Cold atomic and molecular gas in simulations of early galaxy formation: *coldSIM*

Umberto Maio

INAF Italian National Institute of Astrophysics Milan/Trieste

Outline

1 Introduction

- Motivations
- General overview
- 2 Method
 - Simulations
- 3 Results
 - Theory vs. data

イロト イヨト イヨト イヨト

4 The End

Introduction Method Motivations Results General overview The End

Motivations

Rationale Understand the evolution of cold atomic and molecular gas (HI and H₂) during galaxy formation

- \rightarrow How does cold gas evolve with z?
- \rightarrow What is the residual neutral HI gas after reionization?
- \rightarrow Can large amounts of H_2 form at different z and at low Z?
- \rightarrow Are HI and H₂ depletion times compatible with gas collapse and structure formation?
- \rightarrow What is the impact of different UVBs on cold neutral gas?
- \rightarrow How theoretical predictions compare with HI and H₂ data?

Requirements Study gas time-dependent composition

and cooling/heating processes

Techniques Ad hoc implementations and simulations

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Method Motiva Results Genera The End	tions al overview
--	----------------------

A short recap

- Nell known HI abundances up to $z \simeq 5$ (via QSO spectra and 21cm analysis) in terms of $\rho_{\rm HI}$ or $\Omega_{\rm HI}$
- Increasing amounts of H₂ determinations until $z \simeq$ 7 from IR and (sub)mm data (via CII/CO conversion) in terms of ρ_{H_2} or Ω_{H_2}
- Weak dependence of H₂ masses on environment up to $z \simeq 3.5$
- Large local H₂ fractions of \sim 50-60% reached at $z \simeq$ 4-6
- Uncertainties about H₂ formation at different metallicities (H⁻ channel, grain catalysis, 3-body interactions?)

Peroux & Howk 2020, Reichers+2019, Decarli+2020, Tacconi+2020, Garratt+2021, Hamanowicz+2021, etc.

Simulations

For a complete picture: *coldSIM*

 \longrightarrow follow gravity and hydrodynamics *coupled* to molecule formation and metal spreading from stellar evolution in LCDM box L=10Mpc/*h*

molecules determine <u>first</u> gas collapsing events

metals determine subsequent structure formation

stellar evolution determines <u>yields</u>, $\underline{\gamma}$ and <u>timescales</u>

Implementing gas evolution during structure formation (Gadget3ext)

i.e. time-dependent 'non-equilibrium' abundance calculations; atomic and molecular cooling; H₂ grain catalysis;

UVB, cosmic-ray and photoelectric heating; metal spreading from SNII/AGB/SNIa; winds; various IMF/UVB; etc.

Springel, 2001, 2005; Yoshida+2003; Tornatore+2007; Maio+2007, 2010, 2016, 2019, 2021 ...

Simulations

Cold neutral gas

Umberto Maio coldSIM: simulations of cold atomic and molecular gas

Simulations

H/H₂-driven gas collapse (inflows)...

 $z \simeq 6.6$ —

 $z\simeq 2.9$

Umberto Maio

coldSIM: simulations of cold atomic and molecular gas

Simulations

... star formation and disruption (outflows)...

 $z\simeq 6.6$ —

 $z\simeq 2.9$

Umberto Maio

coldSIM: simulations of cold atomic and molecular gas

... with metal spreading

Metal enrichment and stellar evolution: massive $\mathrm{SN} \to \alpha$, $\mathrm{SNIa} \to \mathrm{Fe}$

Umberto Maio coldSIM: simulations of cold atomic and molecular gas

イロン イヨン イヨン イヨン

э.

	Introduction Method Results The End	Theory vs. data	
beenveblee			

Observables

Theoretical models must be compared against observational findings, such as:

- galaxy LFs (SFRs)
- chemical abundances (HI, H₂, DLAs, GRBs, etc.)
- UVB and reionization

個 と く ヨ と く ヨ と

Theory vs. data

Luminosity functions

For each galaxy: $L_{\lambda} = L_{\lambda}^{\text{II}} + L_{\lambda}^{\text{III}}$ in L5, L10, L30

PopII-I SEDs from Starbust99 (Vazquez & Leitherer, 2005). PopIII SEDs from Schaerer (2002). No dust assumed: fair at z > 6

Observational data points from:

Bouwens et al., 2007 (circles): z=6 Bouwens et al., 2011 (circles); z=7-8 McLure et al., 2010 (triangles); z=7-8 Oesch et al., 2012 (squares): z=8

Fit: Su et al., 2012 (solid line): z=6.

Salvaterra, Maio+2013; Mancini+2016; Graziani+2020

크

Theory vs. data

HI and H₂ abundances for different UVBs

Umberto Maio

coldSIM: simulations of cold atomic and molecular gas

Theory vs. data

HI and H₂ depletion times

HI

dynamical time $t_{\rm dyn} = t_{\rm H}/10$

크

Maio+2021

Theory vs. data

Abundance ratios: stellar populations from DLAs

 $z \simeq 3$

DLA data: Dessauges-Zavadsky et al. (2001), Becker et al. (2012); Cooke et al. (2015); Noterdaeme et al. (2008, 2012), Srianand et al. (2010), Albornoz Vásquez et al. (2013), Zafar et al. (2014) Simulations with N-body/hydro + non-equilibrium chemistry + metals + feedback

Theory vs. data

Future perspectives

Explore AMES WEBB SPACE TELESCOPE

JWST space telescope: primordial Universe & reionization; launch: 2021+; costs: $\sim 11 \text{ Bln}$ (NASA, ESA, Canadian Space Agency)

SKA radio telescope: HI gas, reionization, galaxy formation, radio transients; construction: 2020s; costs: ~ 8 Bln EUR (large Int. coll.)

Athena satellite: hot gas, clusters, $z\sim$ 6-10 GRB X-ray afterglows; launch 2028+; costs: \sim 1.3 Bln EUR (ESA, Airbus, Thales-Alenia)

Great Expectations®

Promising tools to observe galaxies through ionized 'bubbles'

Umberto Maio coldSIM: simulations of cold atomic and molecular gas

Summary...

- We have presented results from cosmological hydro chemistry simulations including detailed time-dependent 'non equilibrium' cold-gas modelling: coldSIM
- We study gas and galaxy evolution and their interplay

Conclusions...

- Non-equilibrium H₂ formation can easily justify the persistence of large molecular masses at high z and various environments (Z)
- **UVB** models are roughly consistent with $\Omega_{neutral}$ data
- **UVB** models do not always agree with Ω_{H_2} data \rightarrow ?
- H₂ depletion times around or below t_{dyn} up to high $z \rightarrow cold$ gas in very early epochs is able to collapse!
- Metal abundance ratios helpful to constrain stellar models

◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ の Q @