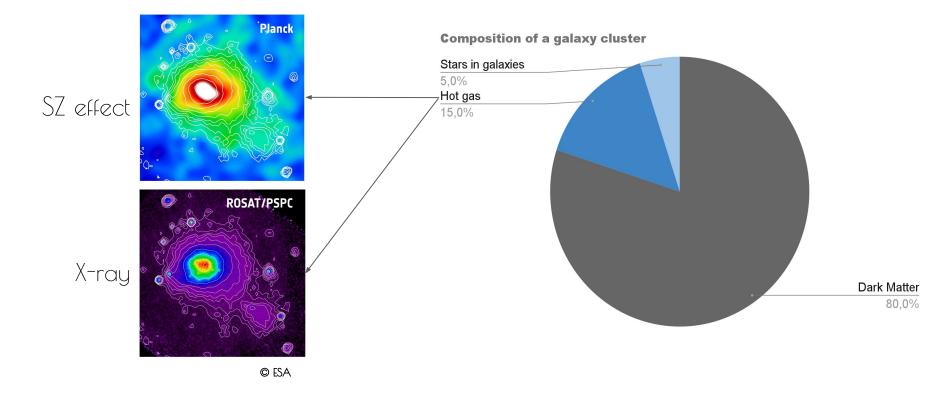


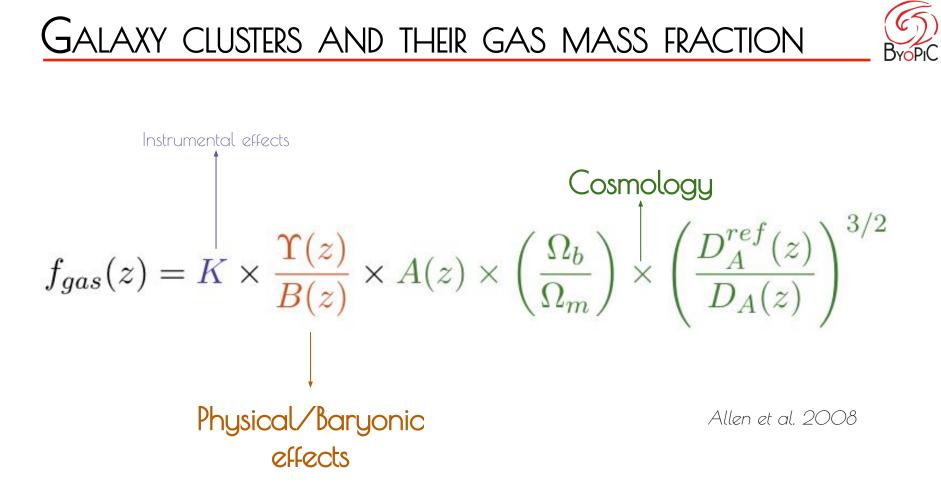
Constraining cosmological parameters and hydrostatic mass bias with the gas mass fraction in galaxy clusters

Raphaël Wicker (IAS)

Marian Douspis, Nabila Aghanim and Laura Salvati

OUTLINE




• INTRODUCTION : Galaxy clusters and their gas mass fraction

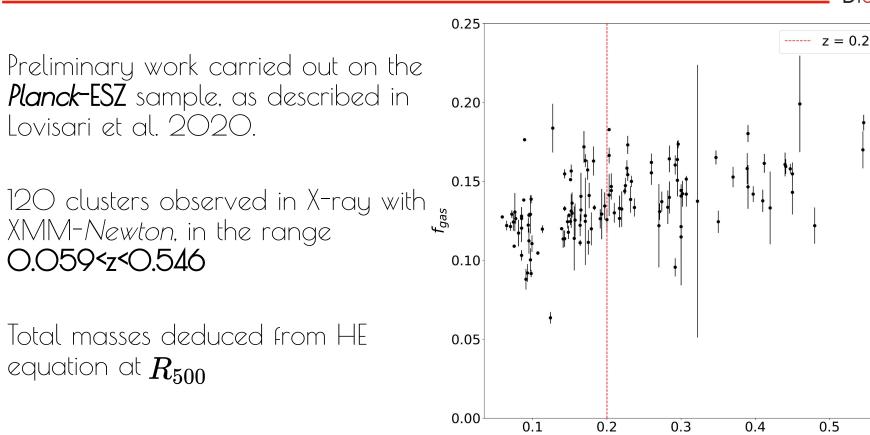
- Investigating the redshift evolution of the mass bias
- The gas mass fraction as a cosmological probe

• CONCLUSION

 $f_{gas} = rac{M_{gas}}{M_{tot}}$

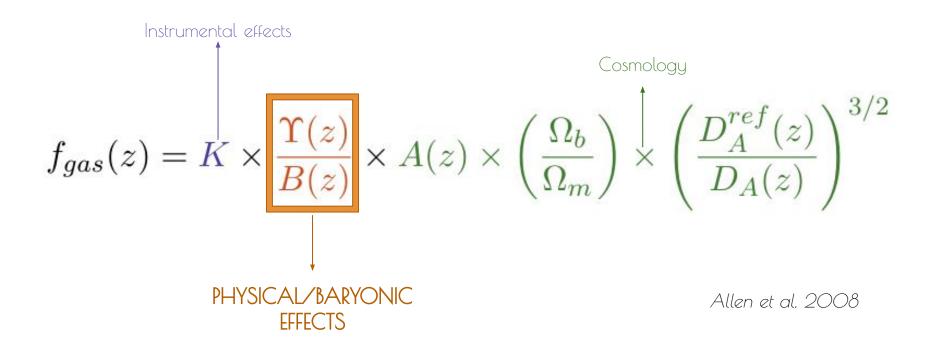
$$M_{gas}(< r) = \int_0^r 4\pi r'^2
ho_{gas}(r') dr'$$

• Total mass :


can be obtained from HE equation :

or from observable-to-mass

scaling relations



6

Probing the redshift evolution of the mass bias

• Hydrostatic equilibrium hypothesis biases the mass measurements :

$$M_{measured} = B(z) imes M_{true} \; \; , B(z) = (1-b)(z)$$

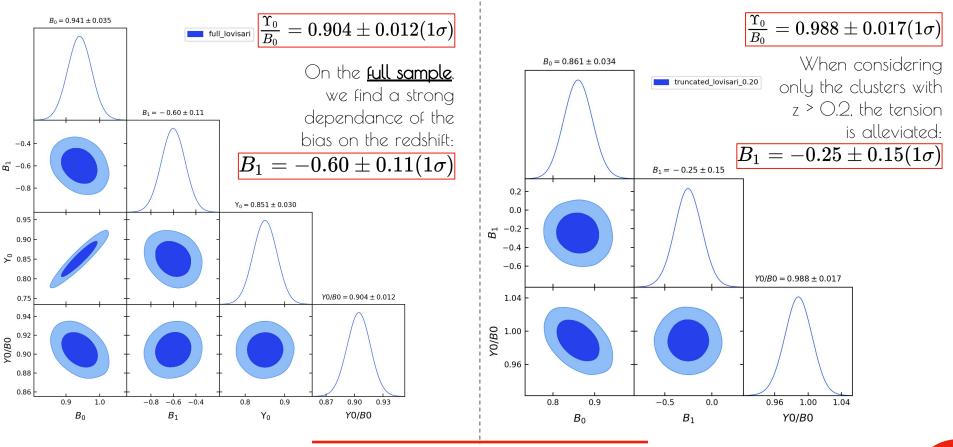
- Hydrodynamical simulations based on Λ-CDM find no clear evolution of B with the redshift
 What we actually constrain is Υ(z)/B(z)
- . We assume a linear evolution of the bias:

$$B(z) = B_0 + B_1 imes (z - z_{pivot})$$
, where $z_{pivot} = \langle z
angle$

. We chose Υ constant in z : Υ_0 (Planelles et al. 2013)

. See Bora et al. 2021 for investigation on the variation of Υ

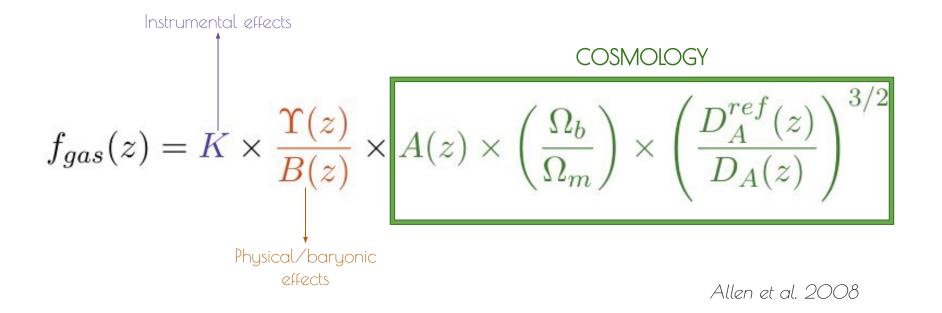
To fit our data, we carry out a MCMC analysis. Summary of the priors that have been used for this study :


Bo	<i>U</i> (0.3, 1.7)
B ₁	<i>U</i> (-1.5, 1.5)
Υ_0	N(0.85, 0.03) (Planelles et al. 2013)
σ_f (instrinsic scatter)	<i>U</i> (0, 1)
Cosmological parameters	Planck Collaboration et al. 2018

 $N(\mu,\sigma)$: normal prior of mean μ and of standard deviation σ U(l,u): uniform prior of lower bound l and upper bound u

Raphaël Wicker, Observing the millimeter universe with the NIKA2 camera

Probing the redshift evolution of the mass bias



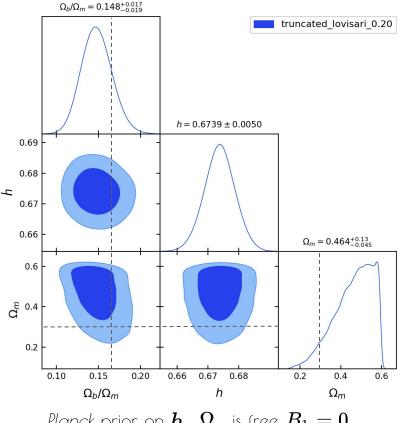
RAPHAËL WICKER, OBSERVING THE MILLIMETER UNIVERSE WITH THE NIKA2 CAMERA

- $B_1 < 0$: higher bias with redshift
- In contradiction with hydrodynamical simulations
- In contradiction with the trends found in Salvati et al.
 2019 from *Planck* tSZ number counts *for low z clusters*
- In agreement with Salvati et al. 2019, for high z clusters
- Consistent with the trends from CoMaLit (Sereno & Ettori 2017) and LoCuSS (Smith et al. 2016) from weak lensing to SZ/X mass ratios, on high z clusters

The gas mass fraction as as cosmological probe

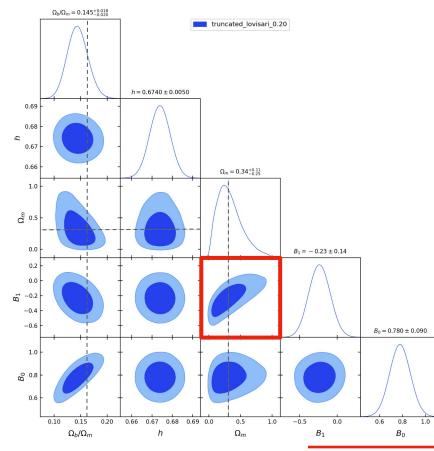
Summary of the priors that have been used at different steps of the study

	Full sample	z > 0.2
B ₀	N(0.780, 0.092) (CCCP. Hoekstra et al. 2015)	N(0.780, 0.092) (CCCP. Hoekstra et al. 2015)
B ₁	Fixed at O. then N(-0.60, 0.11)	Fixed at O. then N(-0.25, 0.15)
Ω_b/Ω_m	<i>U</i> (0.05, 0.3)	<i>U</i> (0.05 , 0.3)
Ω_m	N(0.315, 0.007) (Planck Collab. et al. 2018) then U(0.01, 1.0)	N(0.315, 0.007) (Planck Collab. et al. 2018) then U(0.01, 1.0)
h	N(0.674, 0.005) (Planck Collab. et al. 2018)	N(0.674, 0.005) (Planck Collab. et al. 2018)


$h = 0.6739 \pm 0.0050$

HE GAS MASS FRACTION AS AS COSMOLOGICAL PROBE

 $\Omega_m = 0.464^{+0.13}_{-0.045}$ 0.6 0.2 0.20 0.66 0.67 0.68 0.2 0.10 0.15 0.4 0.6 Ω_b/Ω_m Ω_m h Planck prior on h , Ω_m is free, $B_1=0$


If we consider no evolution of B(z) with z, the cosmological constraints are consistent with *Planck* for Ω_b/Ω_m , but are totally off for Ω_m

The gas mass fraction as a cosmological probe

This time we consider $B_1 = -0.25 \pm 0.15$ Ω_b/Ω_m is compatible with the *Planck* value, although slightly below. Ω_m peaks below the *Planck* value, and has a strong degeneracy with B_1

- Results on the redshift evolution of the mass bias are strongly dependent on the sample.
- A mass dependence study will also be carried out using the same sample
- Need to be very careful about these effects when trying to use the gas mass fraction as a cosmological probe
 For investigations at *R*₂₅₀₀. NIKA2 + X-ray data will be of great help

Thank you !