Internal dark matter structure of the most massive galaxy clusters since z=1

Amandine M. C. Le Brun PSL Fellow LUTh, Paris Observatory/PSL University

Collaborators: Monique Arnaud (CEA Saclay), Gabriel Pratt (CEA Saclay), Romain Teyssier (ICS Zürich)

> Based on Le Brun et al. 2018, MNRASL, arXiv:1709.07457

l'Observatoire

Universality of dark matter profiles

2

See also e.g. Navarro et al. 1997, 2004, 2010, Gao et al. 2008

n: proxy for cosmology

Diemer+1

Evolution of dark matter profiles

· Powerful Lest of ACDM.

3

• Evolution and shape of c-M are controversial especially at high-redshift and masses Amandine M. C. Le Brun – LUTH, OBSPM/PSL mm Universe @NIKA2, Rome, July 1st 2021

X-ray and SZ observations

Chandra

4

Bremsstrahlung SB dimming with z Inverse Compton scattering No SB dimming with z

- Complementarity of information

Complementarity of SZ and X-ray surveys

5

SZ selection supposed to be closer to a mass selection

The M2C project (PI M. Arnaud)

Continuation as part of CHEX-MATE

New representative SZselected sample of the most massive clusters up to high z • NIR for confirmation and stellar content · Chandra/XMM follow-up · Mass profiles from hydrostatic equilibrium · Systematic comparison with simulations

Amandine M. C. Le Brun - LUTH, OBSPM/PSL mm Universe @NIKA2, Rome, July 1st 2021

MONU COUTE

6

Why high-mass systems?

Faster convergence to the 'self-similar' expectation
Much less impact of the non-gravitational physics

* Pilot study of mass profiles at z~1

simulations

Why new simulations?

No existing hydrodynamical cosmological simulations combines a large enough volume and a high enough resolution to simulate the most massive galaxy clusters as:

- they are rare and appear in large volumes (need to simulate volumes of Gpc³)

- high resolution (~kpc) is required to resolve their internal structure.

Why new simulations?

		Simulation	Box	Particles	mp	e	Ω _M	$\Omega_{\rm B}$	Ω _Λ	σ8	ns	Hc	Code	
	Klypin+16	Simulation BigMD27 BigMD29 BigMD31 BigMDPL BigMDPLnw HMDPL HMDPLnw MDPL MultiDark SMDPL BolshoiP Bolshoi	Box 2.5 2.5 2.5 2.5 2.5 4.0 4.0 4.0 1.0 1.0 0.4 0.25 0.25	Particles 3840 ³ 3840 ³ 3840 ³ 3840 ³ 3840 ³ 4096 ³ 4096 ³ 3840 ³ 2048 ³ 3840 ³ 2048 ³ 2048 ³	$m_{\rm p}$ 2.1 × 10 ¹⁰ 2.2 × 10 ¹⁰ 2.4 × 10 ¹⁰ 2.4 × 10 ¹⁰ 2.4 × 10 ¹⁰ 2.4 × 10 ¹⁰ 7.9 × 10 ¹⁰ 7.9 × 10 ¹⁰ 1.5 × 10 ⁹ 8.7 × 10 ⁹ 9.6 × 10 ⁷ 1.5 × 10 ⁸ 1.3 × 10 ⁸	<pre> € 10.0 10.0 10.0 10.0 10.0 25.0 25.0 5 7.0 1.5 1.0 1.0 </pre>	Ω _M 0.270 0.289 0.309 0.307 0.307 0.307 0.307 0.307 0.270 0.307 0.307 0.270	Ω _R 0.047 0.047 0.047 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.047 0.048	Ω _Λ 0.730 0.711 0.691 0.693 0.693 0.693 0.693 0.693 0.693 0.693 0.693 0.693 0.730 0.693 0.693 0.730	σ_8 0.820 0.820 0.829 0.820 0	ns 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.96 0.95	H ₀ 70.0 70.0 67.8 67.8 67.8 67.8 67.8 67.8 67.8 67.8	Code GADGET-2 GADGET-2 GADGET-2 GADGET-2 GADGET-2 GADGET-2 GADGET-2 ART GADGET-2 ART	
	udlow+14	MS-XXL MS-I MS-II Aq-A-2	0.23 Np 6720 ³ 2160 ³ 2160 ³ 5.3×10 ⁸	Lbox (Mpc h ⁻¹) 3000 500 100	$\epsilon (kpc h^{-1})$ 10 10 10 5 1 0.050	m_p (M $_{\odot} h^-$ 6.17×10 8.01×10 6.89×10 1.00×10	1) 1) 1) 1) 1) 1) 1) 1) 1) 1)	P-20.1 P-20.2 P-20.3	Box size, $(h^{-1} \text{ Mpc})$ 20 20 20	L N 300 ³ 300 ³ 300 ³	Part. (h ⁻ 2.61 2.61 2.61	mass, n $^{-1} M_{\odot})$ 1×10 1×10 1×10	$n_{\rm p}$ Ford $n_{\rm p}$ (h (h h h h h h h h	, ce soft., ε ⁻¹ kpc) 1.67 1.67 1.67
Box .1000	L (h ⁻	Aq-A-1	$\frac{4.3 \times 10^3}{N^3}$ m 024 ³ 7	$n_{\rm p} (h^{-1} M_{\odot})$ 0×10^{10}	$\epsilon (h^{-1} \text{ kpc})$ 33.0	1.25×10 ε/(L 1/2	/ <u>N)</u> 30	P-20.4 P-30.1 P-30.2 P-60 P-45.1	20 30 30 60 45	300 ³ 300 ³ 600 ³ 300 ³	2.61 8.81 8.81 8.81 2.97	1×10 1×10 1×10 1×10 1×10 4×10	17 17 17 18	1.67 2.50 2.50 2.50 3.75
.0500 .0250 .0125 .0063	5 2 1 62	00 1 250 1 25 1 2.5 1	$\begin{array}{ccc} 024^{3} & 8\\ 024^{3} & 1\\ 024^{3} & 1\\ 024^{3} & 1\\ 024^{3} & 1 \end{array}$	$.7 \times 10^{9}$ $.1 \times 10^{9}$ $.4 \times 10^{8}$ $.7 \times 10^{7}$	14.0 5.8 2.4 1.0	1/1 1/2 1/2 1/2	35 42 51 60	P-45.2 P-90 P-80 P-130 P-180	45 90 80 130	300 ³ 450 ³ 350 ³ 450 ³	2.97 7.04 1.05 2.12	4×10 9×10 2×10 4×10 4×10	18 18 19 19	3.75 5.00 5.71 7.22
arg	ee	enou	gh	size				P-270 P-400 P-600 P-1000	270 400 600 1000	450 ³ 450 ³ 600 ³ 600 ³	1.90 6.18 8.81 4.07	$3 \times 10^{\circ}$ $3 \times 10^{\circ}$ $8 \times 10^{\circ}$ $1 \times 10^{\circ}$ $9 \times 10^{\circ}$	10 10 10 11	15.0 22.2 25.0 41.7
-			~ ~		AMA .				A. A.LA			14		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Dutton+14

Too Low mass and spatial resolution and sometimes size Amandine M. C. Le Brun – LUTH, OBSPM/PSL mm Universe @NIKA2, Rome, July 1st 2021

Diemer+14

2 Simulations Dark Matter • AMR code RAMS • 0 >15×10° CPU hor • 0 > 15×10° CPU hor • 0 > 3 DMO simulation • 0 > 470 few kpc-r • 0 > 6 selected system

1 Mpc

NO

Wpc/h

AMR code RAMSES (Teyssier 2002)
>15×10⁶ CPU hours (PI Le Brun)
3 DMO simulations 1 (Gpc/h)³
>470 few kpc-resolution zooms for selected systems with M500>4.49 ×10¹⁴ M₀:

Le Brun et al.

2018 and in prep.

- 50 at z=1
- -170 at z=0.8
- -181 at z=0.6
- 75 at z=0

Both DMO and NR runs and tests
 with more elaborate physics
 Amandine M. C. Le Brun – LUTH, OBSPM/PSL mm Universe @NIKA2, Rome, July 1st 2021

Gas

Le Brun et al. 2018

Zoom ⇒ gain of a factor > 5 in spatial resolution

e Fluctuations are real

Resolution study

Le Brun et al. 2018

• 8K and 16K converged over the whole resolved range • Effective resolution of 8192³ is minimum required Amandine M. C. Le Brun – LUTH, OBSPM/PSL mm Universe @NIKA2, Rome, July 1st 2021

Density profiles

Le Brun et al. 2018

15

z ≥ 0.6: nearly no evolution
z ≤ 0.6: slightly more evolution in core and outskirts

⇒ Consistent with 'stable clustering'

• Remarkably small scatter with mild increase with z

Logarikhmic slope

e small amounts of evolution and scatter at all z e Evolution more important in inner and outer regions · Nearly no evolution of scatter which is similar in amplitude to that of density profiles No signs of inner slope converging to asymptotic value

Le Brun et al.

2018

Correlation with relaxation state

17

Most relaxed clusters centrally concentrated
 Unrelaxed ones span larger variety of profile shapes
 Amandine M. C. Le Brun – LUTH, OBSPM/PSL mm Universe @NIKA2, Rome, July 1st 2021

High-mass systems at z = 1 had > 1 major merger
 during the preceding 4 Gyr. Relaxation time close to
 about 16 Gyr

Discussion I

- Naively expect profile has not yet converged to the near-universal form
- Surprising result that suggests the 'universal' profile already in place at z > 1 and robust to merging activity
- Similar to what was obtained for primordial haloes
 by Angulo et al. 2016 and Ogiya et al. 2016, but at
 scales that are 21 orders of magnitude larger

Discussion II

Le Brun et al. 2018

 Natural consequence of self-similar evolution of underlying dark matter distribution as these systems are dark-matter dominated and gas evolution is dominated by simple gravitational physics
 Amandine M. C. Le Brun – LUTH, OBSPM/PSL mm Universe @NIKA2, Rome, July 1st 2021

Conclusions

- Study the 25 most massive clusters at z=0, 0.6, 0.8 and 1. Msoo > 5.5 \times 10¹⁴ Mo at z=1.
- Scaled DM profiles strikingly similar within rsoo:
 - Low dispersion of 0.15 dex at each z in spite of the variety of dynamical states.
 - Little evolution (never more than ~50%)
- Little evolution of the logarithmic slope and its scatter.
- Have running power law shape typical of NFW-type profiles but show no signs of converging to an asymptotic slope in central regions

Suggest that this type of profile is already in place at z>1 in the highest-mass haloes and remains exceptionally robust to merging activity.

Based on Le Brun et al. 2018, MNRASL, arXiv:1709.07457 Amandine M. C. Le Brun – LUTh, OBSPM/PSL mm Universe @NIKA2, Rome, July 1st 2021

AGN feedback in groups review

Eckert, Gaspari, Gastaldello, Le Brun & O'Sullivan 2021, Universe, in press (arXiv:2106.13259)

AGN feedback in groups review

Eckert, Gaspari, Gastaldello, Le Brun & O'Sullivan 2021, Universe, in press (arXiv:2106.13259)

AGN feedback in groups review

Eckert, Gaspari, Gastaldello, Le Brun & O'Sullivan 2021, Universe, in press (arXiv:2106.13259)

Thank you!

Backup slides

26 Galaxy clusters and structure formation

since Big Bang 16.4 Myr Today= 3.61 Gyr 5.85 Gyr 13.8 Gyr

- Galaxy clusters: 85% Dark Matter, 12 % hot gas, 3% galaxies
- · Form and evolve through merger/accretion along filaments
- test of the physics of hierarchical Dark Matter driven structure formation (Dark Matter and baryons) - cosmological parameters via N(M,z) or fgas