MILLIMETRIC SARDINIA RADIO TELESCOPE RECEIVER BASED ON ARRAY OF LUMPED ELEMENTS KIDS

GIUSEPPE D:ALESSA.NDRO E.BARBARAVA, E.S.BATTISTELLI, P.DE B.ERNARDIS, F. CACCIOTTI, E. CARRETT!, F. COLUMBRO. A. COPPOLECCHIA, A.CRUCIANI, M.DE PETRIS, F. GOVONI, G.ISOPI L:LAMAGNA, P.MARONGIU, S.NASI, L.MEL'E, E.MOLINARI, M.MURGYA, A.NAVARRINI, A.ORLATTI, A.PAIELLA, G.PETTINARI, F.PIACENTINI, T:PISANU, S.POPPI, G.PRESTA, F.RADICONI

2nd mm Universe @Nika2 28June-2July 2021 Sapienza University in Rome

OVERVIEW:

- Sardinia Radio Telescope
- MISTRAL instrument
- cryostat
- optic
- detectors array
- schedule
- science case
- conclusion

SARDINIA RADIO TELESCOPE

Sardinia radio telescope, SRT Lat. 39.4930 N - Long. 9.2451E, is a multipurpose instrument operated in either single dish or Very Long Baseline Interferometer mode.

Manufacturing started in 2003 and completed in August 2012. The technical commissioning phase to validate scientific performances was managed by National Institute for Astrophysics and concluded in 2014.

The Early Science Program observations started in 2016, and regular proposal in

Navarrini et al. https://openaccess.inaf.it/handle/20.500.12386/28787 2018.

SARDINIA RADIO TELESCOPE

Estimation of sky opacity, based on recorded atmospheric data, forecasts
[http://hdl.handle.net/20.500.12386/28787] <0.15 (50th percentile) at 93 GHz during the winter nights. The PWV in the same conditions is mainly 8 mm .

Green Bank Telescope tau<0.125 (50th percentile) @86GHz, and PWV<9mm (50th percentile) [https://www.gb.nrao.edu/mustang/ wx.shtml]

50 years of radiosonde profiles taken at Cagliari airport (30 Km far, at sea level) and scaled for SRT site shows PWV $<11 \mathrm{~mm}$
(50th percentile) and opacity <0.2 (50 th percentile) at 100 GHz . far, at sea level) and scaled for SRT site shows PWV $<11 \mathrm{~mm}$
(50th percentile) and opacity <0.2 (50 th percentile) at 100 GHz . [Nasir et al. Exp Astron 29:207-225(2011)]

SARDINIA RADIO TELESCOPE

The antenna (M1) is fully steerable, 64 m in diameter. Composed of 1008 aluminum elements controlled by electromechanical actuators.

M1 and M2 are shaped to minimize spillover and the standing waves between the feed and the subreflector.

Bolli at al. Journal of Astronomical Instrumentation, Vol. 4, Nos. 3 \& 4 (2015)

SARDINIA RADIO TELESCOPE

An f/0.33 primary focus occurs near the M2 subreflector. 7.9 m in diameter is composed of 49 aluminum elements. Its position can be changed for focus adjustment.

M1 and M2 are shaped to minimize spillover and the standing waves between the

Bolli at al. Journal of Astronomical Instrumentation, Vol. 4, Nos. 3 \& 4 (2015) feed and the subreflector.

SARDINIA RADIO TELESCOPE

The gregorian focus, f/2.34 occurs around 20 meters below M2 in the Gregorian room.

MISTRAL will be placed in this room by using the gregorian focus of SRT.

Bolli at al. Journal of Astronomical Instrumentation, Vol. 4, Nos. 3 \& 4 (2015)

SARDINIA RADIO TELESCOPE

MISTRAL

Bolli at al. Journal of Astronomical Instrumentation, Vol. 4, Nos. 3 \& 4 (2015)
Table 3. Microwave receivers installed and under construction for the SRT.

MISTRAL: CRYOSTAT

```
~250Kg, ~1m3
```


The cryostat has been provided by QMC. It is composed of two radiation shields at 40 K and 4 K犬্థ్ర tube. Another shield, cooled at 1 K by He4 fridge, surrounding the focal plane assembly. The detectors reach 250 mK thanks to He6 fridge.

MISTRAL: CRYOSTAT

$\sim 250 \mathrm{Kg}, ~ \sim 1 \mathrm{~m} 3$

The cryostat has been provided by QMC. It is composed of two radiation shields at 40 K and 4 K cooled down by a pulse tube. Another shield, cooled at 1 K by He4 fridge, surrounding the focal plane assembly. The detectors reach 250 mK thanks to He6 fridge.

MISTRAL: CRYOSTAT

$\sim 250 \mathrm{Kg}, ~ \sim 1 \mathrm{~m} 3$

The cryostat has been provided by QMC. It is composed of two radiation shields at 40 K and 4 K cooled down by a pulse tube. Another shield, cooled at 1 K by He4 fridge, surrounding the focal plane assembly. The detectors reach 250 mK thanks to He6 fridge.

MISTRAL: CRYOSTAT

$\sim 250 \mathrm{Kg}, ~ \sim 1 \mathrm{~m} 3$

The cryostat has been provided by QMC. It is composed of two radiation shields at 40 K and 4 K cooled down by a pulse tube. Another shield, cooled at 1 K by He4 fridge, surrounding the focal plane assembly. The detectors reach 250 mK thanks to He6 fridge.

MISTRAL: CRYOSTAT

$\sim 250 \mathrm{Kg}, ~ \sim 1 \mathrm{~m} 3$

The cryostat has been provided by QMC. It is composed of two radiation shields at 40 K and 4 K cooled down by a pulse tube. Another shield, cooled at 1 K by He4 fridge, surrounding the focal plane assembly. The detectors reach 250 mK thanks to He6 fridge.

MISTRAL: CRYOSTAT

Sumitomo RP-182B2S-F100H

1.5W @ 4.2K and 36W @ 48K

- remote valve
- air cooled
- 100m He lines [Coppolecchia et al. @LTD-19th]

Chase Twin GL10 fridge

2XHe3 251mK @20uW (For focal plane)

He3 332mK @30uW (For focal plane support)

He4 840mK @150uW

MISTRAL: MAGNETIC SHIELD

The experiment will change elevation several times during the observations. A magnetic shield surrounds the detectors, fridges, and relevant read-out parts to mitigate the earth's magnetic field effects.

The shield (1 mm thick) is made of Cryoperm 10 with $\mu_{\mathrm{r}}>70000$

MISTRAL: OPTICS CHAIN

MISTRAL: OPTICS DESIGN

re-imaging optical system

MISTRAL: OPTICS DESIGN

COLD STOP:

125 MM CIRCULAR
APERTURE COATED
WITH ABSORBER
MATERIAL (I.E.
ECCOSORB AN72)

$$
\begin{array}{r}
R 1=1304 \mathrm{MM} \\
\mathrm{~K} 1=1.6 \\
\mathrm{R} 2=-556 \mathrm{MM} \\
\mathrm{~K} 2=2.8 \\
\mathrm{~N}=3.4 @ 4 \mathrm{~K}
\end{array}
$$

Anti reflection coating will cover each lenses surfaces

FOV=4' -> 94.4MM

FOCAL SCALE RATIO =
2.54'/ MM

MISTRAL: OPTICS DESIGN

MISTRAL FOCUS

H-PSF avg in band
Field 0.0 arcmin
Strehl Ratio $=0.97$
FWHM $=4.8 \mathrm{~mm}=12.2 \mathrm{arcsec}$

MISTRAL: OPTICS DESIGN

MISTRAL FOCUS

H-PSF avg in band
Field 2.0 arcmin
Strehl Ratio $=0.91$
FWHM $=5 \mathrm{~mm}=12.7 \mathrm{arcsec}$

MISTRAL: DETECTORS

LEKID \& WORKING PRINCIPLE

- Low temperature, fast, superconductive detectors;
- Cooper pair binding energy: $2 \Delta=3.52 k_{B} T_{c}$;
- Radiation with $h \nu>2 \Delta$ can break Cooper pairs, producing a change in the population densities, and thus in the kinetic inductance, L_{k}.
- High- Q LC resonators.

- High values of Q allow to multiplex thousands of KIDs, with different $\nu_{r^{\prime}}$ all coupled to the same feedline.
- In the resonator, the change in L_{k}, produces a change in the resonant frequency ν_{r}, and in the quality factor Q,
- They can be sensed by measuring the change in the amplitude and phase of the bias signal, transmitted past the resonator through the feedline.

MISTRAL: DETECTORS

 HFSS ABSORBER DESIGN RESULTS

Optimisation Results:

- superconductor in Ti-Al bilayer $10+30 \mathrm{~nm}$ thick $\left(T_{c}=945 \mathrm{mK}\right)$; [Catalano et al. A\&A 580 A15 2015]
- Silicon substrate $235 \mu \mathrm{~m}$;
- Front-illuminated 3rd order Hilbert crude absorber with backshort

MISTRAL: DETECTORS

PIXEL ARRANGEMENT

$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ absorbers arranged on a equilateral triangle, with a side 4.2 mm .

MISTRAL: DETECTORS

PIXEL ARRANGEMENT

FOV $=4^{\prime}->$
94.4 MM
FOCALSCALE
RATIO $=2.54^{\prime \prime} / \mathrm{MM}$
\ldots.
PIXEL
SEPARATION $=10.6^{\prime \prime}$
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ absorbers arranged on a equilateral triangle, with a side 4.2 mm .

MISTRAL: DETECTORS

PIXEL ARRANGEMENT

FWHM=12.2 ${ }^{\prime}$
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ absorbers arranged on a equilateral triangle, with a side 4.2 mm .

MISTRAL: DETECTORS

Wband_GP1: 3' ', 5 pixel + feedline

Wband_GP2: 3", 31 pixel + feedline

Prototype storyline

Wband_GP1: 3' ', 5 pixel + feedline

Wband_GP2: 3", 31 pixel + feedline

One order magnitude less of site background (considering unstable atmosphere)

- electrical tests
- electrical responsivity measurement
- Noise Equivalent Power as a temperature function
- Sensitivity to the magnetic field

MISTRAL: DETECTORS

 HOLDER DETAILS

MISTRAL: READ OUT

Roach2: FPGA system based, provided by Arizona State University, successfully used for OLIMPO
[A Paiella et al 2019 J. Phys.: Conf. Ser. 1182]

SCHEDULE

galaxies

Medium

Spectral energy distribution

AGN and radio galaxies

Spiral galaxies continuum observation

Mm-wave detection of circumstellar discs
s-z effect

ICM Thermodynamics, mass profile Shocks, cold fronts Filament, Cosmic web
Point sources

More and more, by correlating with other experiment
W-BAND HIGH ANGULAR RESOLUTION (SOON AT SRT)

- INAF
ISTITUTO NAZIONALE DI ASTROFISICA
\qquad
FOR ASTROPHYSICS

Observing with the Italian radio telescopes

Welcome to the lialiar radio telescopes users' oage
Here you can access al of the resjurces needed to achieve successful single-dish and extra-EVN interferometric observations

Contact us

(INAF

CONCLUSION:

- The Sardinia Radio Telescope (SRT) is a multipurpose observatory designed to measure a wide range of radio wavelengths: from 300 MHz to 116 GHz
- At SRT, the sky opacity in winter is <0.15 (50th percentile) at 93 GHz
- MISTRAL will be coupled with SRT with a re-imaging optical system. The minimum spatial resolution (FWHM) is 12.2arcsec
- The 408 LEKIDs array has been optimised for best 90 GHz absorption and for the background at SRT.
- MISTRAL scientific commissioning will start on January 2022

backup slides

SARDINIA RADIO TELESCOPE

Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope

[Raymond 2021, ApJ 253:5 2021]

Estimation of sky opacity, based on recorded atmospheric data, forecasts
[http://hdl.handle.net/20.500.12386/28787] <0.15 (50th percentile) at 93 GHz during the winter nights. The PWV in the same conditions is mainly 8 mm .

Green Bank Telescope tau<0.125 (50th percentile) @86GHz, and PWV $<9 \mathrm{~mm}$ (50th percentile) [https://www.gb.nrao.edu/mustang/ wx.shtml]

MISTRAL: DETECTORS

 KID DESIGN \& ELECTRICAL PARAMETERS

Bias Frequency

- Multiplexing factor $\propto Q_{i}>50000$
- Dynamics $\propto \frac{Q_{c}}{Q_{c}+Q_{i}}\left(Q_{c} \sim 20000\right)$
- Responsivity $\propto Q \sim 15000$

MISTRAL: DETECTORS

 KID DESIGN \& ELECTRICAL PARAMETERSfeedine

Bias Frequency

- Multiplexing factor $\propto Q_{i}>50000$
- Dynamics $\propto \frac{Q_{c}}{Q_{c}+Q_{i}}\left(Q_{c} \sim 20000\right)$
- Responsivity $\propto Q \sim 15000$

MISTRAL: DETECTORS

		Operatioti Teimpersminete		
		150 mK	250 mK	300 mK
NEP ${ }_{\text {dark }}$	Avg.	41.5	280	520
-	Best	17.0	110	180
$[\mathrm{iW} / \mathrm{VHz}]$	Worst	73.0	500	1060

$\mathrm{NEP}_{\text {ph,bkg }}=5000 \mathrm{aW} / \sqrt{\mathrm{Hz}}$

Coppolecchia et al. Journal of Low Temperature Physics (2020) 199:130-137

MISTRAL: DETECTORS

PRELIMINARY TESTS

		Opreratioti Teimperatime		
		150 mK	250 mK	300 mK
NEP ${ }_{\text {dark }}$	Avg.	41.5	280	520
[$\mathrm{HW} / \sqrt{ } / \mathrm{H}$.	Best	17.0	110	180
$[\mathrm{dW} / \mathrm{VHz}]$	Worst	73.0	500	1060

$\mathrm{NEP}_{\text {ph,bkg }}=5000 \mathrm{aW} / \sqrt{\mathrm{Hz}}$

Coppolecchia et al. Journal of Low Temperature Physics (2020) 199:130-137

MISTRAL: DETECTORS

KID MAGNETIC FIELD SENSITIVITY

MISTRAL: MAGNETIC SHIELD

The simulations were performed with the strongest component of the geomagnetic field aligned with the cryostat optical axis.

Assumptions:

- $\mu_{\mathrm{r}}=70000$
- no aluminum holder around the detector
- no magnetic tape around the gaps

MISTRAL: MAGNETIC SHIELD

The simulations were performed with the strongest component of the geomagnetic field aligned with the cryostat optical axis.

Assumptions:

- $\mu_{\mathrm{r}}=70000$
- no magnetic tape around the gaps

