Cosmology with cluster sizes: measuring the Hubble constant from Planck and XMM-Newton observations of galaxy clusters.

Federico De Luca, Hervé Bourdin, Pasquale Mazzotta, Filippo Oppizzi

Università degli studi di Roma Tor Vergata

AN OPEN COSMOLOGICAL PROBLEM: THE H_0 **TENSION**

The most recent analysis of the expansion rate H_0 of the Universe have reached more precise results during the last two decades. However, early-Universe H_0 inferred from the Cosmic Microwave Background (CMB) and local estimation of H_0 from cosmic distance ladder (Cepheid plus SNIa) show significant bias.

LAMBDA - February 2021

THEORETICAL FRAMEWORK

Combining the SZ effect and X-ray emission allow a direct estimation of the angular diameter distance and H_0 , if the cluster redshift is known (Cavaliere et al. 1977):

THEORETICAL FRAMEWORK

In this work, we will use this technique, following Kozmanyan et al. (2019) approach. The cosmological information can be derived from the 3D thermo-dynamical profiles for P_e , n_e studing X-ray-SZ data:

$$\eta_T = \frac{P_X}{P_{SZ}}$$

 η_T describe discrepancy between only X-ray or SZ pressure profiles. In the ideal case: $\eta_T = 1$

$$\eta_T = \mathcal{C} \times \mathcal{B}$$

Source of departure from unity:

- Emitting ICM distribution property (*B*);
- <u>Underlying cosmological framework</u> (*C*);

$$P_x = n_e (r) \cdot kT(r) = \eta_T \cdot P_{SZ}$$

$$\mathcal{C} = \left(\frac{\overline{D_a}}{D_a}\right)^{1/2} \cdot \left(\frac{n_p/n_e}{\overline{n_p}/\overline{n_e}}\right)^{1/2} \cdot \left(\frac{1+4 n_{He}}{1+4 n_{He}}\right)^{1/2}$$
$$\mathcal{B} = b_n \frac{C_{\rho}^{1/2}}{e_{LOS}^{1/2}}$$

THEORETICAL FRAMEWORK

The SZ and X-ray data are processed and analysed using, respectively, a gNFW pressure profile from Nagai et al. (2007) and the analytic profiles of temperature and density from Vikhlinin et al. (2006).

$$P_e(r) = \frac{P_0}{(c_{500}x)^{\gamma} [1 + (c_{500}x)^{\alpha}]^{(\beta - \gamma)/\alpha}}$$

$$kT(r) = T_0 \frac{x + T_{min}/T_0}{x + 1} \frac{(r/r_t)^{-a}}{[1 + (r/r_t)^{-b}]^{c/b}}$$

$$[n_p n_e](r) = \frac{n_0^2 (r/r_c)^{-\alpha'}}{[1 + (r/r_c)^2]^{3\beta_1 - \alpha'/2}} \frac{1}{[1 + (r/r_s)^{\gamma}]^{\epsilon/\gamma}} + \frac{n_0^2}{[1 + (r/r_{c2})^2]^{3\beta_2}}$$

THE SAMPLE

 50_{Γ} **Z** 25 Ν 25 50 0 PSZ2 Mask Tier 1 Euclid ROI × Tier 2 XMM visibility < 55ks Deep lensing data --- UNIONS g, i, z 1015 $M_{500}[M_{\odot}]$ DR1 doi: 10.1051/0004-6361/ SPT Δ 202039632 XMM-Heritage observational map 0.1 0.2 0.3 0.4 0.5 0.6 0.0redshift

This work is based on the CHEX-MATE sample. It is a large, unbiased, signal to noise limited sample of ~ 120 galaxy clusters detected by Planck (PSZ2 sample) via their SZ effect.

F. De Luca 2nd mm Universe @ NIKA2 29/06/21

Ecliptic Plane

☆

GALAXY CLUSTER PROFILES FOR DR1+SPT SUBSAMPLE

DR1: 35 objects. It is a technical and representative (mass and redshift) subsample.

SPT: 6 cluster (4 in common).

Total: 39 objects (1/3 of the final sample)

 T_{Y_X} : temperature inside $[0.15 - 1] R_{500}$ (for Y_X relation).

F. De Luca 2nd mm Universe @ NIKA2 29/06/21

η_T DISTRIBUTION

From the joint fit of Planck and XMMnewton profiles of clusters coming from the DR1-SPT subsample, we retrieve the distribution of η_T .

The median is compatible with previous works present in the literature.

Outlier at high η_T : Phoenix cluster. XMM X-ray data contaminated by AGN.

$$P_x = n_e (r) \cdot kT(r) = \eta_T \cdot P_{SZ}$$

DERIVATION OF H₀

Once the morphological bias \mathcal{B} is estimated, it is possible to estimate the cosmological parameter in interest using a Bayesian approach.

Considering, for the moment, the morphological prior from Kozmanyan et al. (2019), based on a subsample (61 objects) of Planck ESZ, we retrieve:

 $H_0 = (68 \pm 4) \ km \ s^{-1} \ Mpc^{-1}$

Posterior PDI Respect to Kozmanyan et al. (2019), the final CHEX-MATE sample is double in size and with a more accurate control on the mass selection function.

> **Blue**: Posterior distribution for DR1-SPT clusters of CHEX-MATE sample

SUMMARY AND STATUS

Results already achieved

(For 1/3 of the sample):

- 1. X-ray analysis: derivation of the principal cluster profiles: $P_e, T_e, n_e;$
- 2. SZ analysis: XMM-Planck joint fit;
- 3. η_T distribution: first comparison of projected temperature profiles.

Next steps:

- Expansion of the analysis to the final CHEX-MATE sample:
 - 1. Final X-ray and SZ analysis;
 - 2. Final η_T distribution.
- Morphological analysis for \mathcal{B} bias:
 - 1. Estimation of priors taking advantage of simulations.
- Bayesian estimation of H_0 for the final sample.

THANKS FOR THE ATTENTION!

F. De Luca 2nd mm Universe @ NIKA2 29/06/21