Pressure profiles of galaxy cluster from SPT and Planck observations.

F. OPPIZZI, H. BOURDIN, F. DE LUCA, P. MAZZOTTA
UNIVERSITÀ DEGLI STUDI DI ROMA ‘TOR VERGATA’
ESA satellite mission launched in 2009.

Full sky maps of temperature and polarization with sub-Jansky sensitivity.

9 frequency bands from 30 to 857 GHz.

Resolution <10 arcmin.

1000+ cluster detected via the Sunyaev-Zeldovich effect (SZ).

South Pole Telescope

- 3 channels: 95, 150, 220 GHz, resolution 1.75 arcmin.
- 2500 square-degree survey at high galactic latitude.
- 677 clusters candidates:
 - Nearly mass limited ($M_{500} > 2 \times 10^{14} M_\odot$).
 - Maximum redshift: 1.7.
- It allows to probe the redshift evolution of the cluster structure.
- SPT is sensitive to inner regions, Planck to the peripheries.
We analyse a sub-sample of 6 clusters common to the SPT and CHEX-MATE catalogue. (arXiv:2010.11972)

We exploit the XMM data to validate our SZ pressure profile extraction algorithm.

The comparison with X-ray spectroscopic data provides a powerful benchmark.

We study the impact of sub-structure on the relation between SZ and X-ray profiles.
We analyse a sub-sample of 6 clusters common to the SPT and CHEX-MATE catalogue. (arXiv:2010.11972)

We exploit the XMM data to validate our SZ pressure profile extraction algorithm.

The comparison with X-ray spectroscopic data provides a powerful benchmark.

We study the impact of sub-structure on the relation between SZ and X-ray profiles.

Pressure profiles of galaxy cluster from SPT and Planck observations. – F. Oppizzi et al. – Università Roma Tor Vergata
Component separation: Planck

- Maps are high-pass filtered to remove large scale modes.
- 4 components fit:
 - Cluster SZ signal.
 - Primary CMB anisotropies.
 - Intracluster Dust Correction.
- Cluster template gNFW profile (Nagai et al. 2007) projected and convolved with the instrumental beams.
- The diffuse Components are recovered from the wavelets reconstruction of the 857GHz (Dust) and the 217GHz (CMB) channels.

Pressure profiles of galaxy cluster from SPT and Planck observations. – F. Oppizzi et al. – Università Roma Tor Vergata
Component separation: SPT

- SPT maps are high-pass filtered due to the Filter Transfer Function.
- 220 GHz noise is very high.
- No significant dust contamination.
- To recover the background (CMB) in SPT we resort to a *Multiscale Internal Linear Combination*, including also the Planck 217GHz Channel.
- The weights minimize the CMB variance nulling the SZ component
SPT maps are high-pass filtered due to the Filter Transfer Function.

220 GHz noise is very high.

No significant dust contamination.

To recover the background (CMB) in SPT we resort to a *Multiscale Internal Linear Combination*, including also the Planck 217GHz Channel.

The weights maximize the CMB signal nulling the SZ component.
SPT-Planck Joint fit

We combine the cleaned maps in a joint fit of a gNFW profile.

We use the 95, 150 GHz SPT channels and the 100, 143, 353 GHz from Planck HFI.

Nagai profile with 3 free parameters:

1. Amplitude P_0.
2. 2 slopes: β for $r>r_{500}$, γ for $r<r_{500}$.
3. Intermediate slope and concentration fixed $\alpha=1.051$, $c_{500}=1.177$ (Arnaud et al., 2010).

Pressure profiles of galaxy cluster from SPT and Planck observations. – F. Oppizzi et al. – Università Roma Tor Vergata
The comparison with XMM profiles shows good agreement in the innermost regions.

The agreement is higher in the cluster with regular shape.

PSZ2G259.98-63.43 presents a slight deviation around r_{500} probably explained by the irregular shape.

The Phoenix cluster (PSZ2G339.63-69.34) is contaminated by a strong AGN X-ray emission.
The comparison with XMM profiles shows good agreement in the innermost regions. The agreement is higher in the cluster with regular shape. PSZ2G259.98-63.43 presents a slight deviation around r_{500} probably explained by the irregular shape. The Phoenix cluster (PSZ2G339.63-69.34) is contaminated by a strong AGN X-ray emission.
Profiles comparison

- The comparison with XMM profiles shows good agreement in the innermost regions.
- The agreement is higher in the cluster with regular shape.
- PSZ2G259.98-63.43 presents a slight deviation around r_{500} probably explained by the irregular shape.
- The Phoenix cluster (PSZ2G339.63-69.34) is contaminated by a strong AGN X-ray emission.
Conclusion and future works

❖ We develop a complete set of tools to extract cluster pressure profiles from the joint analysis of Planck and SPT data.

❖ Combining the datasets allows us to fit the profile from the inner to the outermost regions of the clusters.

❖ We implemented two specific pipelines for the component separation on SPT and Planck.

❖ The comparison with XMM data on a pilot sample overlapping the CHEX-MATE catalogue shows good agreement between the X-ray and millimetre data.

❖ We investigate the impact of irregularities in the cluster shape to explain potential discrepancies.

❖ We will extend the analysis to a larger part of the SPT catalogue.
Thank You!

Pressure profiles of galaxy cluster from SPT and Planck observations. – F. Oppizzi et al. – Università Roma Tor Vergata