First look at isotope identification using the CNAO2020 setup

Aafke Kraan (INFN Pisa), Giuseppe Battistoni (INFN Milano), Silvia Muraro (INFN Milano)

Introduction

- In December 2020, we showed some preliminary considerations about physics measurements using the CNAO2020 design
- As we introduced in the previous physics meeting (April 2021), while waiting for the magnets, the presence of a calorimeter module gives us the chance to test the capability of A reconstruction by ToF and Calorimetric measurements
- We estimated A resolutions with CNAO2020, based on MC truth
- Today: another step further
 - A and Z in MC truth
 - A and Z in MC local reco
- All very preliminary!!!

Software used

- Ran DecodeMC on CNAO2020 production: ¹²C on C target 10⁷ primaries
- Master branch (March 30 2021)
- Macro developed starting from Giuseppe's/Yun's ReadShoe.C and Lorenzo's PrintCalClusMcInfo.C (and shoe tutorial studied)
 - MC truth
 - TAMCntuhits (using shoe-tree branches of TW, Calo, STC)
 - mcNtuEve
 - MC local reco
 - TATWntuPoint for TW
 - TACAntuCluster for calorimeter

Analysis: overview

Goal is to do a combined TW+Calorimeter analysis in order to extract

- A reconstructed vs A true: how good are we in detecting a given fragment with true mass A?
- Z reconstructed vs Z true: how good are we in detecting a given fragment with true charge Z?

Analysis MC truth: TW selection

- Determine energy and TOF in front and rear bars (TAMCntuHit *twMChits)
- Select only positions (a crossing between a front and a rear bar) that are associated with bars with:
 - >=1 MeV in Front bar: fired bar
 - >= 1 MeV in rear bar: fired bar
- Verify for that position the front-rear consistency:

$$\frac{|E_F - E_R|}{(E_F + E_R)/2} < 0.05$$

- If position passes, call it 'fired position' -
- For a selected position, find the corresponding hit and evaluate true Z and A
 - Makes only sense when 1 fragment passes per position
- If a fired position is one of the **9** central positions, call it 'good'

MC truth: how many SCN bars are fired per layer in each event?

For each event, count N_{bars}, i.e., number of bars that are fired (=DeltaE>1) Example: N_{bars,F}=2 N_{bars, R}=1

Whole TW: MC truth N_{bars} in front MCtrue_nbars_f Entries 100000 Mean 2.259 Std Dev 1.073 Central bars (8,9,10): MC truth: N_{bars} in front

In whole TW, average nr of hit bars per layer ~2.2

• Even when considering only central bars, still often multiple bars fired

Whole TW: MC truth N_{bars} in rear

Central (8, 9, 10):MC truth: N_{bars} in rear

MC truth: how many fired TW positions per event?

Such events are mostly (but not fully, see next slide) excluded, since F and R deposits typically don't match

Events like this would typically result in N_{pos}=2, given that two different fragments leave different energy deposit

 For each event, evaluate how many of the positions are 'fired positions' (strongly correlated with nr of fragments passing)

- About 65% of all events fire at least 1 position in the TW
- About 15% of all events fire at least 2 positions in the TW
- About 20% of all events fire at least 1 good position (with calorimeter crystal behind)

MC truth: Delta E vs TOF for selected positions

- In centre positions, dominated by heavy fragments (no surprise)
- Positions associated to bars with more than 1 hit can disturb Z identification. But only at most 6%.

MC truth: Delta E vs TOF: 1 hit per bar

For each event, select the fired positions (see slide 4) that are associated with bars that have $N_{hits}=1$ Evaluate ΔE_{SCN} vs TOF

Excluding such events with bars with double-hits, distribution is clean

MC truth: A vs Z: 1 hit per bar

For each event, select the fired positions that are associated with bars that have N_{hits}=1 Evaluate Atrue vs Ztrue

Mostly heavy fragments present in central positions (no surprise)

MC truth: Calorimeter

- For each event, store calorimeter deposits (threshold 10 MeV)
- Total
- In each crystal
- (thanks to Lorenzo)

MC truth: nr crystals with E>10 MeV with good TW position in front

MC truth: total energy deposited with good TW position in front

Analysis MC local reco

- Exactly as in slide 5!!!! Two differences:
 - Determine energy and TOF in front and rear bars starting from TWpoints.
 - Z and A determination (see below)
- Select only positions (a crossing between a front and a rear bar) that are associated with bars with:
 - >=1 MeV in Front bar: fired bar
 - >= 1 MeV in rear bar: fired bar
- Verify for that position the front-rear consistency:

 $\frac{|E_F - E_R|}{(E_F + E_R)/2} < 0.05$

- If position passes, call it 'fired position'
- For 'good' positions (calorimeter behind), evaluate associated calorimeter deposit (see next)
- Store a global event reconstructed value for A and Z for that position
 - Makes only sense when 1 fragment passes per position (see slice 10)

Enable TWZmcnEnable TWnoPUnEnable TWZmatchy

• Z: use Z from TWPoint (a true Z associated to the point)

 $\frac{E_{calo}}{931.5(\gamma-1)}$

MC reco: Delta E vs TOF for selected positions

For each position in each event, evaluate for the fired positions ΔE_{SCN} vs TOF

To be investigated what happens with double hits and what is the reconstructed Z...

Analysis MC local reco: calorimeter deposits

- Starting from Clusters, in each event fill 9 crystals (threshold 10 MeV)
- Checked for a fired TW position which crystals can be associated to it (neighbours)
- Examples below
- Sum the energy of the associated crystals
- Threshold 10 MeV (tested various thresholds)
- Then we have for a given 'good' TW position:
 - the gamma (from beta)
 - the calorimeter energy

$$A = \frac{E_{calo}}{931.5(\gamma - 1)}$$

Local Reco: TW+Calorimeter

For the moment, positions that are associated with double hits in a bar are excluded

Local Reco: TW+Calorimeter

Example (preliminary!) of MC reconstructed A for Z=6

Conclusions

- We had a first look at A reconstruction with 9 calorimeter crystals
 - CNAO2020 setup
 - 200 MeV/u ¹²C on C target
- To be done:
 - Decide a strategy on how to evaluate double hit events (events where a single bar is hit more than once): we'll have them.
 - Decide strategy on how to determine A and Z cross feed and efficiency in more detail
 - Repeat analysis on GSI2021 setup (see talk by. S. Muraro): ¹⁶O of 200 MeV/u and 400 MeV/u
 - Use updated Shoe version

Presumed Calorimeter numbering

pos 168	169	170
Crys 4	Crys 3	Crys 5
188	189	190
Crys 1	Crys 0	Crys 2
208	209	210
Crys 7	Crys 6	Crys 8

Presumed TW axis and numbering

