TARGET: 14688 No. of interactions in VTX: 417 No. of interactions in MSD: 3005 No. of interactions in TOF WALL: 35980 No. of interactions in CAL: 109670

5mm C target ~ 0.92 g/cm²

180 cm of air $\sim 0.23 \text{ g/cm}^2$

 $VTX+MSD = 1.1 \text{ mm Si} \sim 0.25 \text{ g/cm}^2$

6 mm scint. ~ 0.6 g/cm²

Reinteractions of secondaries produced in target-1

¹⁶O 200 MeV/u

TARGET C₂H₄

TRIGGERED

Total no. of Processed Events: 27677

No. of Events with interactions in TARGET, with secondaries arriving at the TW: 12408

No. of re-interactions in Air:	24
No. of re-interactions in STC:	0
No. of re-interactions in BMN:	0
No. of re-interactions in TARGET:	0
No. of re-interactions in VTX:	1
No. of re-interactions in MSD:	20
No. of re-interactions in TOF WALL:	204

No. of re-interactions in CAL:

Reinteractions of secondaries produced in target-2

¹⁶O 400 MeV/u

TARGET C₂H₄

TRIGGERED

Total no. of Processed Events: 27900

No. of Events with interactions in TARGET, with secondaries arriving at the TW: 16651

No. of re-interactions in	Air:	35
No. of re-interactions in	STC:	0
No. of re-interactions in	BMN:	0
No. of re-interactions in	TARGET:	0
No. of re-interactions in	VTX:	4
No. of re-interactions in	MSD:	15
No. of re-interactions in	TOF WALL:	240
No. of re-interactions in	CAL:	2993

3. Conclusions

- 1) The importance of off-target interactions was already pointed out in the analysys of GSI2019.
- 2) The main difference in 2021 will be the presence of the MSD.
- 3) Being both VTX and MSD active detectors, we should be able to remove a relevant fraction of "dangerous" situations.

4. The case of ¹⁵O production

- 1. It's an intersting case when considering therapy applications (production of an important β^+ emitter)
- Difficult to study: energy deposition is practically indistiguishable from that of the non-interacted ¹⁶O primary
- 3. Are we going to lose the possibility of detecting this channel by using a fragmentation trigger?

¹⁵O production at TW

Bar number of Layer 1 vs Bar number of Layer 2

408 cases out of 2943 (13.8%) hit the central bar in both the 1st and 2nd layer

At 400 MeV/u this occurs in 926 cases out of 2796 (33%)

- 1. Do we care?
- 2. Can we distinguish ¹⁵O or (¹⁴O) from ¹⁶O in A reconstruction?

We have not yet any conclusions for this issue at this time.