

Angelica De Gregorio, Marco Toppi, Giacomo Traini

- Goal : select interesting events introducing a Trigger on data using TW detector
- + 1st trigger: introduce in the MC a threshold in Energy loss on the two central bars of TW
- * 2nd trigger: require another hit somewhere in TW when there's a signal from the central bars
- + File : ${}^{12}C$ (200 MeV/u) $\longrightarrow C_2H_4$
- $2*10^6$ events
- Untriggered (all primaries included)

		$^{10}C + ^{1}$	С	В	Thresho	
	Fraction				old: 38	
	n of primaries : with respect	60.82%	1.40%	97.32%		
7	selected with thi t to the MB trigg	$^{10}C + ^{11}C$	С	В	Threshold: 42	
	s TW trigger ger	60.84%	1.45%	99.74%		
		${}^{10}C + {}^{11}C$	С	В	Threshold: 46	
		64.40%	9.33%	100%		

First Trigger implementation

Trigger Efficiencies: ratio for each Z between events selected with TW trigger and MB trigger

 $\frac{Y(Z)_{TW}}{Y(Z)_{MB}}$

${}^{10}C + {}^{11}C$	C	В	Threshold: 38	
60.82%	1.40%	97.32%		
${}^{10}C + {}^{11}C$	С	B	Threshold: 42	
60.84%	1.45%	99.74%		
${}^{10}C + {}^{11}C$	С	В	Threshold: 46	
64.40%	9.33%	100%		

* A choice needs to be taken: a compromise between the number of fragments we want to take and the bias we'll introduce

C 19.17%	B 4.13%	Be 1.76%	Li 3.11%	He 30.69%	H 41.12%	TW trigger Thr 38 MeV	 using the TW trigger, for eac 			+ using a MB trigger $\longrightarrow \overline{N_{tot}}_{N_{tot}}$	• • • • • • • • • • • • • • • • • • •	r agmentation percentage in	+ Frammentation nerventare f		
С	В	Be	Li	He	Η	TW trigger	ch threshold —		1	1B			rammert daea ro	1000 T	ni voor im
19.49%	4.21%	1.75%	3.09%	30.53%	40.91%	Thr 42 MeV	$\frac{\overline{N_{tot}}}{N_{tot}}$ TW	N(Z).				16.	M M		nement
С	В	Be	Li	He	Н	TW trigger	С	В	Be	Li	He	H	B trigger		ation
61.73%	2.00%	0.83%	1.47%	14.51%	19.44%	Thr 46 MeV	94.53%	0.29%	0.12%	0.21%	2.07%	2.78%			

Second Trigger Implementation

- * We count the hits on the central bars (number 9 of the front layer and of the rear layer) only if there is another hit somewhere in the TW
- The bias we will introduce on the fragments to the other trigger (especially on B) is more significant with respect

C	В	Be	Li	He	Η	Efficiencies
1.66%	58.09%	85.45%	92.19%	95.23%	98.06%	

		1
O	3. <u>0</u> 1.	
	orer	
(SA	
	2^n	
	2	
	3 m	
Ö	9.0.C	

1st trigger:

Efficiencies

2nd trigger:

Η

He

95.23%

98.06%

92.19%

Be

85.45%

58.09%

E

0	В	Be	Li.	He	H	Efficiencies
9.33%	100%	100%	100%	100%	100%	Threshold: 46

- Very small bias introduced for B (and C fragments)
- Compromise between few % systematics trigger bias and amount of primaries
- acquired (1%->10%)

- Greater bias (to evaluate properly) \bigcirc 1.66%
- Low amplitude thresholds have to be set good events primary+noisy hit to remove noise (in order not to take as

somewhere in TW)

SPARE SLIDES

- Untriggerd files are quite different from the triggered ones (lot of background)
- Looking at the Energy Loss yields, in order to clean our sample, we make some cuts:

- Untriggerd files are quite different from the triggered ones (lot of background)
- Looking at the Energy Loss yields, in order to clean our sample, we make some cuts:

1. No Multi hit

- Untriggerd files are quite different from the triggered ones (lot of background)
- Looking at the Energy Loss yields, in order to clean our sample, we make some cuts:

1. No Multi hit

2. Z <= Z beam

 We have tuned the charge reconstruction algorithm also for CNAO campaign as already done for other campaigns in shoe [GSI, full geo: 12C_200, 16O_200]

 Requiring for Zrec all the primary fragments produced in the TG arriving on the TW we obtain these distributions

This tells us the primary fragmentation is

the more data-like situation

Eloss [MeV]

hresholds

Eloss [MeV]

 Starting from these yields we have chosen 3 different thresholds to study:

The algorithm requires :
 -not bars °9-9

This means we're taking also the events in which one of the eloss > threshold (more entries)

- -not eloss of both layers > threshold
- Requiring eloss front OR eloss rear < threshold the entries remains the same.

	SI	
	-	
-		•
	50	
	IT	•
	D	
	Cl	
	D	
	Cl	
	It	
	2	
	I	•
	()	

•and using the TW trigger, for each threshold:		$\frac{1}{N_{tot}} M_B = \frac{1}{N_{tot}} T_W$	MB trigger:	iragmentation percentage for each fragment using a		 Using the distributions we can calculate the
Total Fragments	ש	Be	Li	He	Η	MB
91.54% 8.74%	0.41%	0.19%	0.38%	2.87%	4.60%	

Threshold: 38		Threshold: 42		Threshold: 46	
Η	47.39%	Η	47.19%	Η	26.96%
He	29.55%	He	29.41%	He	16.81%
Li	3.94%	L.	3.93%	L.	2.24%
Be	1.95%	Be	1.94%	Be	1.11%
В	4.01%	В	4.15%	В	2.38%
0	13.15%	0	13.37%	С	50.49%
Total Fragments	86.64%	Total Fragments	86.39%	Total Fragments	49.78%

Trigger efficiency

Efficiencies in angle and kinetic energy for each threshold: В

Efficiencies in angle and kinetic energy for each threshold:

Efficiencies in angle and kinetic energy for each threshold: В

yields 0.7 0.3 0.6 Efficiencies in angle and kinetic energy for each threshold: Thr = 38yields 0.7 0.5 0.6 Thr = 42yields 0.7 0 0.5 0.6

0.2

2

100

1. Scaling of cross section measurement

on the TW) : 2. Studies of C fragmentation in this two channels using the Calorimeter and try different trigger implementations (e.g. with another hit somewhere 12

$$C - >^{11} C + n$$
 ${}^{12}C - > B + p$

Total Fragments	0	В	Be	L:	He	Η	Threshold: 38	Total Fragments	С	В	Be	Li	He
0.867247	0.13254	0.03224	0.019664	0.039757	0.297905	0.477890		0.08744	0.91545	0.00406	0.00189	0.0038.3	0.02870
Total Fragments	0	В	Be	L:	He	Η	Threshold: 42	12	54	8)5)5
0.866458	0.131407	0.040556	0.019495	0.039416	0.295344	0.473782				- CCC	N_{tot} N_{tot}		NI(7)
Total Fragments	C	B	Be	L:	He	Η	Threshold: 46				$MB = N_t$)/N
0.853515	0.144237	0.041166	0.019179	0.038776	0.290550	0.466091					W.L.I to:		Z

IW Trigger OR

Using the distributions we have calculated the fragmentation percentage for each fragment using a minimum bias trigger and using the TW trigger, for each threshold:

MB

0.04604

Total Fragments	С	B	Be	Li	He	Η	Threshold: 38	Total Fragment	С	В	Be	L:	Не
0.81350	0.206374	0.037336	0.017371	0.029553	0.297097	0.412271		s 0.053	0.948	0.002	0.001	0.001	0.019
Total Fragments	0	B	Be	L:	He	Η	Threshold: 42	8605	895	2696	112	892	016
0.814303	0.205485	0.041674	0.017291	0.02941	0.295742	0.41039					N_{tab}		NT(Z)
Total Fragments	С	B	Be	L:	He	H	Threshold: 46				$MB \qquad N_{tc}$		NI
0.792773	0.226510	0.040810	0.016828	0.028630	0.287822	0.399400					M.L		2

I'W Trigger OR Ztrue

Using the distributions we have calculated the fragmentation percentage for each fragment using a minimum bias trigger and using the TW trigger, for each threshold:

MB

0.026388

