

Morphological analysis of SZ and X-ray maps of galaxy clusters with Zernike polynomials

V. Capalbo, M. De Petris, G. Yepes, F. De Luca, W. Cui, A. Knebe, E. Rasia, F. Ruppin, A. Ferragamo

Introduction

- Purpose: study the morphology of galaxy clusters from multi-wavelength maps to infer, as possible, their dynamical state
- Method: analytic approach using <u>Zernike polynomials</u>

ZPs are a *complete* and *orthogonal* set of functions defined over a unit circle, useful for modelling functions in circular domains

Common applications of ZPs in several fields:

- adaptive optics (see e.g. Noll R. G., 1976, J. Opt. Soc. Am., 66, 207; Rigaut F. et al., 1991, A&A, 250, 280)
- image analysis and pattern recognition (see e.g. Teague M. R., 1980, J. Opt. Soc. Am., 70, 920)
- ophthalmology, optometry, medicine (see e.g. Liang J., Williams D. R., 1997, J. Opt. Soc. Am. A, 14, 2873; Tahmasbi A., et al., 201, Comput. Biol. Med., 41, 726; Alizadeh E., et al., 2016, Integr. Biol., 8, 1183)

Zernike polynomials: definition

(Noll R. G., 1976, J. Opt. Soc. Am., 66, 207) $\mathbf{Z_n^m}(\rho, \theta) = \mathbf{N_n^m} \mathbf{R_n^m}(\rho) \cos(\mathbf{m}\theta)$ order *n* and frequency *m*: $\mathbf{Z_n^{-m}}(\rho, \theta) = \mathbf{N_n^m} \mathbf{R_n^m}(\rho) \sin(\mathbf{m}\theta)$ $\in \mathbb{N}, \ m \le n, \ n - m = even$ normalization factor: $\mathbf{N_n^m} = \sqrt{\frac{2(n+1)}{1+\delta_{m0}}}$ $\mathbf{R_n^m}(\rho) = \sum_{s=0}^{(n-m)/2} \frac{(-1)^s(n-s)!}{s! \left(\frac{n-m}{2}-s\right)! \left(\frac{n-m}{2}-s\right)!} \rho^{n-2s}$

• orthogonality:
$$\int_{0}^{2\pi} \int_{0}^{1} Z_{n}^{m}(\rho,\theta) Z_{n'}^{m'}(\rho,\theta) \rho d\rho d\theta = \pi \delta_{nn'} \delta_{mm'}$$

→ <u>linear expansion</u>: an arbitrary function $\phi(\rho, \theta)$ over a unit circle aperture can be expressed as a weighted sum of ZPs

$$\phi(\rho,\theta) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} c_{nm} Z_n^m(\rho,\theta)$$

- expansion coefficients:
$$c_{nm} = \frac{1}{\pi} \int_0^1 \int_0^{2\pi} \phi(\rho, \theta) Z_n^m(\rho, \theta) \rho d\rho d\theta$$
 *note that $c_{00} = \langle \phi \rangle$

Zernike polynomials: definition

First application of the Zernike fitting to study galaxy clusters morphology from Compton parameter maps

(Capalbo V. et al., 2021, MNRAS, 503, 6155)

Zernike fitting: validation of the method on mock y-maps

Data set: 324 mock *y*-maps of galaxy clusters from *The Three Hundred Project* at 3 redshifts (*z*=0, 0.45, 1.03) and different angular resolution, up to 5 arcmin. (*Cui W. et al., 2018, MNRAS, 480, 2898*)

Each *y*-map is modelled with 45 ZPs up to the order n = 8, within a circular aperture with radius R_{500} centred on the *y*-centroid

Common morphological/dynamical parameter used as references:

(De Luca F. et al., 2021, MNRAS, 504, 5383 → talk on Thursday)

 \rightarrow *M* - a combination of some morphological parameters

Asymmetry parameter (A) Light concentration parameter (c) Power ratio parameter (P) Centroid shift parameter (w) Gaussian fit parameter (G) Strip parameter (S)

→ χ - a combination of some 3D dynamical indicators χ_i

Centre-of-mass offset (f_s) Fraction of mass in subhalos (Δ_r)

How the Zernike fitting works? Two examples

1) Relaxed cluster (classified with M and χ)

2) Disturbed cluster (classified with M and χ)

Valentina Capalbo

How the Zernike fitting works? Two examples

1) Relaxed cluster (classified with M and χ)

For the Zernike fitting we estimate a spatial resolution $\sim 0.5R_{500}$

1) Correlate the results of the Zernike fitting with morphological parameters

Figure 4. Top: Number clusters distribution along the parameter M with binning of 0.3. Bottom: Sum over all the fitting Zernike moments c_{nm} with $m \neq 0$ (in blue) and m = 0 (in red) *versus* the combined parameter M, for all clusters at z = 0. Each point represents the mean value of the sum in each M bin and the coloured regions are referring to $\pm 1\sigma$. The black line is the fitting line of equation $C = (0.78 \pm 0.04)M + (1.64 \pm 0.03)$

Pearson correlation coefficient r between C and M

	z	Angular resolution (arcsec)	r
	0	5.25	0.78 (± 0.02)
		20	0.78
		60	0.79
		300	0.77
$ c_{nm} ^{1/2}$	0.45	1.14	0.73 (± 0.03)
		5	0.73
		20	0.73
		60	0.68
		300	-
		0.59	0.75 (± 0.02)
	1.03	5	0.75
		20	0.70
		60	-
		300	-

Spearman correlation coefficient r_s between Cand the single parameters combined in M

Parameter	r _s
Α	0.69
с	-0.85
Р	0.56
w	0.61
G	-0.25
S	0.61

 $C = \sum_{i=1}^{n}$

 $n, m \neq 0$

2) Correlate the results of the Zernike fitting with 3D dynamical indicator

Figure 5. Top: Number clusters distribution along $\log_{10}\chi$ with binning of 0.1. Bottom: *C versus* $\log_{10}\chi$, for all clusters at z = 0. Each point represents the mean value of *C* in each bin and the coloured regions are referring to $\pm 1\sigma$. The black line is the fitting line of equation $C = (-1.90 \pm 0.14) \log_{10} \chi + (1.82 \pm 0.04)$

Pearson correlation coefficient *r* between *C* and χ

	z	Angular resolution (arcsec)	r
	0	5.25	-0.61 (± 0.04)
		20	-0.62
		60	-0.62
		300	-0.64
NARDINAL ALIGNDIA AND ALIGNDIA ALI		1.14	-0.50 (± 0.05)
-1/2		5	-0.50
$(C_{nm})^{1/2}$	0.45	20	-0.53
		60	-0.54
<i>n,m≠</i> 0		300	-
		0.59	-0.45 (± 0.05)
		5	-0.47
	1.03	20	-0.50
		60	-
		300	-

Correlation for 3 different directions along which the y-maps are generated, at z=0

Direction	r
x y	$-0.56 \\ -0.59$
Z.	-0.62

C =

Data set: 87 clusters at *z*<0.1, selected from PSZ2 Union catalogue (*Planck Collab. XXVII 2016*)

- only resolved clusters ($\theta_{500} \ge 10'$)
- y-maps with low residual contamination from radio and IR source (by using PSMASK) (Planck Collab. XXII 2016)

Planck y-maps:

- gnomonic projections extracted from the public released all-sky *y*-maps (angular resolution=10') (*Planck Collab. XXII 2016*)
- each map is centred on the clusters coordinates, with side-length= $2\theta_{500}$
- we use both MILCA and NILC y-maps

Synthetic data set:

- mock *Planck y*-maps realized for The Three Hundred clusters at 4 redshift snapshots (*z=0.021, 0.044, 0.068, 0.092*)
- The Three Hundred clusters are classified for the dynamical state by using the 3D indicators (f_s , Δ_r , χ) computed within R_{500}

Distribution in the M_{500}^{sz} – z plane of 87 PSZ2 clusters selected. The thin vertical lines indicate the boundaries of the redshift bins (width ~ 0.02) centred on the redshift of the 4 snapshots of The Three Hundred clusters.

Preliminary results (Capalbo V. et al., in preparation)

Valentina Capalbo

We perform 1000 random extractions of 87 clusters from the 4 redshift snapshots of The Three Hundred simulations, to mimic the PSZ2 sample

Each simulated sample is constructed by extracting the clusters from the 4 snapshots and following this partition (avoiding the extraction of the same cluster in more than one snapshot)

10

2

24

0.10

15

46

Zernike fitting on X-ray maps (Ferragamo A. et al., in preparation)

Compton parameter $y \propto n_e T_e dl$

• y-maps are sensitive to the diffuse signal of ICM

Data set: mock X-ray maps for The Three Hundred clusters, at 3 redshifts (*z*=0, 0.45, 1.03). The maps are in terms of number counts of detected photons, realized in the spectral band 0.2-15 keV (as for the WFI instrument for the Athena X-ray Observatory), with fixed resolution of 10kpc/px.

1.0

0.9

- 0.8

0.7

0.6

0.3

0.2

0.1

#244 y-map

VS

We analyse the maps in logarithmic scale, within a circular aperture with radius R_{500} centred on the X-ray centroid (normalization to the mean within $0.5R_{500}$)

X-ray surface brightness

$$S_x \propto \int n_e^2 \Lambda_X dl$$

• X-ray maps show larger spatial frequencies

poor modelled with low-order ZPs ($n \leq 8$)

M and χ from *De Luca F. et al., 2021, MNRAS, 504, 5383*

Pearson correlation coefficient r between C and M

Redshift	r
0	0.80
0.45	0.76
1.03	0.72

Pearson correlation coefficient r between C and χ

Redshift	r
0 0.45	-0.65 -0.57
1.03	-0.47

Summary

- ✓ Zernike polynomials are used for the first time to model mock *y*-maps of galaxy clusters
- ✓ By defining a single parameter that includes the contribution of the different ZPs to the fit of the maps, it is possible to quantify their morphological differences
- ✓ The results are correlated with other (common) morphological and dynamical estimators
- ✓ This method is easily applicable to large surveys of clusters

- First application of ZPs on real y-maps of the Planck-SZ clusters (Capalbo V. et al., in prep)
- → Validation of the method on X-ray maps (*Ferragamo A. et al., in prep*)

THANK YOU