

Forecasting the $Y_{500} - M_{500}$ scaling relation from the NIKA2 SZ Large Program

Florian Kéruzoré, LPSC, Grenoble mmUniverse@NIKA2, June 2021

Introduction

- Cluster masses are needed for cosmology, but not a direct observable
 - → Empirical mass-observable scaling relations (SR) are calibrated on small cluster samples
- One of the goals of the NIKA2 SZ Large Program (LPSZ talk by L. Perotto):
 - SR between mass M_{500} & integrated Compton parameter Y_{500} (SZ survey observable)
 - Benefiting from NIKA2's high angular resolution: better-constrained quantities

→ Improvement over *Planck* measurement

- This work: preparing the measurement of the scaling relation from the LPSZ data
 - Setup a Bayesian hierarchical model regression scheme
 - Generate mock LPSZ-like cluster samples
 - Search for **biases** in the results, *i.e.* see how LPSZ data features affect the analysis
 - Begin forecasting precision given the sample size / data quality

④ Outline

Scaling relation adjustment

Realistic mock sample generation

Results: biases & precision

Conclusions

Solutions & linear mass-observable relation

- Self-similar scenario of structure growth: power law relation between
 - integrated Compton parameter $D_A^2 Y_{500} \propto \int_0^{R_{500}} P_e(r) r^2 dr$
 - mass *M*₅₀₀

$$E^{-2/3}(z) \frac{D_{\rm A}^2 Y_{500}}{10^{-4} \,{\rm Mpc}^2} = 10^{\alpha} \left[\frac{M_{500}}{6 \times 10^{14} \,{\rm M_{\odot}}} \right]^{\beta}$$

• Defining the log-scaled SZ observable Y and mass Z makes the scaling relation linear:

$$Y \equiv \log \left[E^{-2/3}(z) \frac{D_A^2 Y_{500}}{10^{-4} \text{ Mpc}^2} \right]$$

$$Z \equiv \log \left[\frac{M_{500}}{6 \times 10^{14} \text{ M}_{\odot}} \right]$$

$$\Rightarrow Y = \alpha_{Y|Z} + \beta_{Y|Z} Z$$

• SR = trend: intrinsic scatter due to cluster physics \rightarrow Gaussian scatter around the relation:

$$P(Y|Z) = \mathcal{N}(\alpha_{Y|Z} + \beta_{Y|Z}Z, \sigma_{Y|Z}^2)$$

 \rightarrow parameters of interest: $\alpha_{Y|Z}$ (intercept), $\beta_{Y|Z}$ (slope), $\sigma_{Y|Z}$ (intrinsic scatter)

- Bayesian hierarchical modeling of the SR (Kelly07, Andreon+13, Mantz15, Sereno16, ...)
- Gaussian intrinsic scatter around the relation:

 $P(Y|Z) = \mathcal{N}(\alpha_{Y|Z} + \beta_{Y|Z}Z, \sigma_{Y|Z}^2)$

- Bayesian hierarchical modeling of the SR (Kelly07, Andreon+13, Mantz15, Sereno16, ...)
- Gaussian intrinsic scatter around the relation:

 $P(Y|Z) = \mathcal{N}(\alpha_{Y|Z} + \beta_{Y|Z}Z, \sigma_{Y|Z}^2)$

• Eddington bias: We don't know the true mass Z, but a mass estimator X

 $P(X|Z) = \mathcal{N}(\alpha_{X|Z} + \beta_{X|Z}Z, \sigma_{X|Z}^2)$

- Bayesian hierarchical modeling of the SR (Kelly07, Andreon+13, Mantz15, Sereno16, ...)
- Gaussian intrinsic scatter around the relation:

 $P(Y|Z) = \mathcal{N}(\alpha_{Y|Z} + \beta_{Y|Z}Z, \sigma_{Y|Z}^2)$

- Eddington bias: We don't know the true mass Z, but a mass estimator X $P(X|Z) = \mathcal{N}(\alpha_{X|Z} + \beta_{X|Z}Z, \sigma_{X|Z}^2)$
- Measured values (y, x) and uncertainties with covariance V:

for each data point *i*, $P(\{y_i, x_i\} | \{Y_i, X_i\}) = \mathcal{N}_2(\{Y_i, X_i\}, V_i)$

- Bayesian hierarchical modeling of the SR (Kelly07, Andreon+13, Mantz15, Sereno16, ...)
- Gaussian intrinsic scatter around the relation:

 $P(Y|Z) = \mathcal{N}(\alpha_{Y|Z} + \beta_{Y|Z}Z, \sigma_{Y|Z}^2)$

- Eddington bias: We don't know the true mass Z, but a mass estimator X $P(X | Z) = \mathcal{N}(\alpha_{X|Z} + \beta_{X|Z}Z, \sigma_{X|Z}^2)$
- Measured values (y, x) and uncertainties with covariance V: for each data point *i*, $P(\{y_i, x_i\} | \{Y_i, X_i\}) = \mathcal{N}_2(\{Y_i, X_i\}, V_i)$
- **Malmquist bias (MB):** only objects above y_{th} are detectable for each data point i, $P(\{y_i, x_i\} | \{Y_i, X_i\}) \propto \mathcal{N}_2(\{Y_i, X_i\}, V_i) \times H(y_i - y_{th})$ (truncated probability distribution)

- Bayesian hierarchical modeling of the SR (Kelly07, Andreon+13, Mantz15, Sereno16, ...)
- Gaussian intrinsic scatter around the relation:

 $P(Y|Z) = \mathcal{N}(\alpha_{Y|Z} + \beta_{Y|Z}Z, \sigma_{Y|Z}^2)$

- Eddington bias: We don't know the true mass Z, but a mass estimator X $P(X|Z) = \mathcal{N}(\alpha_{X|Z} + \beta_{X|Z}Z, \sigma_{X|Z}^2)$
- Measured values (y, x) and uncertainties with covariance V: for each data point *i*, $P(\{y_i, x_i\} | \{Y_i, X_i\}) = \mathcal{N}_2(\{Y_i, X_i\}, V_i)$
- **Malmquist bias (MB):** only objects above y_{th} are detectable for each data point i, $P(\{y_i, x_i\} | \{Y_i, X_i\}) \propto \mathcal{N}_2(\{Y_i, X_i\}, V_i) \times H(y_i - y_{th})$ (truncated probability distribution)
- Effect of latent distribution: model the intrinsic distribution of the mass

as a gaussian mixture

$$P(Z) = (1/n_{\text{mix}}) \sum_{k=1}^{n_{\text{mix}}} \pi_k \mathcal{N}(\mu_k, \sigma_k^2)$$

- Bayesian hierarchical modeling of the SR (Kelly07, Andreon+13, Mantz15, Sereno16, ...)
- Gaussian intrinsic scatter around the relation:

 $P(Y|Z) = \mathcal{N}(\alpha_{Y|Z} + \beta_{Y|Z}Z, \sigma_{Y|Z}^2)$

• Eddington bias: We don't know the true mass Z, but a mass estimator X

 $P(X|Z) = \mathcal{N}(\alpha_{X|Z} + \beta_{X|Z}Z, \sigma_{X|Z}^2)$

- Measured values (y, x) and uncertainties with covariance V: for each data point *i*, $P((y_i, x_i) | (Y_i, X_i)) = \mathcal{N}_2((Y_i, X_i), V_i)$
- **Malmquist bias (MB):** only objects above y_{th} are detectable for each data point i, $P((y_i, x_i) | (Y_i, X_i)) \propto \mathcal{N}_2((Y_i, X_i), V_i) \times H(y_i - y_{\text{th}})$ (truncated probability distribution)
- Effect of latent distribution: model the intrinsic distribution of the mass

as a gaussian mixture

$$P(Z) = (1 n_{\text{mix}}) \sum_{k=1}^{n_{\text{mix}}} \pi_k \mathcal{N}(\mu_k, \sigma_k^2)$$

Florian Kéruzoré

mmUniverse June 2021

H(x) = Heaviside step function

⑦ MCMC sampling using LIRA

- Including priors on the parameters gives the **posterior distribution** $P(\vartheta \mid \{x_i, y_i\})$ to be sampled
- We use the LIRA library in R (Sereno16)
 - LInear Regression in Astronomy → designed to take into account common astronomical data features
 - And even more: can take into account several other features Linearity break, mass-dependent scatter, redshift evolution, ...
 - Uses the hierarchical model described in previous slide
 - Uses Gibbs sampling MCMC to perform the regression very well-suited to high-dimensional bayesian hierarchical models
 - Well documented, validated on simulated datasets (arXiv:1509.05778)
- LIRA used to sample the posterior distribution in the parameter space With uninformative priors on parameters

Scaling relation adjustment

Realistic mock sample generation

Results: biases & precision

Conclusions

IPSZ mock sample generation

- **Goal:** what can we expect from the NIKA2 LPSZ for SR?
 - Generate "mock" cluster samples that mimic the LPSZ, with known SR
 - Fit them using the model presented before
 - Test the analysis' **accuracy** (check for biases) and **precision** (evaluate uncertainties)

③ LPSZ mock sample generation

- Goal: what can we expect from the NIKA2 LPSZ for SR?
 - Generate "mock" cluster samples that mimic the LPSZ, with known SR
 - Fit them using the model presented before
 - Test the analysis' **accuracy** (check for biases) and **precision** (evaluate uncertainties)
- LPSZ selection function:
 - 10 "boxes" from 2 bins in z and 5 in Y
 - Fill boxes with clusters from *Planck*/ACT catalogs
 - Measure (Y, M) for each cluster using SZ+Xrays

Florian Kéruzoré

mmUniverse June 2021

③ LPSZ mock sample generation

- Goal: what can we expect from the NIKA2 LPSZ for SR?
 - Generate "mock" cluster samples that mimic the LPSZ, with known SR
 - Fit them using the model presented before
 - Test the analysis' **accuracy** (check for biases) and **precision** (evaluate uncertainties)
- LPSZ selection function:
 - 10 "boxes" from 2 bins in z and 5 in Y
 - Fill boxes with clusters from *Planck*/ACT catalogs
 - Measure (Y, M) for each cluster using SZ+Xrays
- This work:
 - Create random LPSZ-like samples
 - Bypass Planck+ACT selection step
 - \rightarrow Ignore their selection function

10 LPSZ mock sample generation

• **Step 1:** draw random (z, M_{500}) points from a Tinker+08 halo mass function

① LPSZ mock sample generation

- Step 1: draw random (z, M_{500}) points from a Tinker+08 halo mass function
- Step 2: apply fiducial input SR \rightarrow observable *Y* values
 - *Planck* results as truth:

$$\alpha_{Y|Z} = -\ 0.19, \, \beta_{Y|Z} = 1.79, \, \sigma_{Y|Z} = 0.075$$

10 LPSZ mock sample generation

- **Step 1:** draw random (*z*, *M*₅₀₀) points from a Tinker+08 halo mass function
- Step 2: apply fiducial input SR \rightarrow observable *Y* values
 - Planck results as truth:

$$\alpha_{Y|Z} = -0.19, \, \beta_{Y|Z} = 1.79, \, \sigma_{Y|Z} = 0.075$$

- Step 3: apply the box-filling algorithm to select an LPSZ-like sample
 - Same (Y, z) bins as the real LPSZ
 - 5 clusters/box \rightarrow 50 total (~real LPSZ)

10 LPSZ mock sample generation

- **Step 1:** draw random (z, M_{500}) points from a Tinker+08 halo mass function
- Step 2: apply fiducial input SR \rightarrow observable Y values
 - Planck results as truth:

$$\alpha_{Y|Z} = -0.19, \, \beta_{Y|Z} = 1.79, \, \sigma_{Y|Z} = 0.075$$

- Step 3: apply the box-filling algorithm to select an LPSZ-like sample
 - Same (Y, z) bins as the real LPSZ
 - 5 clusters/box → 50 total (~real LPSZ)
- Step 4: add uncertainties
 - Uncertainties on both axes and their covariance: output of individual cluster analyses (yesterday's talk)
 - Realistic values from previous cluster analyses and simulations: ~10-15% uncertainties, ~85% correlation
- Consider unbiased & unscattered mass estimators for now

1 Accuracy & precision estimation

• Repeat the procedure to generate 5000 mock samples, & fit the scaling relation on each sample

• Evaluate the bias and dispersion of the parameter estimators: for each parameter of interest ϑ with true value $\hat{\vartheta}$,

$$\text{Bias } \zeta_{\vartheta}[\sigma] \equiv \frac{\text{Med}[\vartheta_i] - \hat{\vartheta}}{\sqrt{\text{Var}[\vartheta_i]}} \quad \text{Dispersion } \eta_{\vartheta}[\%] \equiv \frac{\sqrt{\text{Var}[\vartheta_i]}}{|\hat{\vartheta}|}$$

(over all Markov chains samples i)

Scaling relation adjustment

Realistic mock sample generation

Results: biases & precision

Conclusions

13 LPSZ selection effects

- $\circ~$ The "box-filling" LPSZ selection is complex
 - Putting a threshold at the limit of each box is incorrect: clusters at lower values would not have been censured, just selected in a lower box
- What is the impact of the selection / how can we deal with it?
 - We could ignore the selection...
 - ... Or consider a threshold at the lowest Y value
- Generate 5000 samples and fit them with both approximations

14 LPSZ selection effect: bias?

- No significant bias on the parameters of interest
 - Threshold in observable values: little effect
 - → No bias due to the LPSZ selection?
- Does this hold for larger intrinsic scatter?
 - Truth value used is low: $\sigma_{Y|Z} = 0.075$ (*Planck*)
 - Malmquist bias (MB) is due to intrinsic scatter
 - \rightarrow What if we repeat with $\sigma_{Y|Z} \rightarrow 2 \times \sigma_{Y|Z}$?

14 LPSZ selection effect: bias?

- No significant bias on the parameters of interest
 - Threshold in observable values: little effect
 - \rightarrow No bias due to the LPSZ selection?
- Does this hold for larger intrinsic scatter?
 - Truth value used is low: $\sigma_{Y|Z} = 0.075$ (*Planck*)
 - Malmquist bias (MB) is due to intrinsic scatter
 - \rightarrow What if we repeat with $\sigma_{Y|Z} \rightarrow 2 \times \sigma_{Y|Z}$?
- Significant bias on the intercept $\alpha_{Y|Z}$, with $\zeta > 2\sigma$
 - Not on the other parameters: unusual (compared to MB)
 - Considering a threshold doesn't help
- **Consequence:** if Planck underestimated intrinsic scatter, LPSZ selection creates a bias in SR measurement
 - \rightarrow How can we explain this bias?
 - \rightarrow Can we do something about it?

15 Interpretation for intercept bias

 \rightarrow Shallower relation: Biased slope

15 Interpretation for intercept bias

y

Malmquist bias: overrepresentation at detection threshold

 \rightarrow Shallower relation: Biased slope

y

Threshold - ${\mathcal X}$ Malmquist bias: overrepresentation at detection threshold

 \rightarrow Shallower relation: Biased slope

Florian Kéruzoré mmUniverse June 2021

→ Shallower relation: Biased slope

Florian Kéruzoré mmUniverse June 2021

→ Shallower relation: Biased slope

→ Offset relation: Biased intercept

- Possible solutions:
 - Study bias dependence with σ on simulations, and correct ad-hoc
 - Measure α independently and fix it in the analysis
 - If the scatter is low (as measured by Planck), bias is negligible

⁽¹⁶⁾ Parameter precision

- \circ For small intrinsic scatter \rightarrow negligible selection bias
- Relatives uncertainties on parameters η :
 - ~10% on average on α & β
 - ~30% on σ

Scaling relation adjustment

Realistic mock sample generation

Results: biases & precision

Conclusions

Summary & conclusions

 $\circ Y_{500} - M_{500}$ scaling relation = NIKA2 LPSZ goal

- Constraining power evaluated on mock datasets
 - Generated with a realistic procedure
 - Fitted with a Bayesian hierarchical model using the LIRA library
- Results: bias and dispersion of the parameter estimators
 - LPSZ selection creates bias in the SR intercept, not on other parameters
 - Negligible for low intrinsic scatter (as measured by *Planck*)
 - Dispersion around 10% for scaling relation parameters
- Main assumptions/caveats:
 - mass bias/dispersion not accounted for yet
 - input survey selection not accounted for yet
- Forecasting and decision help for future sample studies using NIKA2