Z and A reconstruction with MC simulations in GSI2021 setup

Aafke Kraan (INFN Pisa), Giuseppe Battistoni (INFN Milano), Silvia Muraro (INFN Milano)

Introduction

- There are several questions to answer before going to GSI:
 - How many primaries do we expect to use for the next physics run?
 - How to divide them over the 2 targets? Should we collect the same amount of statistics for both targets? Not a priori clear, since targets have different densities and cross sections, and cross section on H is obtained through subtraction
- In order to optimize data taking at GSI with 2 targets, we have to keep in mind:
 - The cross section subtraction technique
 - The limited amount of time available
- Last time: Reco results with ¹²C beams and preliminary MC truth results with ¹⁶O beams
- TODAY: update of analysis with ¹⁶O beams
 - Issues about needed statistics to be collected (see also todays' presentations by Roberto's and Giuseppe)
 - A-reconstruction by ToF and Calo measurements: some things to consider
- WARNING: results here should be seen as just a first look and not well checked

CNAO2020 setup: MC statistics used for evaluation

MC statistics used for evaluation

- ¹⁶O at 200 MeV/u on C
 - Triggered
 - 10⁶ primaries
 - 37721 events in file
 - 5 mm C target
 - rho=1.83 g/cm3)
- ¹⁶O at 200 MeV/u on C2H4
 - Triggered
 - 27677 events in file
 - 10⁶ primaries
 - 5 mm C target
 - rho=0.94 g/cm3

- ¹⁶O at 400 MeV/u on C
 - triggered
 - 10⁶ primaries
 - 36093 events in file
 - 5 mm C2H4 target
 - rho=1.83 g/cm3)
- ¹⁶O at 400 MeV/u on C2H4
 - Triggered
 - 27900 events in file
 - 10⁶ primaries
 - 5 mm C2H4 target
 - rho=0.94 g/cm3

All files: triggered events: inelastic interaction in target

Cross section formulas

Reminder: cross section for production of fragments *i* on target (neglecting efficiency factors)

$$\sigma_{i,t} = \frac{Y_{i,t}}{N_p} \frac{A_t}{N_A \rho_t \delta_t} \quad (1)$$

- This CNAO data taking:
 - C beam on C target
 - C beam on C₂H₄ target

With:

 $\begin{aligned} \sigma_{i,t} &= \text{cross section to produce fragment i on target t [cm²]} \\ Y_{i,t} &= \text{Number of fragments of type i []} \\ A_t &= \text{molecular mass of target [g mol⁻¹]} \\ N_p &= \text{number of primary particles []} \\ N_A &= \text{Avogadro's number [mol⁻¹]} \\ \rho_t &= \text{density of target [g cm⁻³]} \\ \delta_t &= \text{thickness of target [cm⁻¹]} \end{aligned}$

$$\sigma_{i,C} = \frac{Y_{i,C}}{N_p} \frac{A_C}{N_A \rho_C \delta_C} \text{ (1a)} \qquad \sigma_{i,C_2H_4} = \frac{Y_{i,C_2H_4}}{N_p} \frac{A_{C_2H_4}}{N_A \rho_{C_2H_4} \delta_{C_2H_4}} \text{ (1b)} \qquad \sigma_{i,H} = \frac{1}{4} \left(\sigma_{i,C_2H_4} - 2\sigma_{i,C} \right) \text{ (2)}$$

 What we did: derived formulas for cross section errors and relative errors analytically to have a-priori estimates, and then verified them with MC simulations with N_p=10⁶ primaries: oxygen

Fragment production from ¹⁶O @200 MeV/u: yields

Z of fragment i	Y _{i,C}	Y_{i,C_2H_4}	$\frac{Y_{i,C}}{Y_{i,C_2H_4}}$
1	24802	16789	1.48
2	31189	23290	1.34
3	3692	2624	1.41
4	1742	1276	1.37
5	2074	1783	1.16
6	4104	4197	0.98
7	5054	4340	1.16
8	3042	3403	0.89

Starting with N_p=10⁶, how many have inelastic interactions? From MC simulations:

- Carbon: about 3.8%
- Ethylene: about 2.8%

- These yields from MC are roughly in accordance with what we found for ¹²C
- More fragments expected for carbon target than for polyethylene target (remember A and rho!!)
- Ratio between C yield and C₂H₄ yield varies with Z

Fragment production from 12C @200 MeV/u: relative errors

• If N_p for the C_2H_4 target = N_p for the C target, we obtain:

 $\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}} \sim \frac{1.08}{0.33} \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}} \sim 3.3 \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}}$

- The numbers in second and third column are larger than what we derived from ¹²C. This is just because we ran on 10⁶ events instead of 10⁷!!
- Fourth column is in accordance with what we ۲ derived analytically
- Same conclusion as for ¹²C: relative error on H target ۲ is large

Z of fragment i	$\Delta \sigma_{i,H}$	$\Delta \sigma_{i,C}$	$\Delta \sigma_{i,H} / \Delta \sigma_{i,C}$
	$\sigma_{i,H}$	$\sigma_{i,C}$	$\sigma_{i,H}' \sigma_{i,C}$
1	2.50	0.63	3.9
2	1.79	0.57	3.2
3	5.79	1.65	3.5
4	7.89	2.40	3.3
5	5.37	2.19	2.4
6	2.96	1.56	1.9
7	3.45	1.41	2.5
8	3.06	1.81	1.7

If doubling N_p for the C_2H_4 target w.r.t. C target, we obtain

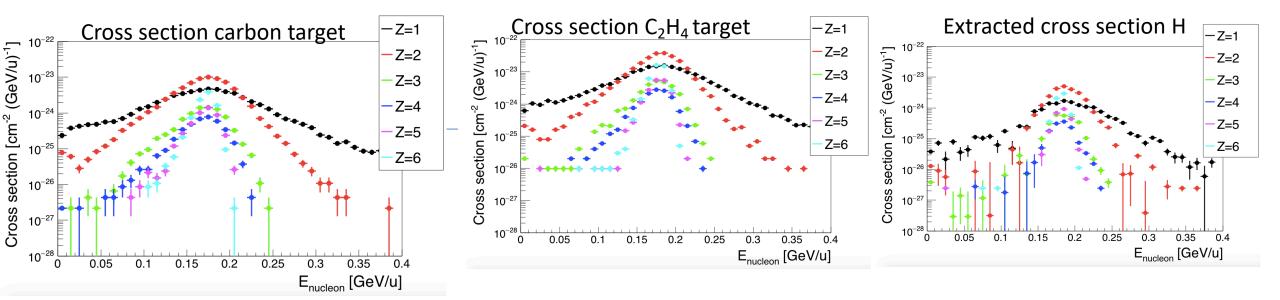
• If 4 times
$$N_p$$
 for the C_2H_4 target we obtain:

Set, we obtain:
$$\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}} \sim 2.5 \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}}$$

 $\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}} \sim 2.1 \frac{\Delta \sigma_{i,C}}{\sigma_{i,C}}$

 $\Delta \sigma_{i,H}$

σ_i c


 $\sigma_{i,H}$

probably doubling N_p for the C₂H₄ target w.r.t. C target is enough

Fragment production from ¹⁶O@200 MeV/u: cross section

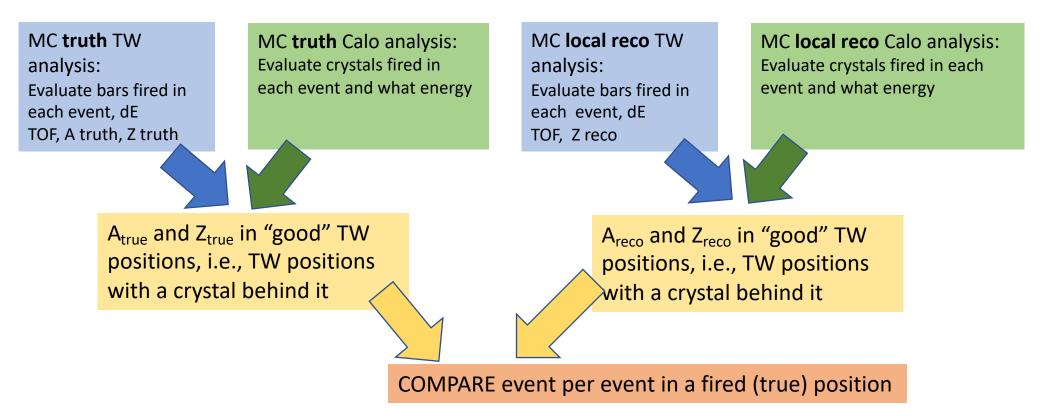
So, let's derive the cross sections for the case where we have:

- C target: 10⁶ primaries
- C_2H_4 target: 10⁶ primaries

- C₂H₄ cross section is largest.
- Errors: heavier fragments have large errors

What numbers do we expect at GSI?

- Assume that we take data at low intensity: about 1000 primaries/s in the spill \rightarrow given that the duty cycle is 50%, about 500 primaries/s
- Firing 10⁷ primaries would take 10⁷/500 s, i.e., 5.5 hours... (shift is about 8 hours)
- As said before, run with C_2H_4 target with double number of primaries

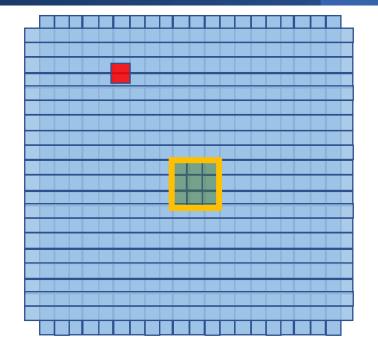

N _p for C target	N_p for C_2H_4 target	Total estimated run time
5x10 ⁶	107	2.7+5.5~8.2 \gtrsim 8 hours: ok

- Summarizing:
 - ٠
 - we need more primaries for the C₂H₄ target than for the C target Given the slow decrease of the error on $\frac{\Delta \sigma_{i,H}}{\sigma_{i,H}}$, probably for a given energy we can point at n*10⁶ primaries of ٠ C and $2n^*10^6$ for C₂H₄, preferably with n not too far away from 5.
 - Or double target thickness (see Giuseppe's presentation) ٠
 - Largest relative errors on cross sections for larger Z (say $Z \ge 3$) ٠

Isotope Identification and A reconstruction: overview See physics meeting May 5

Goal is to do a combined TW+Calorimeter analysis in order to extract

- A reconstructed vs A true: how good are we in detecting a given fragment with true mass A?
- Z reconstructed vs Z true: how good are we in detecting a given fragment with true charge Z?


Analysis MC local reco

See physics meeting May 5

- Determine energy and TOF in front and rear bars starting **from TWpoints.**
- Select only positions (a crossing between a front and a rear bar) that are associated with bars with:
 - >=1 MeV in Front bar: fired bar
 - >= 1 MeV in rear bar: fired bar
- Verify for that position the front-rear consistency:

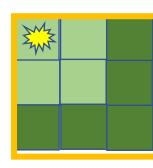
 $\frac{|E_F - E_R|}{(E_F + E_R)/2} < 0.05$

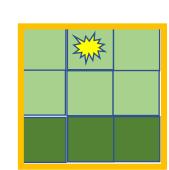
- If position passes, call it 'fired position'
- For 'good' positions (calorimeter behind), evaluate associated calorimeter deposit (see next)
- Store a global event reconstructed value for A and Z for that position
 - Makes only sense when 1 fragment passes per position (see slice 10)

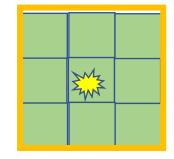
• Z: estimate from Bethe-Bloch formula (good cross check for TOF and DeltaE calibration!!)

A :

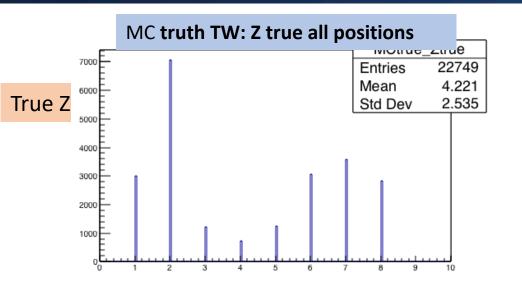
- A: reconstruct it from
 - Strictly speaking, should be Gamma in calorimeter

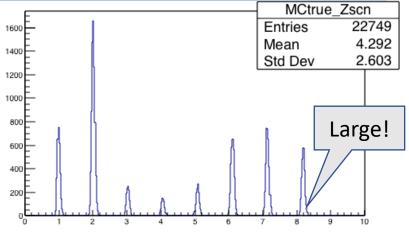

$$=\frac{E_{calo}}{931.5(\gamma-1)}$$


• Look in more detail at Z and A formulas


Analysis to obtain calorimeter deposits

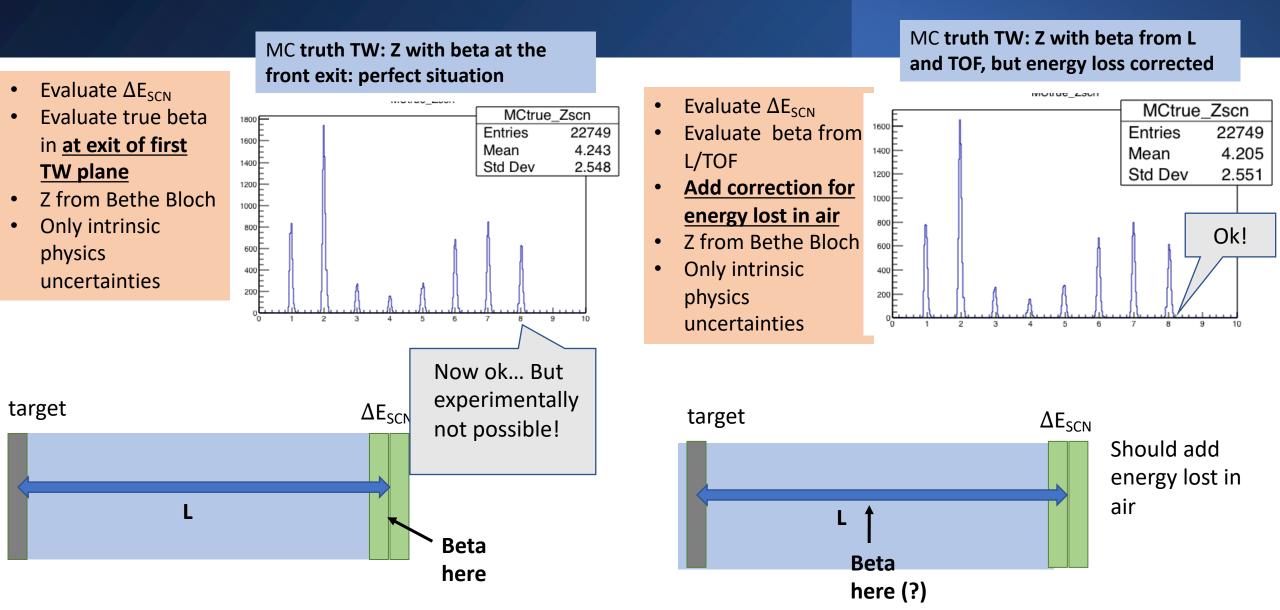
See physics meeting May 5


- MC reco:
 - Starting from Clusters, in each event fill 9 crystals (threshold 10 MeV)
 - Checked for a fired TW position which crystals can be associated to it (neighbours), examples below
 - Sum the energy of the associated crystals in each event
 - Threshold 10 MeV (tested various thresholds)
 - Then we have for a given 'good' TW position the calorimeter energy
- Same for MC truth but started from TAMCntuhit

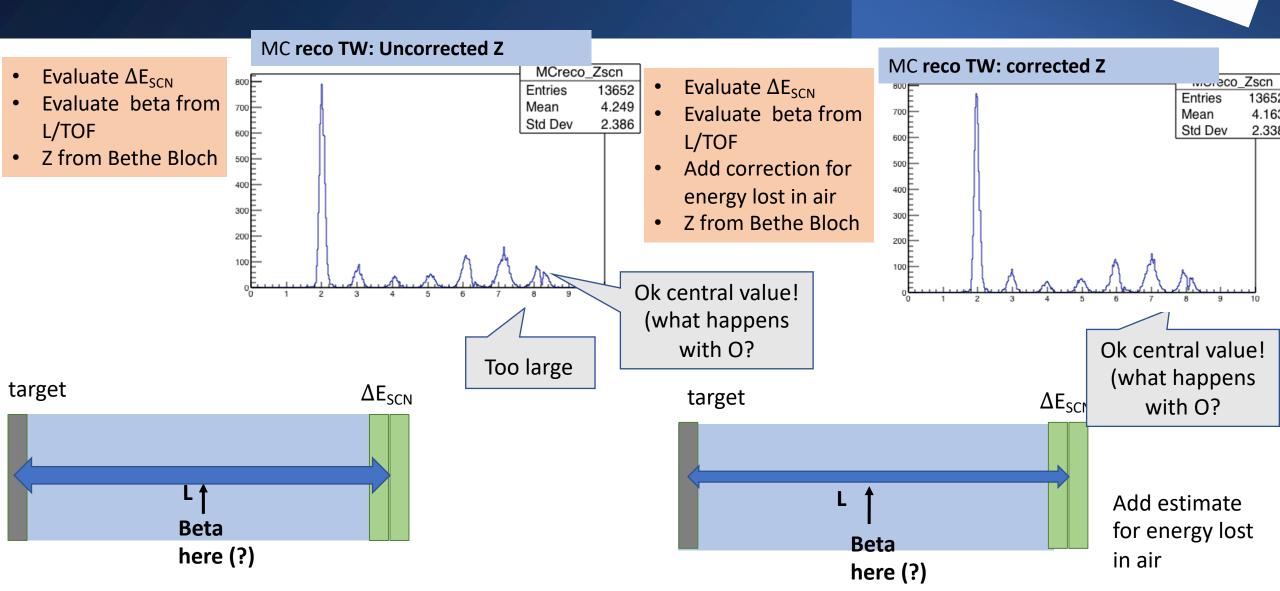

MC truth: Z in TW (all positions)

MC truth TW: Z from BB without correcting

- Evaluate beta from L/TOF
- Z from Bethe Bloch: $f(\Delta E_{SCN}, beta)$
- Only intrinsic physics uncertainties



beta=L/TOF gives average velicity somewhere in air between target and TW, but in reality beta is smaller at TW entrance in front plane, and even smaller at entrance in rear plane!! → overestimation (especially at high Z)



MC truth: Z in TW (all positions)

MC reco: Z (all positions)

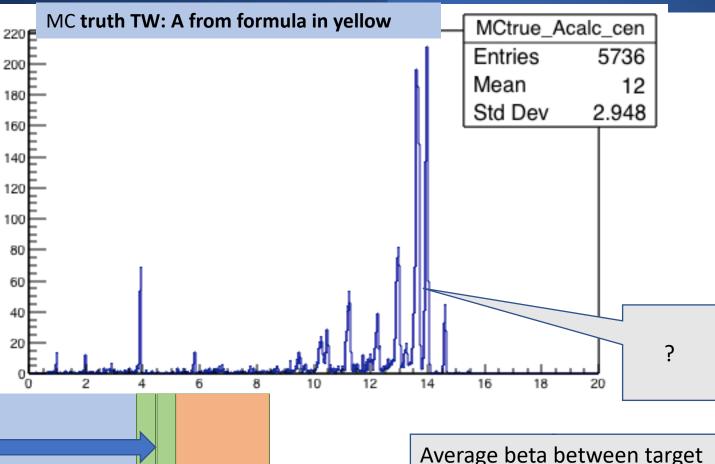


PRELIMINARY

MC reco TW: Uncorrected Z Ok central value! MC reco TW: corrected Z Evaluate ΔE_{SCN} (what happens MCreco Zscn cen Evaluate ΔE_{SCN} MO1000_2001_001 Entries 2904 Evaluate beta from with O?...) Mean 6.493 Evaluate beta from 1.691 Std Dev L/TOF Std L/TOF Z from Bethe Bloch Add correction for • energy lost in air Z from Bethe Bloch • beta is higher in Ok central value! TW \rightarrow too high Z (what happens target ΔE_{SCN} target ΔE_{SCI} with O? L Add estimate Beta for energy lost Beta here (?) in air here (?)

PRELIMINARY

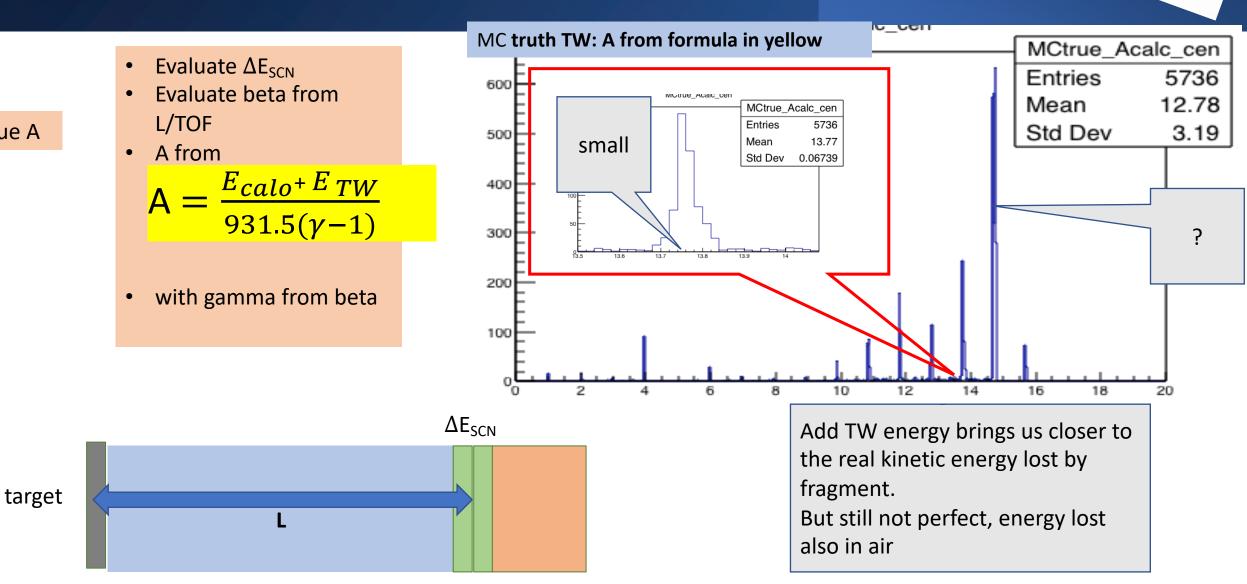
MC reco: Z in good TW positions



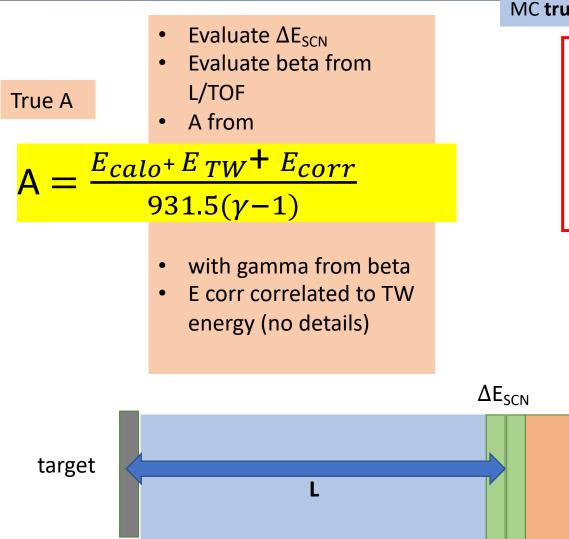
- Evaluate ΔE_{SCN}
- Evaluate beta from L/TOF
- Evaluate Ecal as before (from crystals)
- A from

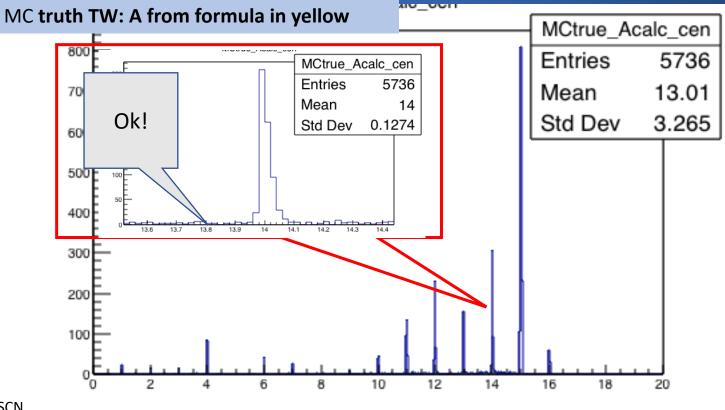
target

$$A = \frac{L_{calo}}{931.5(\gamma - 1)}$$


• with gamma from beta

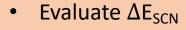
Average beta between target and TW is not the one in calorimeter


PRELIMINARY


True A

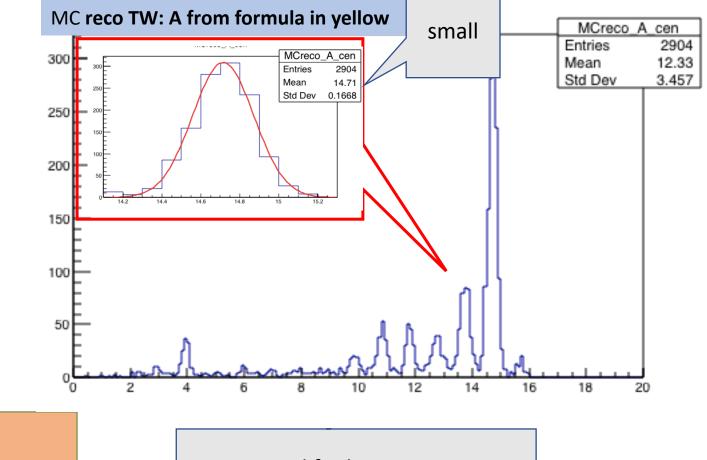
PRELIMINARY

True A



PRELIMINARY

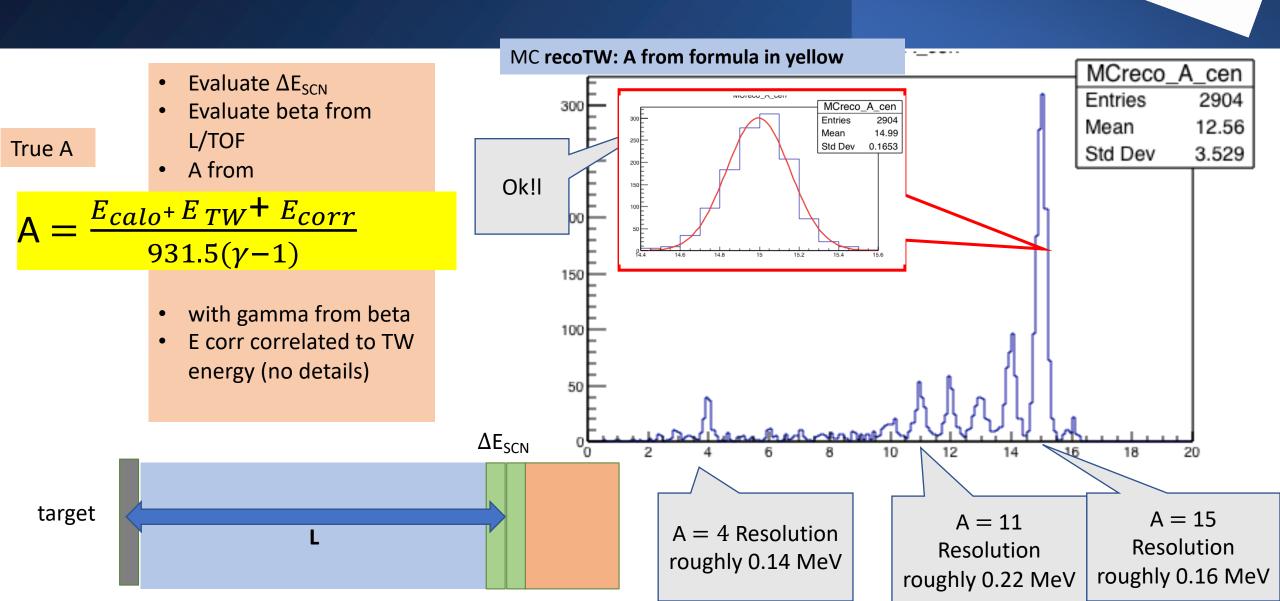
MC reco: A in good TW positions


 ΔE_{SCN}

• Evaluate beta from L/TOF

• A from $A = \frac{E_{calo} + E_{TW}}{931.5(\gamma - 1)}$

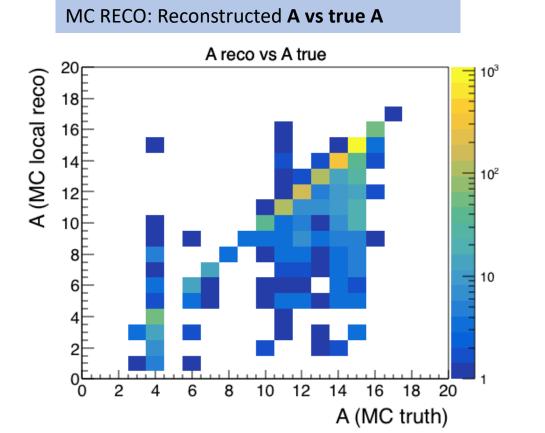
• with gamma from beta

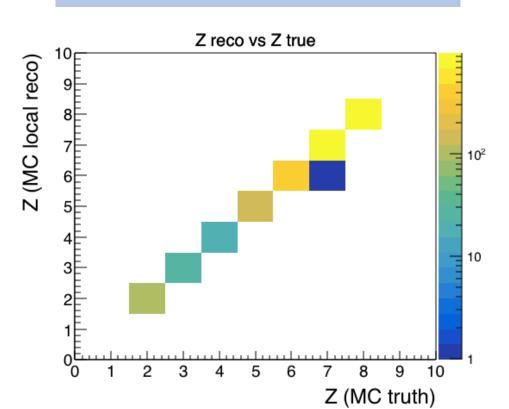


PRELIMINARY

Uncorrected for loss in air

True A

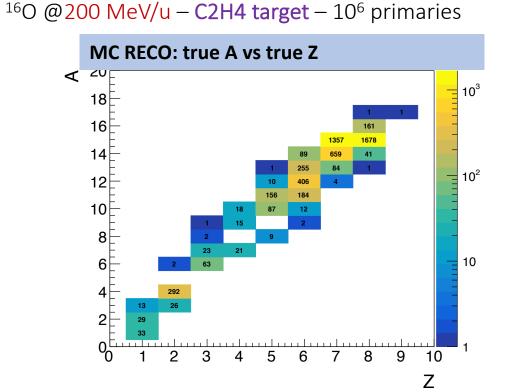

target



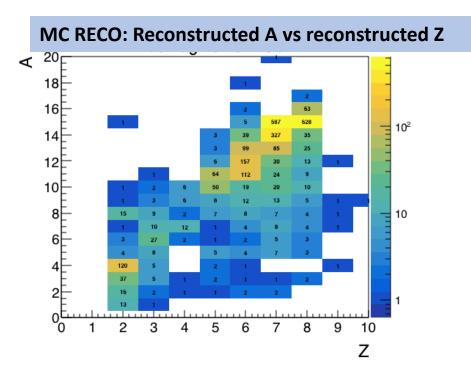
PRELIMINARY

MC truth: Z and A cross feed (with correction)

In good TW positions



MC RECO: Reconstructed Z vs true Z


PRELIMINARY

GSI 2021: in good TW positions

Charged secondaries produced in target arriving at TW vs CALO

¹⁶O @200 MeV/u – C2H4 target – 10⁶ primaries

PRELIMINARY

• Seems we loose too much, check...

Conclusions

- 1. Updated CNAO2020 analysis to GSI2021 analysis (new_geom)
- 2. Physics considerations still valid: we can point at n^*10^6 primaries of C and $2n^*10^6$ for C_2H_4 , preferably with n not too far away from 5.
- 3. Consider possibility to use target of 1 cm for C_2H_4
- We had a first look at A reconstruction with 9 calorimeter crystals, GSI2021 setup, 200 MeV/u ¹⁶O on C target
- 5. Run on other files, improve and clean analysis, understand reconstructed hits and TW points,