Voxel Based Reconstruction

Nicolo' Tosi – INFN Bologna

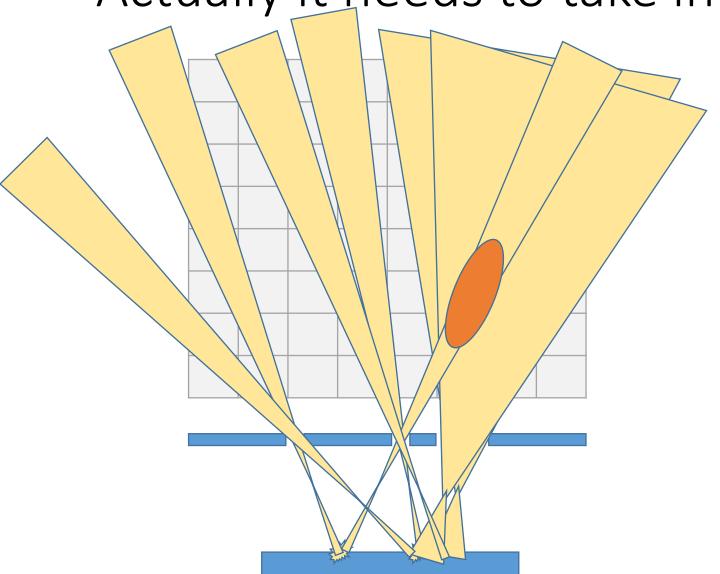
Concept

- The volume of LAr is subdivided in a regular 3D grid of Voxels
- Each voxel is assigned a weight, based on the likelihood of a photon originating from it
 - Calculated based on possible paths from photon hits and mask holes
 - Takes propagation time into account
- A 3D clusterization algorithm will then identify tracks based on contiguous high weight voxels

Following slides are 2D instead of 3D

Motivation

Pros:


- Combines different views with no concern for relative position
- May work even with one-two photons per pixel
- Uses photon timing explicitly
- Probability based, allows direct confidence level estimation

Cons:

- No strong theoretical background, so far
- Computationally intensive

Seen in 2D Mask Sensor

Actually it needs to take into account sizes

Both pixels and mask holes have non negligible size

In 3D, each photon-hole combination projects out a 'frustum', defined by four planes

Weight calculation

For each voxel, photon, hole:

If voxel (centre) is inside of frustum, defined by a photon hit and a hole:

A = number of detected photons

 σ = cross section of frustum at voxel

 ϕ = time delay (measured time – theoretical time of flight from voxel)

$$w += \frac{A}{\sigma}e^{i\varphi}$$

Else do nothing

The scale of the problem

- Voxel Grid with ~1 cm resolution
 - 450k voxels in Meniscus
- Masks with O(100) holes
- Hit patterns with O(100) hits
- Several billion weight calculations
- GPU ready code (pyOpenCL): https://baltig.infn.it/sipmat/volumereco

Progress

DONE

 I convinced myself that the weight calculations can actually be done in a reasonable time

~ 1 Minute for each rank 17 mask on 16 core CPU

(I did this first because I was very pessimistic at the start)

STARTED

Import of realistic geometry
 Began working on importing latest geometry from V. Pia

Import of simulated data
 Again from V. Pia

Outlook

STILL TO DO

Implement reconstruction from voxels to actual tracks

Maybe use Local Principal Curves algorithm, same as Genova?

 Develop statistical model to give realistic estimate of quality of result