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2 Introduction

◦ Cluster masses are needed for cosmology, but not a direct observable  

→ Empirical mass-observable scaling relations (SR) are calibrated on small cluster samples 

◦ One of the goals of the NIKA2 SZ Large Program (LPSZ — talk by L. Perotto): 

• SR between mass  & integrated Compton parameter  (SZ survey observable) 

• Benefiting from NIKA2’s high angular resolution: better-constrained quantities

M500 Y500

→ Improvement over Planck measurement

A&A 571, A20 (2014)

Table A.1. Parameters for the Y500–M500 relation, expressed as E
�2/3(z)

h
D

2
AY500/10�4 Mpc2

i
= 10A

h
M500/6 ⇥ 1014

M�
i↵

.

Sample Nc MB Mass A ↵ [�logY|M] int [�logY|M] raw Section

XMM-ESZ PEPXI 62 N M
YX
500 �0.19 ± 0.01 1.74 ± 0.08 0.10 ± 0.01 ... A.2.1

Cosmo sample 71 N M
YX
500 �0.175 ± 0.011 1.77 ± 0.06 0.065 ± 0.010 0.080 ± 0.009 A.2.1

Cosmo sample 71 Y M
YX
500 �0.186 ± 0.011 1.79 ± 0.06 0.063 ± 0.011 0.079 ± 0.009 A.2.2

XMM-ESZ 62 Y M
YX
500 �0.19 ± 0.01 1.75 ± 0.07 0.065 ± 0.011 0.079 ± 0.009 A.2.3

S/N > 7 78 Y M
YX
500 �0.18 ± 0.01 1.72 ± 0.06 0.063 ± 0.010 0.078 ± 0.008 A.2.3

Cosmo sub-sample A 10 Y M
HE
500 �0.15 ± 0.04 1.6 ± 0.3 ... 0.08 ± 0.02 A.3.2

Cosmo sub-sample B 58 Y M
HE
500 �0.19 ± 0.03 1.7 ± 0.2 0.25 ± 0.06 0.27 ± 0.06 A.3.2

Notes. Column 1, considered sample; Col. 2, number of clusters in the sample; Col. 3, Malmquist bias correction; if this column contains Y, a
mean correction for Malmquist bias has been applied to each point before fitting; Col. 4, mass definition; Cols. 5 and 6, slope and normalization
of the relation; Cols. 7 and 8, intrinsic and raw orthogonal scatter around the best-fit relation at a given mass; Col. 9, Section in which sub-sample
is discussed. The Cosmo sample highlighted in bold represents the baseline relation (see text for details).
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Fig. A.1. Best scaling relation between Y500 and M500, and the data
points utilized after correction of the Malmquist bias.

adapted from that described in Vikhlinin et al. (2009a) and Pratt
et al. (2009), where each data point is rescaled by the mean bias
for its flux, and the relation refitted using the rescaled points.
The method is described in more detail in Paper I. For the
baseline cosmological sample of 71 systems, the bias-corrected
Y500–M

YX
500 relation is

E
�2/3(z)

2
66664

D
2
A Y500

10�4 Mpc2

3
77775 =

10�0.19± 0.01

2
666664

M
YX
500

6 ⇥ 1014 M�

3
777775

1.79± 0.06

. (A.7)

The best-fit relation, together with Malmquist bias corrected data
points, is plotted in Fig. A.1.

The correction decreases the e↵ective Y500 values at a given
mass, an e↵ect larger for clusters closer to the S/N threshold. The
net e↵ect is small, a roughly 1� decrease of the normalization
and a slight steepening of the power-law slope (Table A.1).

A.2.3. Stability of slope and normalization

The slope and normalization of this relation are robust to the
choice of sample (Table A.1). We compared our results to those
obtained from:

– An extended sample of 78 clusters with S/N > 7 (71
in common with the baseline sample). This is built from
all objects falling in the 84% sky mask used to define
the SZ catalogue Planck Collaboration XXIX (2014), and
for which XMM-Newton data have been published by the
Planck Collaboration (Planck Collaboration IX 2011; Planck
Collaboration XI 2011; Planck Collaboration Int. I 2012;
Planck Collaboration Int. III 2013; Planck Collaboration
Int. IV 2013).

– The original 62 clusters from the ESZ sample published
in Planck Collaboration XI (2011), with updated SZ signal
measurements obtained from 15.5 month Planck data (62
in common with the baseline sample). These objects are all
known from X-ray surveys and all lie at z < 0.5. We use them
to test fit robustness to the inclusion of non-X-ray selected,
higher-redshift systems.

As indicated in Table A.1, there is agreement within 1� between
the various samples. The results are also in agreement with the
relation obtained from a simple combination of the Y500–YX re-
lation (discussed in Paper I) and the YX–M

HE
500 relation (Eq. (A.1)

above).

A.3. The observation-based Y500–M500 relation

A.3.1. Combination of the Y500–MYX

500
and the MYX

500
–M500

relations

We now combine Eq. (A.7) with the M
YX
500–M500 relation. This

will not change the best-fit parameters, but will increase their
uncertainties. As the determinations of the two relations are
independent, we added quadratically the uncertainties in the

A20, page 14 of 20

Planck Collaboration XX (2013)
z < 0.45
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3 Scope

◦ This work: preparing the measurement of the scaling relation from the LPSZ data 

• Setup a Bayesian hierarchical model regression scheme 

• Generate mock LPSZ-like cluster samples 

• Search for biases in the results, i.e. see how LPSZ data features affect the analysis 

• Begin forecasting precision given the sample size / data quality
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4 Outline

Scaling relation adjustment 

Realistic mock sample generation 

Results: biases & precision 

Conclusions
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5 Notations & linear mass-observable relation

◦ Self-similar scenario of structure growth: power law relation between  

• integrated Compton parameter  

• mass  

 

◦ Defining the log-scaled SZ observable  and mass  makes the scaling relation linear: 

 

           

◦ SR = trend: intrinsic scatter due to cluster physics → Gaussian scatter around the relation: 

  

→ parameters of interest:  (intercept),  (slope),  (intrinsic scatter)

M500

E−2/3(z)
D2

A Y500

10−4 Mpc2
= 10α [ M500

6 × 1014 M⊙ ]
β

Y Z

Y ≡ log [E−2/3(z)
D2

A Y500

10−4 Mpc2 ]
Z ≡ log [ M500

6 × 1014 M⊙ ]

P(Y |Z ) = 𝒩(αY|Z + βY|ZZ, σ2
Y|Z)

αY|Z βY|Z σY|Z

⇒ Y = αY|Z + βY|ZZ}

D2
A Y500 /

R R500

0 Pe(r) r2dr

<latexit sha1_base64="shwL+Zun9IzFQtqZUyIXIMvC3lk="></latexit>
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6 Hierarchical modeling

◦ Bayesian hierarchical modeling of the SR (Kelly07, Andreon+13, Mantz15, Sereno16, …)

◦ Gaussian intrinsic scatter around the relation: 

P(Y |Z ) = 𝒩(αY|Z + βY|ZZ, σ2
Y|Z)
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◦ Gaussian intrinsic scatter around the relation: 

P(Y |Z ) = 𝒩(αY|Z + βY|ZZ, σ2
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◦ Eddington bias: We don’t know the true mass , but a mass estimator  Z X
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◦ Gaussian intrinsic scatter around the relation: 

P(Y |Z ) = 𝒩(αY|Z + βY|ZZ, σ2
Y|Z)

◦ Eddington bias: We don’t know the true mass , but a mass estimator  Z X

P(X |Z ) = 𝒩(αX|Z + βX|ZZ, σ2
X|Z)

◦ Measured values  and uncertainties with covariance :  

for each data point ,      

(y, x) V

i P({yi, xi} |{Yi, Xi}) = 𝒩2({Yi, Xi}, Vi)
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6 Hierarchical modeling

◦ Bayesian hierarchical modeling of the SR (Kelly07, Andreon+13, Mantz15, Sereno16, …)

◦ Gaussian intrinsic scatter around the relation: 

P(Y |Z ) = 𝒩(αY|Z + βY|ZZ, σ2
Y|Z)

◦ Eddington bias: We don’t know the true mass , but a mass estimator  Z X

P(X |Z ) = 𝒩(αX|Z + βX|ZZ, σ2
X|Z)

◦ Measured values  and uncertainties with covariance :  

for each data point ,      

(y, x) V

i P({yi, xi} |{Yi, Xi}) = 𝒩2({Yi, Xi}, Vi)

◦ Malmquist bias (MB): only objects above  are detectable 

for each data point ,       

(truncated probability distribution)

yth

i P({yi, xi} |{Yi, Xi}) ∝ 𝒩2({Yi, Xi}, Vi) × H(yi − yth)  = Heaviside step 
function

H(x)
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◦ Bayesian hierarchical modeling of the SR (Kelly07, Andreon+13, Mantz15, Sereno16, …)

◦ Gaussian intrinsic scatter around the relation: 

P(Y |Z ) = 𝒩(αY|Z + βY|ZZ, σ2
Y|Z)

◦ Eddington bias: We don’t know the true mass , but a mass estimator  Z X

P(X |Z ) = 𝒩(αX|Z + βX|ZZ, σ2
X|Z)

◦ Measured values  and uncertainties with covariance :  

for each data point ,      

(y, x) V

i P({yi, xi} |{Yi, Xi}) = 𝒩2({Yi, Xi}, Vi)

◦ Malmquist bias (MB): only objects above  are detectable 

for each data point ,       

(truncated probability distribution)

yth

i P({yi, xi} |{Yi, Xi}) ∝ 𝒩2({Yi, Xi}, Vi) × H(yi − yth)

◦ Effect of latent distribution: model the intrinsic distribution of the mass  

as a gaussian mixture 

P(Z ) = (1/nmix)
nmix

∑
k=1

πk𝒩(μk, σ2
k )

 = Heaviside step 
function

H(x)



Florian Kéruzoré 
mmUniverse  

June 2021
6 Hierarchical modeling

◦ Bayesian hierarchical modeling of the SR (Kelly07, Andreon+13, Mantz15, Sereno16, …)

◦ Gaussian intrinsic scatter around the relation: 

P(Y |Z ) = 𝒩(αY|Z + βY|ZZ, σ2
Y|Z)

◦ Eddington bias: We don’t know the true mass , but a mass estimator  Z X

P(X |Z ) = 𝒩(αX|Z + βX|ZZ, σ2
X|Z)

◦ Measured values  and uncertainties with covariance :  

for each data point ,      

(y, x) V

i P({yi, xi} |{Yi, Xi}) = 𝒩2({Yi, Xi}, Vi)

◦ Malmquist bias (MB): only objects above  are detectable 

for each data point ,       

(truncated probability distribution)

yth

i P({yi, xi} |{Yi, Xi}) ∝ 𝒩2({Yi, Xi}, Vi) × H(yi − yth)

◦ Effect of latent distribution: model the intrinsic distribution of the mass  

as a gaussian mixture 

P(Z ) = (1/nmix)
nmix

∑
k=1

πk𝒩(μk, σ2
k )

Parameters of interest

Nuisance parameters

Inputs

 = Heaviside step 
function

H(x)
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7 MCMC sampling using LIRA

◦ Including priors on the parameters gives the posterior distribution 
 to be sampled 

◦ We use the LIRA library in R (Sereno16) 

• LInear Regression in Astronomy → designed to take into account 
common astronomical data features 

• And even more: can take into account several other features 
Linearity break, mass-dependent scatter, redshift evolution, … 

• Uses the hierarchical model described in previous slide 

• Uses Gibbs sampling MCMC to perform the regression 
very well-suited to high-dimensional bayesian hierarchical models 

• Well documented, validated on simulated datasets (arXiv:1509.05778) 

◦ LIRA used to sample the posterior distribution in the parameter space 
With uninformative priors on parameters

P(ϑ |{xi, yi})
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8 Outline

Scaling relation adjustment 

Realistic mock sample generation 

Results: biases & precision 

Conclusions
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9 LPSZ mock sample generation

◦ Goal: what can we expect from the NIKA2 LPSZ for SR? 

• Generate “mock” cluster samples that mimic the LPSZ, 
with known SR 

• Fit them using the model presented before 

• Test the analysis’ accuracy (check for biases) 
and precision (evaluate uncertainties)
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◦ Goal: what can we expect from the NIKA2 LPSZ for SR? 

• Generate “mock” cluster samples that mimic the LPSZ, 
with known SR 

• Fit them using the model presented before 

• Test the analysis’ accuracy (check for biases) 
and precision (evaluate uncertainties)

◦ LPSZ selection function: 

• 10 “boxes” from 2 bins in  and 5 in  

• Fill boxes with clusters from Planck/ACT catalogs 

• Measure  for each cluster using SZ+Xrays

z Y

(Y, M )

Planck catalog 

(Y1)

LPSZ sample 

(M2, Y2)

The Universe 

 

 halo mass function 

 scaling relation 
(with intrinsic scatter)

(z, Mtrue, Ytrue)
z, Mtrue ∼

Ytrue ∼

Selection in (Y, z)

Box-filling selection:


5 bins in , 2 bins in  
5 clusters per box

Y z
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9 LPSZ mock sample generation

◦ Goal: what can we expect from the NIKA2 LPSZ for SR? 

• Generate “mock” cluster samples that mimic the LPSZ, 
with known SR 

• Fit them using the model presented before 

• Test the analysis’ accuracy (check for biases) 
and precision (evaluate uncertainties)

◦ LPSZ selection function: 

• 10 “boxes” from 2 bins in  and 5 in  

• Fill boxes with clusters from Planck/ACT catalogs 

• Measure  for each cluster using SZ+Xrays

z Y

(Y, M )

◦ This work: 

• Create random LPSZ-like samples 

• Bypass Planck+ACT selection step 
→ Ignore their selection function

Planck catalog 

(Y1)

LPSZ sample 

(M2, Y2)

The Universe 

 

 halo mass function 

 scaling relation 
(with intrinsic scatter)

(z, Mtrue, Ytrue)
z, Mtrue ∼

Ytrue ∼

Selection in (Y, z)

Box-filling selection:


5 bins in , 2 bins in  
5 clusters per box

Y z
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10 LPSZ mock sample generation

◦ Step 1: draw random  points  
from a Tinker+08  halo mass function

(z, M500)
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◦ Step 1: draw random  points  
from a Tinker+08  halo mass function

(z, M500)

◦ Step 2: apply fiducial input SR → observable  values 

• Planck results as truth: 

Y

αY|Z = − 0.19, βY|Z = 1.79, σY|Z = 0.075
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◦ Step 1: draw random  points  
from a Tinker+08  halo mass function

(z, M500)

◦ Step 2: apply fiducial input SR → observable  values 

• Planck results as truth: 

Y

αY|Z = − 0.19, βY|Z = 1.79, σY|Z = 0.075

◦ Step 3: apply the box-filling algorithm to select an  
LPSZ-like sample 

• Same  bins as the real LPSZ 

• 5 clusters/box → 50 total (~real LPSZ)

(Y, z)
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10 LPSZ mock sample generation

◦ Step 1: draw random  points  
from a Tinker+08  halo mass function

(z, M500)

◦ Step 2: apply fiducial input SR → observable  values 

• Planck results as truth: 

Y

αY|Z = − 0.19, βY|Z = 1.79, σY|Z = 0.075

◦ Step 3: apply the box-filling algorithm to select an  
LPSZ-like sample 

• Same  bins as the real LPSZ 

• 5 clusters/box → 50 total (~real LPSZ)

(Y, z)

◦ Step 4: add uncertainties 

• Uncertainties on both axes and their covariance: 
output of individual cluster analyses (yesterday’s talk) 

• Realistic values from previous cluster analyses and 
simulations: ~10-15% uncertainties, ~85% correlation

◦ Consider unbiased & unscattered mass estimators for now
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11 Accuracy & precision estimation

◦ Repeat the procedure to generate 5000 mock samples, & fit the scaling relation on each sample 

◦ Evaluate the bias and dispersion of the parameter estimators: for each parameter of interest  with true value , 

Bias     Dispersion  

(over all Markov chains samples )

ϑ ̂ϑ

ζϑ [σ] ≡
Med[ϑi] − ̂ϑ

Var[ϑi]
ηϑ [ % ] ≡

Var[ϑi]
| ̂ϑ |

i

× 5000

MCMC on each 
mock sample

N

�2.5 0.0 2.5

↵Y |Z

�2.5 0.0 2.5

�Y |Z

�2.5 0.0 2.5

�Y |Z

Bias ⇣ [�]

N

1.5 2.0

↵Y |Z

1.5 2.0 2.5

�Y |Z

20 40

�Y |Z

Dispersion ⌘ [%]

ζ [σ]

η [ % ]

5000 different samples 
generated and fitted

5000 values of  
for each parameter of interest

ζ, η
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12 Outline

Scaling relation adjustment 

Realistic mock sample generation 

Results: biases & precision 

Conclusions
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13 LPSZ selection effects

◦ The “box-filling” LPSZ selection is complex 

• Putting a threshold at the limit of each box is incorrect:  
clusters at lower values would not have been censured,  
just selected in a lower box 

◦ What is the impact of the selection / how can we deal with it? 

• We could ignore the selection… 

• … Or consider a threshold at the lowest  value 

◦ Generate 5000 samples and fit them with both approximations

Y
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14 LPSZ selection effect: bias?

◦ No significant bias on the parameters of interest 

• Threshold in observable values: little effect 

→ No bias due to the LPSZ selection?

◦ Does this hold for larger intrinsic scatter? 

• Truth value used is low:  (Planck) 

• Malmquist bias (MB) is due to intrinsic scatter 

→ What if we repeat with  ?

σY|Z = 0.075

σY|Z → 2 × σY|Z

No threshold

↵Y |Z �Y |Z �Y |Z

Threshold

�2.5 0.0 2.5�2.5 0.0 �2.5 0.0 2.5

Bias ⇣ [�]

Preliminary
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◦ No significant bias on the parameters of interest 

• Threshold in observable values: little effect 

→ No bias due to the LPSZ selection?

◦ Does this hold for larger intrinsic scatter? 

• Truth value used is low:  (Planck) 

• Malmquist bias (MB) is due to intrinsic scatter 

→ What if we repeat with  ?

σY|Z = 0.075

σY|Z → 2 × σY|Z

◦ Significant bias on the intercept , with  

• Not on the other parameters: unusual (compared to MB) 

• Considering a threshold doesn’t help

αY|Z ζ > 2σ

◦ Consequence: if Planck underestimated intrinsic scatter,  
LPSZ selection creates a bias in SR measurement 

→ How can we explain this bias? 

→ Can we do something about it?

No threshold

↵Y |Z �Y |Z �Y |Z

Threshold

�2.5 0.0 2.5�2.5 0.0 �2.5 0.0 2.5

Bias ⇣ [�]

No threshold

↵Y |Z �Y |Z �Y |Z

Threshold

0 5 �2.5 0.0 2.5�2.5 0.0

Bias ⇣ [�]

σY|Z
= 0.15 = 2 × σPlanck

Y|Z

σY|Z
= 0.075 = σPlanck

Y|Z

Preliminary

Preliminary
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Here: overrepresentations  
at boxes thresholds 

→ Offset relation: Biased intercept

Fitt
ed

Bias

◦ Possible solutions: 

• Study bias dependence with  on simulations, and correct ad-hoc 

• Measure  independently and fix it in the analysis 

• If the scatter is low (as measured by Planck), bias is negligible

σ

α
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16 Parameter precision

◦ For small intrinsic scatter → negligible selection bias 

◦ Relatives uncertainties on parameters : 

• ~10% on average on  &  

• ~30% on 

η

α β

σ

No threshold

9 10 11

↵Y |Z

10.0 12.5

�Y |Z

30 40

�Y |Z

Dispersion ⌘ [%]

10.2% 10.1% 34.0%

Preliminary

=
Var[ϑi]
| ̂ϑ |
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17 Outline

Scaling relation adjustment 

Realistic mock sample generation 

Results: biases & precision 

Conclusions
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18 Summary & conclusions

◦  scaling relation = NIKA2 LPSZ goal 

◦ Constraining power evaluated on mock datasets 

• Generated with a realistic procedure 

• Fitted with a Bayesian hierarchical model using the LIRA library 

◦ Results: bias and dispersion of the parameter estimators 

• LPSZ selection creates bias in the SR intercept, not on other parameters 

• Negligible for low intrinsic scatter (as measured by Planck) 

• Dispersion around 10% for scaling relation parameters 

◦ Main assumptions/caveats: 

• mass bias/dispersion not accounted for yet 

• input survey selection not accounted for yet 

◦ Forecasting and decision help for future sample studies using NIKA2

Y500 − M500


