

Constraining the gravitational field of galaxy clusters through joint X-ray/SZ data

Dominique Eckert

Department of Astronomy, University of Geneva

Main collaborators: S. Ettori, E. Pointecouteau, A. Robertson, R. Massey, R. Van der Burg, I. Loubser, H. Hoekstra, ...

June 30, 2021

The mass profiles of collapsed halos

ACDM predicts that halos of all scales should share the same structural properties

$$ho_{NFW}(r)=rac{
ho_s}{(r/r_s)(1+r/r_s)^2}$$

Diemer & Joyce 2018

The Einasto profile

A more general form of DM profiles is the Einasto profile,

$$\rho(r) = \rho_{-2} \exp \left[-\frac{2}{\alpha} \left(\left(\frac{r}{r_{-2}} \right)^{\alpha} - 1 \right) \right]$$

Child et al. 2018

The Einasto profile

Brown et al. 2020

The Einasto index lpha depends on the slope of the primordial matter power spectrum n_s

Joint X-ray/Sunyaev-Zeldovich observations

The X-COP project

X-COP (PI: Eckert) is a very large program on XMM to follow up Planck clusters with the highest S/N

D. Eckert

NIKA2 Conference

SZ observations with Planck

All our targets are spatially resolved by *Planck*

The X-COP strategy

XMM has a large FOV and collecting area... but also a high and variable background

In the [0.7-1.2] keV band the signal-to-background ratio is maximized

X-ray and SZ profiles

Ghirardini, DE et al. 2019

Our profiles extend to $1.8R_{500}$ (n), $2.3R_{500}$ (P), and $0.9R_{500}$ (T)

Consistency between X-ray and SZ data

We measure on average
$$\eta_{SZ}=rac{P_{SZ}}{k_BT_Xn_e}=0.96\pm0.08$$

Mass profile comparison

In Ettori et al. 2019 we found that NFW is generally a better fit to the X-COP data than competing models

Ettori, DE, et al. 2019

Derojection and PSF deconvolution

In practice we have access to projected and PSF-blurred quantities

Eckert et al. 2020

We decompose the 3D profile as a linear combination of basis functions and forward fit the model to the observed counts

Mass modeling scheme

We assume a functional form for the mass (Einasto, NFW) and forward-model it to the data, jointly fitting X-ray and SZ observables

Non-parametric Gaussian Process reconstruction

As a comparison point we apply a *non-parametric* method by describing the 3D temperature profile as a linear combination of Gaussians

$$T_{3D}(r) = \sum G_i \mathcal{N}(\mu_i, \sigma_i^2)$$

D. Eckert

NIKA2 Conference

Example: A1795

Example: A1795

Example: A1795

Einasto vs NFW reconstruction

There is more variety in the DM profiles than can be captured with NFW only

Mass profiles in self-interacting DM

DM self-interaction $(\sigma_{DM-DM}>0)$ modifies the shape of DM halos

Robertson et al. 2020

Mass profiles in self-interacting DM

DM self-interaction $(\sigma_{DM-DM}>0)$ modifies the shape of DM halos

Robertson et al. 2020

Einasto index of X-COP clusters

We were able to measure lpha with good precision for all systems

Einasto index of X-COP clusters

We were able to measure lpha with good precision for all systems

To minimize systematics (mis-centering, HSE bias, deviations from spherically symmetry...) we select only the regular X-ray clusters, w < 0.02

Comparison with numerical simulations

For an appropriate comparison we select only *relaxed* systems in numerical simulations $(X_{off} < 0.05)$

Eckert et al. in prep.

Comparison with numerical simulations

For an appropriate comparison we select only relaxed systems in numerical simulations $(X_{off} < 0.05)$

Eckert et al. in prep.

Constraints on σ_{DM-DM}

For every value of lpha we can associate a value of σ_{DM-DM} and draw a posterior PDF

Eckert et al. in prep.

Constraints on σ_{DM-DM}

For every value of lpha we can associate a value of σ_{DM-DM} and draw a posterior PDF

Eckert et al. in prep.

Using the regular sample we set an upper limit $\sigma_{DM-DM} < 0.13~{
m cm^2/g}$

DM vs baryonic components

For a subset of systems we directly measured all the relevant baryonic components: gas, BCG, and satellites

A universal radial acceleration relation?

- Similar calculations were made for galaxy rotation curves, i.e. comparing the observed gravitational force with that expected from baryons only
- When plotted in terms of gravitational force, it looks like the scale where deviation from baryonic expectations occurs doesn't depend on galaxy mass or type (McGaugh et al. 2016)

What about galaxy clusters?

Eckert et al. in prep.

The relation between baryonic and total acceleration is not universal, and thus it does not derive from a fundamental property of gravity

Take home message

We put together a framework to set constraints on the gravitational field from joint X-ray and SZ data

With X-COP data we provide precise measurements of the Einasto index α

There is more diversity in the DM density profiles than can be described by NFW

The Einasto index α is sensitive to the dark matter self-interaction cross section

We set an upper limit on the DM self-interaction cross section of $\sigma_{\text{DM-DM}} < 0.13 \text{ cm}^2/\text{g} \ (90 \ \% \text{ c.l.})$

The relation between baryonic and total acceleration is not a fundamental property of gravity

Backup Slides

HSE bias in X-COP clusters

Universal f_{gas} 0.18 $f_{aas, sz}$ $f_{gas, 1-b=0.58}$ $f_{gas,\,HSE}$ 0.16 fgas, 500 0.10 0.08 10¹⁵ $M_{500, tot}[M_{\odot}]$

Ettori et al. 2019

Eckert et al. 2019

0.20

Beating systematics in background subtraction

We analyzed a set of \sim 500 blank-sky XMM pointings and estimated the reproducibility of the background

When modeling all known XMM background components we reach a precision of 3% on background subtraction

Universal gas fraction

We used a large set of \sim 300 simulated clusters (Rasia et al. in prep.) to determine the baryon depletion Y_b

Universal gas fraction

We used a large set of \sim 300 simulated clusters (Rasia et al. in prep.) to determine the baryon depletion Y_b

- \circ The value of Y_{bar} is nearly independent of the adopted baryonic physics (Planelles et al. 2014)
- $_{\odot}$ Considering the (well-measured) stellar fraction, we set $f_{gas}=Y_brac{\Omega_b}{\Omega_m}-f_{\star}$

Testing hydrostatic equilibrium with f_{gas}

Eckert et al. 2019

Median [percentiles] for the full sample:

- \bullet $f_{gas,500} = 0.141 [0.131,0.154]$

Non-thermal pressure support vs simulations

Eckert et al. 2019

With one exception (A2319) the level of NT pressure is *lower* than predicted Median $P_{NT.500}=6\%$, $P_{NT.200}=10\%$

The case of A2319

A2319 is a head-on merger with 3:1 mass ratio

Ghirardini, Ettori, DE et al. 2018

The case of A2319

A2319 is a head-on merger with 3:1 mass ratio

Ghirardini, Ettori, DE et al. 2018

A2319 is probably in a transient phase of high NT pressure ($\sim 40\%$)

Non-thermal pressure and hydrostatic bias

- \odot On average we measure $M_{HSE}/M_{tot} = 0.94 \pm 0.04$
- \bullet Planck masses are slightly biased low, $M_{SZ}/M_{tot} = 0.85 \pm 0.05$
- ullet 1 $-b = 0.58 \pm 0.04$ would imply a very low $f_{gas} = 10.5\%$