

Morphological analysis of SZ and X-ray maps of galaxy clusters with Zernike polynomials

V. Capalbo, M. De Petris, G. Yepes, F. De Luca, W. Cui, A. Knebe, E. Rasia, F. Ruppin, A. Ferragamo

Introduction

- **‣ Purpose:** study the morphology of galaxy clusters from multi-wavelength maps to infer, as possible, their dynamical state
- **‣ Method:** analytic approach using *Zernike polynomials*

ZPs are a *complete* and *orthogonal* set of functions defined over a unit circle, useful for modelling functions in circular domains

Common applications of ZPs in several fields:

- adaptive optics *(see e.g. Noll R. G., 1976, J. Opt. Soc. Am.,66,207; Rigaut F. et al.,1991, A&A, 250, 280)*
- image analysis and pattern recognition *(see e.g. Teague M. R., 1980, J. Opt. Soc. Am., 70, 920)*
- ophthalmology, optometry, medicine *(see e.g. Liang J., Williams D. R.,1997,J. Opt. Soc. Am. A,14,2873; Tahmasbi A., et al., 201, Comput. Biol. Med., 41,726; Alizadeh E., et al., 2016, Integr. Biol., 8, 1183)*

Zernike polynomials: definition

order *n* and frequency *m*: normalization factor: $N_n^m =$ $2(n + 1)$ radial term: $\mathbf{R}_{\mathbf{n}}^{\mathbf{m}}(\rho) =$ (*n*−*m*)/2 ∑ $(-1)^s(n-s)!$ *ρn*−2*^s* ∈ ℕ, *m* ⩽ *n*, *n* − *m* = *even (Noll R. G., 1976, J. Opt. Soc. Am., 66, 207)* $\mathbf{Z}_{\mathbf{n}}^{\mathbf{m}}(\rho,\theta) = \mathbf{N}_{\mathbf{n}}^{\mathbf{m}} \mathbf{R}_{\mathbf{n}}^{\mathbf{m}}(\rho) \cos(\mathbf{m}\theta)$ $\mathbf{Z}_n^{-m}(\rho, \theta) = \mathbf{N}_n^m \mathbf{R}_n^m(\rho) \sin(m\theta)$

s=0

s! (

 $\frac{n+m}{2} - s$)!

 $\frac{n-m}{2} - s$)!

$$
\Rightarrow \text{ orthogonality: } \int_0^{2\pi} \int_0^1 Z_n^m(\rho, \theta) Z_{n'}^{m'}(\rho, \theta) \rho d\rho d\theta = \pi \delta_{nn'} \delta_{mm'}
$$

 \blacktriangleright linear expansion: an arbitrary function $\phi(\rho,\theta)$ over a unit circle aperture can be expressed as a weighted sum of ZPs

$$
\phi(\rho,\theta) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} c_{nm} Z_n^m(\rho,\theta)
$$

 $1 + \delta_{m0}$

► expansion coefficients:
$$
c_{nm} = \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2\pi} \phi(\rho, \theta) Z_n^m(\rho, \theta) \rho d\rho d\theta
$$

\n∗note that $c_{00} = \langle \phi \rangle$

Zernike polynomials: definition

First application of the Zernike fitting to study galaxy clusters morphology from Compton parameter maps

(Capalbo V. et al., 2021, MNRAS, 503, 6155)

Zernike fitting: validation of the method on mock *y***-maps**

Data set: 324 mock *y*-maps of galaxy clusters from *The Three Hundred Project* at 3 redshifts (*z*=0, 0.45, 1.03) and different angular resolution, up to 5 arcmin. *(Cui W. et al., 2018, MNRAS, 480, 2898)*

Each y-map is modelled with 45 ZPs up to the order $n = 8$, within a circular aperture with radius R_500 centred on the *y*-centroid

$$
y = \sum_{n=0}^{8} \sum_{m=0}^{n} c_{nm} Z_n^m
$$

$$
c_{nm} = \frac{\sum y \times Z_n^m}{\pi (R_{500})^2}
$$

Common morphological/dynamical parameter used as references:

(De Luca F. et al., 2021, MNRAS, 504, 5383 -- > talk on Thursday)

➡ *M -* a combination of some morphological parameters

 \rightarrow χ - a combination of some 3D dynamical indicators χ_{i}

Asymmetry parameter (A) Light concentration parameter (c) Power ratio parameter (P) Centroid shift parameter (w) Asymmetry parameter (A)
Light concentration parameter
Power ratio parameter (P)
Centroid shift parameter (v
Gaussian fit parameter (G)
Strip parameter (S)

Centre-of-mass offset (f_s *) Fraction of mass in subhalos (* Δ_r) *f s* Centre-of-mass offset (f_s)
Fraction of mass in subhalos (Δ_r

How the Zernike fitting works? Two examples

1) Relaxed cluster (classified with *M* **and** *χ* **)**

2) Disturbed cluster (classified with *M* **and** *χ* **)**

How the Zernike fitting works? Two examples

1) Relaxed cluster (classified with *M* **and** *χ* **)**

For the Zernike fitting we estimate a spatial resolution $\sim 0.5 R_{500}$

1) Correlate the results of the Zernike fitting with morphological parameters

Pearson correlation coefficient *r* between *C* and *M*

Spearman correlation coefficient r_s between C and the single parameters combined in *M*

n, *m*≠0

2) Correlate the results of the Zernike fitting with 3D dynamical indicator

Figure 5. Top: Number clusters distribution along $log_{10} \chi$ with binning of 0.1. Bottom: C versus $\log_{10} \chi$, for all clusters at $z = 0$. Each point represents the mean value of C in each bin and the coloured regions are referring to $\pm 1\sigma$. The black line is the fitting line of equation $C = (-1.90 \pm 0.14) \log_{10} \chi +$ (1.82 ± 0.04)

Pearson correlation coefficient *r* between *C* and *χ*

Correlation for 3 different directions along which the relaxed
y-maps are generated, at z=0

 $C =$

Data set: 87 clusters at *z<0.1*, selected from PSZ2 Union catalogue *(Planck Collab. XXVII 2016)*

- only resolved clusters ($\theta_{500} \geqslant 10'$)
- *- y*-maps with low residual contamination from radio and IR source (by using PSMASK) *(Planck Collab. XXII 2016)*

*Planck y***-maps:**

- **-** gnomonic projections extracted from the public released all-sky *y*-maps (angular resolution=10′) *(Planck Collab. XXII 2016)*
- **-** each map is centred on the clusters coordinates, with side-length=2 θ_{500}
- **-** we use both MILCA and NILC *y*-maps

Synthetic data set:

- mock Planck y-maps realized for The Three Hundred clusters at 4 redshift snapshots (*z=0.021, 0.044, 0.068, 0.092*)
- The Three Hundred clusters are classified for the dynamical state by using the 3D indicators $(f_{s}^{-} , \Delta_{r}^{-} , \chi ^{})$ computed within R_500

Distribution in the $M_{500}^{sz} - z$ plane of 87 PSZ2 clusters selected. The thin vertical lines indicate the boundaries of the redshift bins (width ~ 0.02) centred on the redshift of the 4 snapshots of The Three Hundred clusters.

Preliminary results *(Capalbo V. et al., in preparation)*

We perform 1000 random extractions of 87 clusters from the 4 redshift snapshots of The Three Hundred simulations, to mimic the PSZ2 sample

Each simulated sample is constructed by extracting the clusters from the 4 snapshots and following this partition (avoiding the extraction of the same cluster in more than one snapshot)

10

 0.10

2 24 46 15

Zernike fitting on X-ray maps *(Ferragamo A. et al., in preparation)*

Compton parameter *vs* $y \propto \left[n_e T_e dl \right]$

• *y*-maps are sensitive to the diffuse signal of ICM

Data set: mock X-ray maps for *The Three Hundred* clusters, at 3 redshifts (*z*=0, 0.45, 1.03). The maps are in terms of number counts of detected photons, realized in the spectral band 0.2-15 keV (as for the *WFI instrument* for the *Athena X-ray Observatory*), with fixed resolution of 10kpc/px.

 -0.9

 -0.8

 -0.7

0.6

 -0.3

 -0.2

 0.1

 -0.6
 -0.5
 -0.4
 -0.4

We analyse the maps in logarithmic scale, within a circular aperture with radius R_500 centred on the X-ray centroid (normalization to the mean within $0.5R_{500}$)

$$
S_x \propto \int n_e^2 \Lambda_X dl
$$

• X-ray maps show larger spatial frequencies

poor modelled with low-order ZPs ($n \leq 8$)

M **and** *χ* **from** *De Luca F. et al., 2021, MNRAS, 504, 5383*

Pearson correlation coefficient *r* between *C* and *M* Pearson correlation coefficient *r* between *C* and *χ*

Summary

- ✓ Zernike polynomials are used for the first time to model mock *y*-maps of galaxy clusters
- By defining a single parameter that includes the contribution of the different ZPs to the fit of the maps, it is possible to quantify their morphological differences
- The results are correlated with other (common) morphological and dynamical estimators
- This method is easily applicable to large surveys of clusters

- ➡ First application of ZPs on real *y*-maps of the *Planck*-SZ clusters *(Capalbo V. et al., in prep)*
- ➡ Validation of the method on X-ray maps *(Ferragamo A. et al., in prep)*

THANK YOU