
Impact of filtering on Cygno’s 
images
Guilherme Lopes, Igor Abritta, Rafael Nóbrega



Motivation
● How to evaluate the performance of preprocessing algorithms for CYGNO?
● What is the impact of different preprocessing algorithms on energy estimation?
● Is it possible to get same clustering results decreasing the number of points sent to 

dbscan?

● Find a proper methodology to assess the performance of preprocessing algorithms for 
CYGNO → propose a test environment with this end

● Evaluate the impact of some filters on efficiency/false-alarm and energy estimation 
using simulated data

○ In this slides we are considering 60 keV simulated events to discuss and test the method used 
for performance assessment, with some preliminary results

● Evaluate the impact of some filters using real data (to be done)

Objective



Historical Overview

● Since the beginning of this work the need of a simulation tool was present (one year ago)

● Therefore, before thinking about filtering we worked on a simulation tool that would 
generate signal + noise, all based on the real Cygno’s images:

○ The real physical signal itself was hard to simulate without using GARFIELD/GEANT packets, 
then we proposed a simple method that seemed to work for the purpose of testing the filters.

○ The noise process was simulated based on analysis made with real noise acquisition runs:
■ This noise simulation was though in a way that it could be integrated to any new signal simulation tool 

that could come up in the future.

● With this tool in hands we could implement and test the first filters for Cygno;
● Recently, a new simulation tool (from Roma) was available and then we used its data to 

converge with the filtering studies:
○ We are trying to create a proper methodology that will facilitate the process of proposing a 

paper to the collaboration about “impact of filtering on CYGNO”



Flowchart overview



Simulation tool flowchart

Threshold = 0

Track 
Generator ThresholdFilter 

Algorithms

Noise

+

Efficiency

Using tracks 
simulated from 
Geant4

60 keV
- Nuclear recoil
- Electron recoil

Pedestal 
subtraction

Noise simulation from 
Run 2054

Preprocessing 
evaluation tool

rebin/dbscan

Here we can use any 
pre-processing task

Evaluating algorithms and 
parameter choosing

no noise reduction



Evaluating the efficiency
● Precision-recall curve;
● Used for imbalanced datasets;
● For each threshold value we have a precision value at that point;
● Precision -> #Classified as signal and really signal / #Classified as 

signal
pre-processing output

Tr
ut

h

S B

S

B



Evaluating the efficiency
● Precision-recall curve;
● Used for imbalanced datasets;
● For each threshold value we have a recall value at that point;
● Recall -> Signal detection efficiency.

pre-processing output

Tr
ut

h

S B

S

B



Ways to Choose a filter

● We can determine if a curve is better than another by using some 
metrics;
○ f1-score

max(f1) = (2*(0,9*0,7))/(0,9+0,7)
= 0.7875

Best case -> max(f1) = 1

Example

threshold variation

Each pair (filter, 
parameter) has a 
precision x recall 
curve that will be 
summarized using 
f1-score.



Setup
● Input

○ For now, we are using 60 keV electron and nuclear 
recoil (200 images);

● Noise simulation using ecdf algorithm for run 2054;
● Filters used:

○ Convolutional Neural Network (U-net):
■ Trained using 70% train, 15% test and 15% 

validation;
■ 50 epochs;
■ Metrics: Precision and recall.

○ Mean using windows from 3 to 23;
○ Median using windows from 3 to 23;
○ Gaussian using windows from 3 to 23;
○ Cygno (n*sigma threshold using std map);

Training step



Results



Results

● F1-score filters
best parameters

ps: If 0, don’t have 
parameters



Evaluating preprocessing in 
clustering algorithm



● Using number of points after threshold step;

How ???

Threshold = 0

Track 
Generator ThresholdFilter 

Algorithms

Noise

+

Efficiency

Pedestal 
subtraction

rebin/dbscan



● Using number of points after threshold step;

● Is there a filter that can provide high precision, high recall, good 
energy estimation using few points (and fast dbscan) ?

How ???

N Precision Recall DBSCAN Energy 
estimation

Many Low High Slow good (depending)

Few High Low Fast Poor



Setup
● Input

○ For now, we are using 60 keV electron and nuclear recoil (200 images);
● Using filter parameters from efficiency evaluation;
● Set threshold to get N points, where N is 3000, 10000, 25000 and 100000;
● DBSCAN parameters

○ eps = 5.8
○ min_samples = 70

● Evaluate cluster integral from reconstruction.py python algorithm (without 
noise reduction).



Precision and recall

➔ Precision decreases 
when N increases;

➔ For N too big, the 
recall is closer to 1; 



Points sent to dbscan

Indicates many 
background points 
away from target 
cluster

Ideal case



Evaluating clustering

Using only 10000 points, we 
can estimate cluster_integral 
closer to truth

It would be also important to see how 
resilient are the filters (e.g. when many 
fakes are present - low precision and 
high recall - how much the energy 
estimation get worse?)



Conclusion and next steps



Conclusions

● The results show that the presented methodology might be useful to evaluate different 
preprocessing algorithms (suggestions are welcome);

● The presented results seemed coherent, indicating that the codes are working properly;

● This preliminary study shows that some filters might help to decrease the number of 
points sent to dbscan;
○ It might help to remove the rebinning operation if needed



Next steps

● A time evaluation of those algorithms;

● Include low energy particles as input to produce results closer to reality;

● Evaluate filters performance using real data;


