SiPM modelling and characterization

Marco Montefiori

University of Pisa

FOOT Physics Meeting, March 2021

Marco Montefiori (University of Pisa)

SiPM characterization

FOOT Physics Meeting, March 2021 1/14

Saturation of TOF-Wall SiPMs

In the last period I studied the saturation of a TOF-Wall SiPM by analysing the charge produced by a pulsed laser light.

Main goals:

- acquire a large number of waveforms for each value of laser intensity;
- observe the behavior of signals as a function of light pulses;
- estimate the number of fired SiPM cells and the PDE.

Materials and methods: preliminar operations

- First issue: choose the most suitable laser frequency.
- Photocurrent measurement strategy:
 - For each device verify the pulse frequency-photocurrent linearity
 - Measure the photocurrent of the UnCal-PD and extract the corresponding value of the Cal-PD.
 - Use the responsivity $\eta~[{\it A}/{\it W}]$ to obtain the photon flux.

Marco Montefiori (University of Pisa)

Materials and methods: PD cross-calibration

A laser

pulse frequency of 10 MHz was set.

- The two split laser beams impinged on the two PDs.
- The relationship between the two photocurrents was fitted:

$$I_{Cal} = a \cdot I_{UnCal}$$

• Result:

• a = (4.09 \pm 0.01) 10⁻² A⁻¹

- \bullet A bias voltage of 120 V (\sim 8.3 V overvoltage) was applied to the SiPMs board.
- A laser pulse frequency was fixed at 100 kHz.
- The two split laser beams were sent:
 - one to the UnCal-PD by reflection;
 - $\bullet\,$ one to the plastic scintillator face \rightarrow light diffused ad uniformly distributed on SiPMs surface.
- For each laser intensity value:
 - SiPMs signals area histogram was built;
 - mean value and standard deviation were acquired;
 - correspondent photocurrent was measured (20 readings \rightarrow mean and std dev.).

Materials and methods: number of triggered cells

• Issue: SiPMs signal passed through a filtering stage between the SiPMs and the HV power supply \rightarrow voltage drop on the filter resistor $R_F = 2 \ k\Omega$.

$$\Delta V = \frac{A \cdot \nu_{\textit{laser}} \cdot R_{\textit{F}}}{R_{out}} = Q \cdot \nu_{\textit{laser}} \cdot R_{\textit{F}}$$

where A is the SiPMs signal area, Q the collected charge, $\nu_{laser} = 100$ kHz and $R_{out} = 50 \ \Omega$ is the readout resistance.

• SiPM gain varied as a function of ΔV :

$$G(\Delta V) = G(0) \cdot \left(1 - \frac{\Delta V}{V_{OV}}\right)$$

• The number of fired cells was calculated with the formula:

$$N_{\it fired} = rac{Q}{e \cdot G(\Delta V)}$$

• The number of detected photons was calculated with the formula:

$$N_{ph} = f rac{I}{
u_{LASER} \, E_{ph} \, \eta(\lambda)}$$

where: *I* is the extracted photocurrent of the Cal-PD, $e = 1.6 \ 10^{-19} \ C$ elementary charge, *G* SiPM gain, $E_{ph} = 4.9 \ 10^{-19} \ J$ photons energy and *f* ratio between SiPM surface and PD surface.

Results

• All data

were fitted with the saturation formula:

$$N_{fired} = N_{tot} \, \left(1 - e^{-rac{N_{ph} \cdot PDE}{N_{tot}}}
ight)$$

- Results:
 - $N_{tot} = (5.48 \pm 0.03) \cdot 10^4$ • $PDE = 0.206 \pm 0.003$

•
$$\chi^2_{\it red}=1.4$$

- SiPMs saturation was correctly observed and the obtained PDE agrees with the datasheet value (450 nm \rightarrow PDE = 0.25).
- Together with the others SiPMs estimated parameters (gain, dark count rate, crosstalk, afterpulse), the TOF-Wall SiPMs characterization is completed.
- The entire set of these parameters can ben used to reproduce SiPMs response in MC simulations.

Montecarlo simulation of SiPMs response

SiPMs simulation: overview

Aim: include all the characterization parameters into a MC simulation in order to model the SiPM response to the scintillation photons produced by heavy ions.

- $\bullet~\mbox{Input} \rightarrow \mbox{scintillation}$ photons generated from a GEANT4 simulation by Esther.
- $\bullet~\mbox{Output} \rightarrow \mbox{relative SiPMs waveform}.$

Preliminary trials and further development

- The first simulation runs were performed with scintillation photons produced by C ion at 115 MeV/u.
- For each detected ion we have \sim 15000 - 20000 photons $\rightarrow \sim$ only 4000 fired cells \rightarrow very far from saturation.
- Work in progress:
 - use other particles;
 - explore other energies;
 - explore different operating conditions of the SiPMs
 - evaluate the SiPM contribution to the energy resolution.

