A Nearby Galaxy Perspective on Dust Evolution

Frédéric GALLIANO
& the DustPedia collaboration

AIM, CEA/Saclay, France

July 2, 2021
Nearby sources: long-\(\lambda\) opacity; very cold dust distribution; free-free emission. ⇒ cf. talks by S. Katsioli & G. Ejlali.

Distant galaxies: bulk of the dust mass. ⇒ understand its evolution in galaxies.
Dust Content of Galaxies: the Potential of NIKA2

Nearby sources: long-\(\lambda\) opacity; very cold dust distribution; free-free emission. ⇒ cf. talks by S. Katsioli & G. Ejlali.

Distant galaxies: bulk of the dust mass. ⇒ understand its evolution in galaxies.

F. Galliano (AIM)
Observing the mm Universe with NIKA2
July 2, 2021
Nearby sources:
- long-\(\lambda\) opacity;
- very cold dust distribution;
- free-free emission.

⇒ cf. talks by S. Katsioli & G. Ejlali.

Distant galaxies:
- bulk of the dust mass.

⇒ understand its evolution in galaxies.
Dust Content of Galaxies: the Potential of NIKA2

Nearby sources:
- long-\(\lambda\) opacity;
- very cold dust distribution;
- free-free emission.

⇒ cf. talks by S. Katsioli & G. Ejlali.

Distant galaxies:
- bulk of the dust mass.

⇒ understand its evolution in galaxies.

F. Galliano (AIM)
Observing the mm Universe with NIKA2
July 2, 2021
2/12
Dust Content of Galaxies: the Potential of NIKA2

- **Observed wavelength, λ [μm].**
- **Luminosity, $\nu L_\nu / L_{bol}$ at $z=0$.**

Nearby sources:
- long-λ opacity;
- very cold dust distribution;
- free-free emission.

⇒ cf. talks by S. Katsioli & G. Ejlali.

Distant galaxies:
- bulk of the dust mass.

⇒ understand its evolution in galaxies.

F. Galliano (AIM)

Observing the mm Universe with NIKA2

July 2, 2021
Nearby sources:
- long-\(\lambda\) opacity;
- very cold dust distribution;

Distant galaxies:
- bulk of the dust mass.

⇒ understand its evolution in galaxies.

Luminosity, \(\nu L_{\nu}/L_{bol}\)

Observed wavelength, \(\lambda [\mu m]\)

- \(z=0\)
- NIKA2
Nearby sources:
- long-λ opacity;
- very cold dust distribution;
- free-free emission.

Distant galaxies:
bulk of the dust mass.

⇒ understand its evolution in galaxies.

F. Galliano (AIM)
Observing the mm Universe with NIKA2
July 2, 2021 2/12
Dust Content of Galaxies: the Potential of NIKA2

Nearby sources:
- long-λ opacity;
- very cold dust distribution;
- free-free emission.

⇒ cf. talks by S. Katsioli & G. Ejlali.

Distant galaxies: bulk of the dust mass.
⇒ understand its evolution in galaxies.

Observing the mm Universe with NIKA2
July 2, 2021 2/12
Dust Content of Galaxies: the Potential of NIKA2

Nearby sources:
- long-\(\lambda\) opacity;
- very cold dust distribution;
- free-free emission.

⇒ cf. talks by S. Katsioli & G. Ejlali.

Distant galaxies:
bulk of the dust mass.
⇒ understand its evolution in galaxies.

F. Galliano (AIM)
Observing the mm Universe with NIKA2
July 2, 2021
Dust Content of Galaxies: the Potential of NIKA2

Nearby sources:
- long-\(\lambda\) opacity;
- very cold dust distribution;
- free-free emission.

\(\Rightarrow\) cf. talks by S. Katsioli & G. Ejlali.

Distant galaxies:
- bulk of the dust mass.
Dust Content of Galaxies: the Potential of NIKA2

Nearby sources:
- long-\(\lambda \) opacity;
- very cold dust distribution;
- free-free emission.

⇒ cf. talks by S. Katsioli & G. Ejlali.

Distant galaxies:
- bulk of the dust mass.

⇒ understand its evolution in galaxies.
Evidences of Dust Evolution in the Milky Way

Depletion of element X:

\[\delta X \equiv \log \left(\frac{X_{\text{gas}}}{X_{\text{ref}}} \right) \]

\[\approx \delta_0 + A_X F^\star \Rightarrow \text{fraction of X locked in dust.} \]

In the Milky Way:

Good correlation between \(F^\star \) and \(\langle n_H \rangle \) \Rightarrow rapid grain growth in ISM.

Rapid destruction by shocks (\(\approx 300 \text{ Myr}; \) e.g. Jones et al., 1994).

\Rightarrow \approx 90\% \text{ of the grains were formed in the ISM (e.g. Tielens, 1998; Draine, 2009)};

\Rightarrow \approx 10\% \text{ stardust (SNII & AGB).} \]

(Data from Jenkins, 2009)
Depletion of element X:

\[\delta_X \equiv \log \left(\frac{X}{H} \right)_{\text{gas}} - \log \left(\frac{X}{H} \right)_{\text{ref}} \approx \delta_0 + A_X F^\star \Rightarrow \text{fraction of X locked in dust.} \]

In the Milky Way:

- Good correlation between \(F^\star \) and \(\langle n_H \rangle \) ⇒ rapid grain growth in ISM.
- Rapid destruction by shocks (\(\approx 300 \) Myr; e.g. Jones et al., 1994).
- \(\approx 90\% \) of the grains were formed in the ISM (e.g. Tielens, 1998; Draine, 2009);
- \(\approx 10\% \) stardust (SNII & AGB).

(Data from Jenkins, 2009)
Evidences of Dust Evolution in the Milky Way

Depletion of element X:

\[\delta_X \equiv \log \left(\frac{X}{H} \right)_{\text{gas}} - \]

In the Milky Way:

Good correlation between \(F^{\star} \) and \(\langle n_H \rangle \) \(\Rightarrow \) rapid grain growth in ISM.

Rapid destruction by shocks (\(\sim 300 \) Myr; e.g. Jones et al., 1994). \(\Rightarrow \sim 90\% \) of the grains were formed in the ISM (e.g. Tielens, 1998; Draine, 2009); \(\Rightarrow \sim 10\% \) stardust (SNII & AGB).

(Data from Jenkins, 2009)

F. Galliano (AIM)
Observing the mm Universe with NIKA2
July 2, 2021 3/12
Evidences of Dust Evolution in the Milky Way

Depletion of element X:

\[\delta_X \equiv \log \left(\frac{X}{H} \right)_{\text{gas}} - \log \left(\frac{X}{H} \right)_{\text{ref}} \]

In the Milky Way:

- Good correlation between \(F_\star \) and \(\langle n_H \rangle \) ⇒ rapid grain growth in ISM.
- Rapid destruction by shocks (≃300 Myr; e.g. Jones et al., 1994).

⇒ ≃90% of the grains were formed in the ISM (e.g. Tielens, 1998; Draine, 2009);

⇒ ≃10% stardust (SNII & AGB).

(Data from Jenkins, 2009)
Depletion of element X:

\[\delta_X \equiv \log \left(\frac{X}{H} \right)_{\text{gas}} - \log \left(\frac{X}{H} \right)_{\text{ref}} \]

\[\simeq \delta_0 + A_X F_* \]

In the Milky Way:

- Good correlation between \(F_* \) and \(\langle n_H \rangle \) \Rightarrow rapid grain growth in ISM.
- Rapid destruction by shocks (\(\simeq 300 \) Myr; e.g. Jones et al., 1994).

\Rightarrow \simeq 90\% of the grains were formed in the ISM (e.g. Tielens, 1998; Draine, 2009);

\Rightarrow \simeq 10\% stardust (SNII & AGB).

(Data from Jenkins, 2009)
Evidences of Dust Evolution in the Milky Way

Depletion of element X:

$$\delta_X \equiv \log \left(\frac{X}{H} \right)_{\text{gas}} - \log \left(\frac{X}{H} \right)_{\text{ref}}$$

$$\simeq \delta_0 + A_X F_*$$

\Rightarrow fraction of X locked in dust.
Depletion of element X:

\[\delta_X \equiv \log \left(\frac{X}{H} \right)_{\text{gas}} - \log \left(\frac{X}{H} \right)_{\text{ref}} \approx \delta_0 + A_X F_* \nRightarrow \text{fraction of X locked in dust.} \]

In the Milky Way:

Good correlation between \(F_* \) and \(\langle n_H \rangle \) \Rightarrow rapid grain growth in ISM.

Rapid destruction by shocks (\(\approx 300 \) Myr; e.g. Jones et al., 1994). \Rightarrow \approx 90\% of the grains were formed in the ISM (e.g. Tielens, 1998; Draine, 2009); \Rightarrow \approx 10\% stardust (SNII & AGB).

(Data from Jenkins, 2009)
Depletion of element X:

$$\delta_X \equiv \log \left(\frac{X}{H} \right)_{\text{gas}} - \log \left(\frac{X}{H} \right)_{\text{ref}} \simeq \delta_0 + A_X F_*$$

\Rightarrow fraction of X locked in dust.

In the Milky Way:

Good correlation between F_* and $\langle n_H \rangle$ \Rightarrow rapid grain growth in ISM.

Rapid destruction by shocks ($\simeq 300$ Myr; e.g. Jones et al., 1994). $\Rightarrow \simeq 90\%$ of the grains were formed in the ISM (e.g. Tielens, 1998; Draine, 2009); $\Rightarrow \simeq 10\%$ stardust (SNII & AGB).

(Data from Jenkins, 2009)
Evidences of Dust Evolution in the Milky Way

Depletion of element X:

\[\delta_X \equiv \log \left(\frac{X}{H} \right)_{\text{gas}} - \log \left(\frac{X}{H} \right)_{\text{ref}} \approx \delta_0 + A_X F_\star \]

\Rightarrow fraction of X locked in dust.

In the Milky Way:

- Good correlation between F_\star and $\langle n_H \rangle$ \Rightarrow rapid grain growth in ISM.
- Rapid destruction by shocks (≈ 300 Myr; e.g., Jones et al., 1994).
- $\approx 90\%$ of the grains were formed in the ISM (e.g., Tielens, 1998; Draine, 2009);
- $\approx 10\%$ stardust (SNII & AGB).

(Data from Jenkins, 2009)
Depletion of element X:

\[\delta_X \equiv \log \left(\frac{X}{H} \right)_{\text{gas}} - \log \left(\frac{X}{H} \right)_{\text{ref}} \]

\[\simeq \delta_0 + A_X F_\star \]

⇒ fraction of X locked in dust.

In the Milky Way:

- Good correlation between \(F_\star \) & \(\langle n_H \rangle \)

(Data from Jenkins, 2009)
Depletion of element X:

\[
\delta_X \equiv \log \left(\frac{X}{H} \right)_{\text{gas}} - \log \left(\frac{X}{H} \right)_{\text{ref}} \approx \delta_0 + A_X F_*
\]

⇒ fraction of X locked in dust.

In the Milky Way:

- Good correlation between \(F_* \) & \(\langle n_H \rangle \) ⇒ rapid grain growth in ISM.

(Data from Jenkins, 2009)
Evidences of Dust Evolution in the Milky Way

Depletion of element X:

\[\delta_X \equiv \log \left(\frac{X}{H} \right)_{\text{gas}} - \log \left(\frac{X}{H} \right)_{\text{ref}} \]

\[\simeq \delta_0 + A_X F_\star \]

⇒ fraction of X locked in dust.

In the Milky Way:

- Good correlation between \(F_\star \) & \(\langle n_H \rangle \) ⇒ rapid grain growth in ISM.
- Rapid destruction by shocks (\(\simeq 300 \) Myr; e.g. Jones et al., 1994).

(Data from Jenkins, 2009)
Depletion of element X:

$$\delta_X \equiv \log \left(\frac{X}{H} \right)_{\text{gas}} - \log \left(\frac{X}{H} \right)_{\text{ref}} \simeq \delta_0 + A_X F_*$$

⇒ fraction of X locked in dust.

In the Milky Way:

- Good correlation between F_* & $\langle n_H \rangle$ ⇒ rapid grain growth in ISM.
- Rapid destruction by shocks ($\simeq 300$ Myr; e.g. Jones et al., 1994).

⇒ $\simeq 90\%$ of the grains were formed in the ISM (e.g. Tielens, 1998; Draine, 2009);

(Data from Jenkins, 2009)
Depletion of element X:

$$\delta_X \equiv \log \left(\frac{X}{H} \right)_{\text{gas}} - \log \left(\frac{X}{H} \right)_{\text{ref}} \simeq \delta_0 + A_X F_*$$

⇒ fraction of X locked in dust.

In the Milky Way:

- Good correlation between F_* & $\langle n_H \rangle$ ⇒ rapid grain growth in ISM.
- Rapid destruction by shocks ($\simeq 300$ Myr; e.g. Jones et al., 1994).

⇒ $\simeq 90\%$ of the grains were formed in the ISM (e.g. Tielens, 1998; Draine, 2009);

⇒ $\simeq 10\%$ stardust (SN II & AGB).

(Data from Jenkins, 2009)
The Dust Life Cycle
The Dust Life Cycle

- HII region
- High-mass stars (< 10 Myr)
- SN
- HIM

F. Galliano (AIM)
Observing the mm Universe with NIKA2
July 2, 2021
The Dust Life Cycle

Low-mass stars
(> 400 Myr)

High-mass stars
(< 10 Myr)

AGB

HII region

SN

HIM
The Dust Life Cycle

Low-mass stars
(> 400 Myr)

High-mass stars
(< 10 Myr)

HII region

SN

AGB

Stardust injection

Condensation

HIM

Grain seeds
The Dust Life Cycle

Diffuse cloud

CNM

WIM & WNM

Low-mass stars

(> 400 Myr)

HII region

High-mass stars

(< 10 Myr)

SN

HIM

Stardust injection

Grain growth (< 1 Myr)

Grain seeds

Condensation

F. Galliano (AIM)

Observing the mm Universe with NIKA2

July 2, 2021
The Dust Life Cycle

- **Diffuse cloud**
- **CNM**
- **WIM & WNM**

Condensation

- **Acreration**

- **Low-mass stars** (> 400 Myr)
- **High-mass stars** (< 10 Myr)
- **SN**
- **AGB**

Stardust injection

Grain growth (< 1 Myr)

Grain seeds
The Dust Life Cycle

Diffuse cloud
CNM
WIM & WNM

Condensation
Acretion

Low-mass stars
(> 400 Myr)

HII region
High-mass stars
(< 10 Myr)

SN

Stardust injection

AGB

Grain growth (< 1 Myr)

Grain seeds

Sputtering & shattering

HIM
The Dust Life Cycle

Observing the mm Universe with NIKA2

July 2, 2021
The Dust Life Cycle

Low-mass stars
(> 400 Myr)

High-mass stars
(< 10 Myr)

HII region

SN

Stardust injection

AGB

Diffuse cloud

CNM

WIM & WNM

Grain growth (< 1 Myr)

Grain seeds

Condensation

Acretion

Sputtering

Shattering

Sputtering & shattering

HIM
The Dust Life Cycle

Diffuse cloud
CNM
WIM & WNM

Condensation
Acretion
Sputtering
Shattering

Low-mass stars
(> 400 Myr)
AGB

HII region
High-mass stars
(< 10 Myr)
SN

Stardust injection

Grain growth (< 1 Myr)

Grain seeds
The Dust Life Cycle

Observing the mm Universe with NIKA2

Low-mass stars

(> 400 Myr)

AGB

HII region

High-mass stars

(< 10 Myr)

SN

Stardust injection

Diffuse cloud

CNM

WIM & WNM

Grain growth (< 1 Myr)

Grain seeds

Condensation

Acreration

Sputtering

Shattering

Desorption
The Dust Life Cycle

Diffuse cloud → CNM → WIM & WNM → Grain growth (≤ 1 Myr) → Sputtering & shattering → High-mass stars (≤ 10 Myr) → HII region → Low-mass stars (≥ 400 Myr) → AGB → Stardust injection → Grain seeds

Condensation → Accretion → Sputtering → Shattering → Desorption → Sublimation
The Dust Life Cycle

Diffuse cloud

CNM

WIM & WNM

Condensation

Accretion

Sputtering

Shattering

Desorption

Sublimation

Photo-desorption & sublimation

Sputtering & shattering

Cycling (< 30 Myr)

Grain growth (< 1 Myr)

Grain seeds

HII region

Low-mass stars

(> 400 Myr)

High-mass stars

(< 10 Myr)

SN

Stardust injection

AGB

F. Galliano (AIM)

Observing the mm Universe with NIKA2

July 2, 2021
The Dust Life Cycle

- Molecular cloud
- Diffuse cloud
- CNM
- WIM & WNM
- Low-mass stars
- High-mass stars
- HII region
- AGB
- SN
- Stardust injection
- Condensation
- Acretion
- Sputtering
- Shattering
- Desorption
- Sublimation
- Grain growth
- Grain seeds
- Cycling (30 Myr)
- Photo-desorption & sublimation
- Coagulation & icing

F. Galliano (AIM)
Observing the mm Universe with NIKA2
July 2, 2021
The Dust Life Cycle

- Molecular cloud
- Diffuse cloud
- CNM
- WIM & WNM
- Low-mass stars (≥ 400 Myr)
- HII region
- High-mass stars (< 10 Myr)
- SN
- AGB
- Stardust injection

- Condensation
- Accretion
- Sputtering
- Shattering
- Desorption
- Sublimation
- Coagulation
- Icing

Grain growth (< 1 Myr)
Cycling (30 Myr)
Photo-desorption & sublimation
Coagulation & icing
Objectives of the Present Study

1. Dust condensation in SNII ejecta;
2. Grain growth in cold clouds;
3. Dust destruction by SNII blast waves.

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (Z), SF activity, etc.

Dwarf/Irregular (low Z, gas rich)
Spiral/Disk (intermediate)
Elliptical/Lenticular (high Z, gas poor)

F. Galliano (AIM)
Observing the mm Universe with NIKA2
July 2, 2021
Objectives of the Present Study

How do environmental conditions affect the timescales of the following processes?

1. Dust condensation in SNII ejecta;
2. Grain growth in cold clouds;
3. Dust destruction by SNII blast waves.
Objectives of the Present Study

How do environmental conditions affect the timescales of the following processes?

1. Dust condensation in SN II ejecta;
2. Grain growth in cold clouds;
3. Dust destruction by SNII blast waves.

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (Z), SF activity, etc.

Dwarf/Irregular (low Z, gas rich)
Spiral/Disk (intermediate)
Elliptical/Lenticular (high Z, gas poor)
Objectives of the Present Study

How do environmental conditions affect the timescales of the following processes?

1. Dust condensation in SN II ejecta;
2. Grain growth in cold clouds;

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (Z), SF activity, etc.

Dwarf/Irregular (low Z, gas rich)
Spiral/Disk (intermediate)
Elliptical/Lenticular (high Z, gas poor)

F. Galliano (AIM)
Objectives of the Present Study

How do environmental conditions affect the timescales of the following processes?

1. Dust condensation in SN II ejecta;
2. Grain growth in cold clouds;
3. Dust destruction by SN II blast waves.

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (\(Z\)), SF activity, etc.

Dwarf/Irregular (low \(Z\), gas rich)
Spiral/Disk (intermediate)
Elliptical/Lenticular (high \(Z\), gas poor)

F. Galliano (AIM)
Observing the mm Universe with NIKA2
July 2, 2021
Objectives of the Present Study

How do environmental conditions affect the timescales of the following processes?

1. Dust condensation in SN II ejecta;
2. Grain growth in cold clouds;
3. Dust destruction by SN II blast waves.

⇒ in a statistical way.
Objectives of the Present Study

How do environmental conditions affect the timescales of the following processes?

1. Dust condensation in SN II ejecta;
2. Grain growth in cold clouds;
3. Dust destruction by SN II blast waves.

⇒ in a statistical way.

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (Z), SF activity, etc.

Dwarf/Irregular (low Z, gas rich)
Spiral/Disk (intermediate)
Elliptical/Lenticular (high Z, gas poor)
Objectives of the Present Study

How do environmental conditions affect the timescales of the following processes?

1. Dust condensation in SN II ejecta;
2. Grain growth in cold clouds;
3. Dust destruction by SN II blast waves.

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity \((Z)\), SF activity, \(etc.\)
Objectives of the Present Study

How do environmental conditions affect the timescales of the following processes?

1. Dust condensation in SN II ejecta;
2. Grain growth in cold clouds;
3. Dust destruction by SN II blast waves.

⇒ in a statistical way.

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (Z), SF activity, etc.

Dwarf/Irregular
(low Z, gas rich)
Objectives of the Present Study

How do environmental conditions affect the timescales of the following processes?

1. Dust condensation in SN II ejecta;
2. Grain growth in cold clouds;
3. Dust destruction by SN II blast waves.

⇒ in a statistical way.

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (Z), SF activity, etc.

Dwarf/Irregular (low Z, gas rich)

Spiral/Disk (intermediate)
Objectives of the Present Study

How do environmental conditions affect the timescales of the following processes?

1. Dust condensation in SN II ejecta;
2. Grain growth in cold clouds;
3. Dust destruction by SN II blast waves.

⇒ in a statistical way.

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (Z), SF activity, etc.

Dwarf/Irregular (low Z, gas rich) Spiral/Disk (intermediate) Elliptical/Lenticular (high Z, gas poor)
The Merged DustPedia & DGS Sample

Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- 89 galaxies with all IR fluxes flagged.
- 22 AGNs classified by Bianchi et al. (2018).

⇒ 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample (DGS; Madden et al., 2013):

- 33 galaxies not in DustPedia (photometry from Rémy-Ruyer et al., 2013).

⇒ 798 galaxies in total.

Ancillary Data Used as Prior Dependencies:

- Metallicity by De Vis et al. (2018; PG16S calibration).
- Stellar mass from Nersesian et al. (2019).
- Total gas mass (HI+H$_2$) from De Vis et al. (2018).
- Additional resolved (interferometry) HI data of 19 dwarfs (Roychowdhury et al., in prep.).
- Star formation rates from Nersesian et al. (2019).
Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- 89 galaxies with all IR fluxes flagged.
- 22 AGNs classified by Bianchi et al. (2018).

⇒ 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample (DGS; Madden et al., 2013):

+ 33 galaxies not in DustPedia (photometry from Rémy-Ruyer et al., 2013).

⇒ 798 galaxies in total.

Ancillary Data Used as Prior Dependencies:

- Metallicity by De Vis et al. (2018; PG16S calibration).
- Stellar mass from Nersesian et al. (2019).
- Total gas mass (HI+H\(_2\)) from De Vis et al. (2018).
- Additional resolved (interferometry) HI data of 19 dwarfs (Roychowdhury et al., in prep.).
- Star formation rates from Nersesian et al. (2019).
The Merged DustPedia & DGS Sample

Galaxies from DustPedia \textbf{(Davies \textit{et al.}, 2017)}:

- 875 DustPedia galaxies observed by \textit{Herschel} (photometry from Clark \textit{et al.}, 2018).
- 89 galaxies with all IR fluxes flagged.

Galaxies from the Dwarf Galaxy Sample (DGS; Madden \textit{et al.}, 2013):

+ 33 galaxies not in DustPedia (photometry from Rémy-Ruyer \textit{et al.}, 2013).

⇒ 764 DustPedia galaxies.
⇒ 798 galaxies in total.

Ancillary Data Used as Prior Dependencies:

- Metallicity by De Vis \textit{et al.} (2018; PG16S calibration).
- Stellar mass from Nersesian \textit{et al.} (2019).
- Total gas mass (HI+H$_2$) from De Vis \textit{et al.} (2018).
- Additional resolved (interferometry) HI data of 19 dwarfs (Roychowdhury \textit{et al.}, in prep.).
- Star formation rates from Nersesian \textit{et al.} (2019).
The Merged DustPedia & DGS Sample

Galaxies from DustPedia (Davies *et al.*, 2017):

- 875 DustPedia galaxies observed by *Herschel* (photometry from Clark *et al.*, 2018).
- 89 galaxies with all IR fluxes flagged.
- 22 AGNs classified by Bianchi *et al.* (2018).
Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- 89 galaxies with all IR fluxes flagged.
- 22 AGNs classified by Bianchi et al. (2018).

⇒ 764 DustPedia galaxies.
The Merged DustPedia & DGS Sample

Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- 89 galaxies with all IR fluxes flagged.
- 22 AGNs classified by Bianchi et al. (2018).

⇒ 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample (DGS; Madden et al., 2013):

- + 33 galaxies not in DustPedia (photometry from Rémy-Ruyer et al., 2013).
Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- 89 galaxies with all IR fluxes flagged.
- 22 AGNs classified by Bianchi et al. (2018).

⇒ 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample (DGS; Madden et al., 2013):

+ 33 galaxies not in DustPedia (photometry from Rémy-Ruyer et al., 2013).

⇒ 798 galaxies in total.
The Merged DustPedia & DGS Sample

Galaxies from DustPedia *(Davies et al., 2017)*:

- 875 DustPedia galaxies observed by *Herschel* (photometry from Clark *et al.*, 2018).
- 89 galaxies with all IR fluxes flagged.
- 22 AGNs classified by Bianchi *et al.* (2018).

⇒ 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample *(DGS; Madden et al., 2013)*:

- + 33 galaxies not in DustPedia (photometry from Rémy-Ruyer *et al.*, 2013).

⇒ 798 galaxies in total.

Ancillary Data Used as *Prior Dependencies*:

- Metallicity by De Vis *et al.* (2018; PG16S calibration).
The Merged DustPedia & DGS Sample

Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- 89 galaxies with all IR fluxes flagged.
- 22 AGNs classified by Bianchi et al. (2018).

⇒ 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample (DGS; Madden et al., 2013):

- + 33 galaxies not in DustPedia (photometry from Rémy-Ruyer et al., 2013).

⇒ 798 galaxies in total.

Ancillary Data Used as Prior Dependencies:

- Metallicity by De Vis et al. (2018; PG16S calibration).
- Stellar mass from Nersesian et al. (2019).
The Merged DustPedia & DGS Sample

Galaxies from DustPedia (Davies et al., 2017):
- 875 DustPedia galaxies observed by *Herschel* (photometry from Clark et al., 2018).
- 89 galaxies with all IR fluxes flagged.
- 22 AGNs classified by Bianchi et al. (2018).

⇒ 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample (DGS; Madden et al., 2013):
- + 33 galaxies not in DustPedia (photometry from Rémy-Ruyer et al., 2013).

⇒ 798 galaxies in total.

Ancillary Data Used as Prior Dependencies:
- Metallicity by De Vis et al. (2018; PG16S calibration).
- Stellar mass from Nersesian et al. (2019).
- Total gas mass (HI+H$_2$) from De Vis et al. (2018).
The Merged DustPedia & DGS Sample

Galaxies from DustPedia (Davies et al., 2017):
- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- 89 galaxies with all IR fluxes flagged.
- 22 AGNs classified by Bianchi et al. (2018).
⇒ 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample (DGS; Madden et al., 2013):
- + 33 galaxies not in DustPedia (photometry from Rémy-Ruyer et al., 2013).
⇒ 798 galaxies in total.

Ancillary Data Used as Prior Dependencies:
- Metallicity by De Vis et al. (2018; PG16S calibration).
- Stellar mass from Nersesian et al. (2019).
- Total gas mass (HI+H₂) from De Vis et al. (2018).
- Additional resolved (interferometry) HI data of 19 dwarfs (Roychowdhury et al., in prep.).
The Merged DustPedia & DGS Sample

Galaxies from DustPedia (*Davies et al.*, 2017):
- 875 DustPedia galaxies observed by *Herschel* (photometry from *Clark et al.*, 2018).
- 89 galaxies with all IR fluxes flagged.

⇒ 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample (DGS; *Madden et al.*, 2013):
- + 33 galaxies not in DustPedia (photometry from *Rémy-Ruyer et al.*, 2013).

⇒ 798 galaxies in total.

Ancillary Data Used as *Prior Dependencies*:
- Metallicity by *De Vis et al.* (2018; PG16S calibration).
- Stellar mass from *Nersesian et al.* (2019).
- Total gas mass (HI+H$_2$) from *De Vis et al.* (2018).
- Star formation rates from *Nersesian et al.* (2019).
The Spectral Energy Distribution Model

Grain Properties:

THEMIS dust mixture (Jones et al., 2017); Dale et al. (2001) ISRF prescription.
⇒ infer dust mass, M_{dust}.

Fitting Process:

Using HerBIE (Galliano, 2018):

NIR to mm fit;
Correlated calibration uncertainties;
Color corrections;
Hierarchical Bayesian approach ⇒ 1 single big PDF ∀ parameters & ∀ galaxies;
Ancillary data in the prior

(Galliano et al., 2021)
Grain Properties:

The Spectral Energy Distribution Model

Grain Properties:

THEMIS dust mixture (Jones et al., 2017); Dale et al. (2001) ISRF prescription.

⇒ infer dust mass, M_{dust}.

Fitting Process:

Using HerBIE (Galliano, 2018):

- NIR to mm fit;
- Correlated calibration uncertainties;
- Color corrections;
- Hierarchical Bayesian approach ⇒ 1 single big PDF ∀ parameters & ∀ galaxies;
- Ancillary data in the prior

(Galliano et al., 2021)
Grain Properties:

- THEMIS dust mixture (Jones et al., 2017);
Grain Properties:

- THEMIS dust mixture (Jones et al., 2017);
- Dale et al. (2001) ISRF prescription.
Grain Properties:

- THEMIS dust mixture (Jones et al., 2017);

⇒ infer dust mass, M_{dust}.
The Spectral Energy Distribution Model

Grain Properties:
- THEMIS dust mixture (Jones et al., 2017);
- Dale et al. (2001) ISRF prescription.

⇒ infer dust mass, M_{dust}.

Fitting Process:
Using HerBIE (Galliano, 2018):
The Spectral Energy Distribution Model

Grain Properties:

- THEMIS dust mixture (Jones et al., 2017);
- Dale et al. (2001) ISRF prescription.

⇒ infer dust mass, M_{dust}.

Fitting Process:

Using HerBIE (Galliano, 2018):

- NIR to mm fit;
Grain Properties:
- THEMIS dust mixture (Jones et al., 2017);
- Dale et al. (2001) ISRF prescription.

⇒ infer dust mass, M_{dust}.

Fitting Process:
Using HerBIE (Galliano, 2018):
- NIR to mm fit;
- Correlated calibration uncertainties;
Grain Properties:

- THEMIS dust mixture (Jones et al., 2017);
- Dale et al. (2001) ISRF prescription.

⇒ infer dust mass, M_{dust}.

Fitting Process:

Using HerBIE (Galliano, 2018):

- NIR to mm fit;
- Correlated calibration uncertainties;
- Color corrections;
The Spectral Energy Distribution Model

Grain Properties:
- THEMIS dust mixture (Jones et al., 2017);
- Dale et al. (2001) ISRF prescription.

⇒ infer dust mass, M_{dust}.

Fitting Process:
Using HerBIE (Galliano, 2018):
- NIR to mm fit;
- Correlated calibration uncertainties;
- Color corrections;
- Hierarchical Bayesian approach ⇒ 1 single big PDF ∀ parameters & ∀ galaxies;
Grain Properties:
- THEMIS dust mixture (Jones et al., 2017);
- Dale et al. (2001) ISRF prescription.

⇒ infer dust mass, M_{dust}.

Fitting Process:
Using HerBIE (Galliano, 2018):
- NIR to mm fit;
- Correlated calibration uncertainties;
- Color corrections;
- Hierarchical Bayesian approach ⇒ 1 single big PDF ∀ parameters & ∀ galaxies;
- Ancillary data in the prior.
The Spectral Energy Distribution Model

Grain Properties:
- THEMIS dust mixture (Jones et al., 2017);
- Dale et al. (2001) ISRF prescription.

⇒ infer dust mass, M_{dust}.

Fitting Process:
Using HerBIE (Galliano, 2018):
- NIR to mm fit;
- Correlated calibration uncertainties;
- Color corrections;
- Hierarchical Bayesian approach ⇒ 1 single big PDF ∀ parameters & ∀ galaxies;
- Ancillary data in the prior.

(Galliano et al., 2021)
The Spectral Energy Distribution Model

Grain Properties:
- THEMIS dust mixture (Jones et al., 2017);
- Dale et al. (2001) ISRF prescription.

⇒ infer dust mass, M_{dust}.

Fitting Process:

Using HerBIE (Galliano, 2018):
- NIR to mm fit;
- Correlated calibration uncertainties;
- Color corrections;
- Hierarchical Bayesian approach ⇒ 1 single big PDF ∀ parameters & ∀ galaxies;
- Ancillary data in the prior.

(Galliano et al., 2021)
The Spectral Energy Distribution Model

Grain Properties:
- THEMIS dust mixture (Jones et al., 2017);
- Dale et al. (2001) ISRF prescription.

⇒ infer dust mass, M_{dust}.

Fitting Process:
Using HerBIE (Galliano, 2018):
- NIR to mm fit;
- Correlated calibration uncertainties;
- Color corrections;
- Hierarchical Bayesian approach ⇒ 1 single big PDF ∀ parameters & ∀ galaxies;
- Ancillary data in the prior.

(Galliano et al., 2021)
Grain Properties:
- THEMIS dust mixture (Jones et al., 2017);
- Dale et al. (2001) ISRF prescription.

⇒ infer dust mass, M_{dust}.

Fitting Process:
Using HerBIE (Galliano, 2018):
- NIR to mm fit;
- Correlated calibration uncertainties;
- Color corrections;
- Hierarchical Bayesian approach ⇒ 1 single big PDF ∀ parameters & ∀ galaxies;
- Ancillary data in the prior.

(Galliano et al., 2021)
The Spectral Energy Distribution Model

Grain Properties:
- THEMIS dust mixture (Jones et al., 2017);
- Dale et al. (2001) ISRF prescription.

⇒ infer dust mass, M_{dust}.

Fitting Process:
Using HerBIE (Galliano, 2018):
- NIR to mm fit;
- Correlated calibration uncertainties;
- Color corrections;
- Hierarchical Bayesian approach ⇒ 1 single big PDF ∀ parameters & ∀ galaxies;
- Ancillary data in the prior.

(Galliano et al., 2021)
The Derived Scaling Relations

Dust-to-gas mass ratio, $Z_{dust} = M_{dust}/M_{gas}$

Specific gas mass, $sM_{gas} = M_{gas}/M_{star}$

Metallicity, $12 + \log(O/H)$

(Galliano et al., 2021)
The Derived Scaling Relations

(Galliano et al., 2021)

Dust-to-gas mass ratio, $Z_{dust} \equiv M_{dust}/M_{gas}$

Specific gas mass, $sM_{gas} = M_{gas}/M_{star}$

Metallicity, $12 + \log(O/H)$

(Galliano et al., 2021)
The Derived Scaling Relations

Dust-to-gas mass ratio, $Z_{dust} \equiv \frac{M_{dust}}{M_{gas}}$

Specific gas mass, $sM_{gas} = \frac{M_{gas}}{M_{star}}$

Metallicity, $12 + \log(0/H)$

Milky Way
Early type
Late type
Irregular

(Galliano et al., 2021)
Modelling Dust Evolution in Galaxies

One-Zone Dust Evolution Model (Rowlands et al., 2014; De Vis et al., 2017):

- **SFH:** delayed (Lee et al., 2010);
- **In/out-flow:** proportional to SFR;
- **SN yield:** $\langle Y_{SN} \rangle$, free parameter (proportional to Todini & Ferrara, 2001);
- **Grain growth:** free efficiency, ϵ_{grow} (Mattsson et al., 2012);
- **SN destruction:** free cleared gas mass, $m_{\text{dest gas}}$ (Dwek & Scalo, 1980).

Fitting the Scaling Relations:

Hierarchical Bayesian fit to M_{dust}, M_{gas}, M_{star}, SFR & $12 + \log(O/H)$, varying:

- Individual SFH & in/out-flow for each galaxy;
- Dust evolution efficiencies, $\langle Y_{SN} \rangle$, ϵ_{grow} & $m_{\text{dest gas}}$ common to each galaxies.
One-Zone Dust Evolution Model (Rowlands et al., 2014; De Vis et al., 2017):

- **SFH:** delayed (Lee et al., 2010);
- **In/out-flow:** proportional to SFR;
- **SN yield:** $\langle Y_{SN} \rangle$, free parameter (proportional to Todini & Ferrara, 2001);
- **Grain growth:** free efficiency, ϵ_{grow} (Mattsson et al., 2012);
- **SN destruction:** free cleared gas mass, m_{dest} (Dwek & Scalo, 1980).

Fitting the Scaling Relations:
Hierarchical Bayesian fit to M_{dust}, M_{gas}, M_{star}, SFR & $12 + \log(O/H)$, varying:
- Individual SFH & in/out-flow for each galaxy;
- Dust evolution efficiencies, $\langle Y_{SN} \rangle$, ϵ_{grow} & m_{dest} common to each galaxies.
One-Zone Dust Evolution Model *(Rowlands *et al.*, 2014; *De Vis* *et al.*, 2017):

SFH: delayed *(Lee *et al.*, 2010);
One-Zone Dust Evolution Model (Rowlands et al., 2014; De Vis et al., 2017):

- **SFH:** delayed (Lee et al., 2010);
- **In/out-flow:** proportional to SFR;
- **SN yield:** $\langle Y_{SN} \rangle$, free parameter (proportional to Todini & Ferrara, 2001);
- **Grain growth:** free efficiency, ϵ_{grow} (Mattsson et al., 2012);
- **SN destruction:** free cleared gas mass, $m_{dest \ gas}$ (Dwek & Scalo, 1980).

Fitting the Scaling Relations:
Hierarchical Bayesian fit to M_{dust}, M_{gas}, M_{star}, SFR & $12 + \log(O/H)$, varying:
- Individual SFH & in/out-flow for each galaxy;
- Dust evolution efficiencies, $\langle Y_{SN} \rangle$, ϵ_{grow} & $m_{dest \ gas}$ common to each galaxy.
Modelling Dust Evolution in Galaxies

One-Zone Dust Evolution Model \textit{(Rowlands et al., 2014; De Vis et al., 2017)}:

\begin{itemize}
 \item \textbf{SFH}: delayed \textit{(Lee et al., 2010)};
 \item \textbf{In/out-flow}: proportional to SFR;
 \item \textbf{SN yield}: $\langle Y_{SN} \rangle$, free parameter \textit{(proportional to Todini & Ferrara, 2001)};
\end{itemize}
One-Zone Dust Evolution Model (Rowlands et al., 2014; De Vis et al., 2017):

SFH: delayed (Lee et al., 2010);

In/out-flow: proportional to SFR;

SN yield: $\langle Y_{SN} \rangle$, free parameter (proportional to Todini & Ferrara, 2001);

Grain growth: free efficiency, ϵ_{grow} (Mattsson et al., 2012);

SN destruction: free cleared gas mass, m_{dest} (Dwek & Scalo, 1980).
Modelling Dust Evolution in Galaxies

One-Zone Dust Evolution Model (Rowlands et al., 2014; De Vis et al., 2017):

SFH: delayed (Lee et al., 2010);

In/out-flow: proportional to SFR;

SN yield: $\langle Y_{SN} \rangle$, free parameter (proportional to Todini & Ferrara, 2001);

Grain growth: free efficiency, ϵ_{grow} (Mattsson et al., 2012);

SN destruction: free cleared gas mass, $m_{\text{gas}}^{\text{dest}}$ (Dwek & Scalo, 1980).
Modelling Dust Evolution in Galaxies

One-Zone Dust Evolution Model (Rowlands et al., 2014; De Vis et al., 2017):

- **SFH**: delayed (Lee et al., 2010);
- **In/out-flow**: proportional to SFR;
- **SN yield**: $\langle Y_{SN} \rangle$, free parameter (proportional to Todini & Ferrara, 2001);
- **Grain growth**: free efficiency, ϵ_{grow} (Mattsson et al., 2012);
- **SN destruction**: free cleared gas mass, $m_{\text{gas}}^{\text{dest}}$ (Dwek & Scalo, 1980).

Fitting the Scaling Relations:

Hierarchical Bayesian fit to $M_{\text{dust}}, M_{\text{gas}}, M_{\text{star}}, \text{SFR} \& 12 + \log(O/H)$, varying:
One-Zone Dust Evolution Model (Rowlands et al., 2014; De Vis et al., 2017):

- **SFH:** delayed (Lee et al., 2010);
- **In/out-flow:** proportional to SFR;
- **SN yield:** $\langle Y_{SN} \rangle$, free parameter (proportional to Todini & Ferrara, 2001);
- **Grain growth:** free efficiency, ϵ_{grow} (Mattsson et al., 2012);
- **SN destruction:** free cleared gas mass, $m_{\text{dest \ gas}}$ (Dwek & Scalo, 1980).

Fitting the Scaling Relations:

Hierarchical Bayesian fit to M_{dust}, M_{gas}, M_{star}, SFR & $12 + \log(O/H)$, varying:

- Individual SFH & in/out-flow for each galaxy;
Modelling Dust Evolution in Galaxies

One-Zone Dust Evolution Model (Rowlands et al., 2014; De Vis et al., 2017):

- **SFH:** delayed (Lee et al., 2010);
- **In/out-flow:** proportional to SFR;
- **SN yield:** $\langle Y_{SN} \rangle$, free parameter (proportional to Todini & Ferrara, 2001);
- **Grain growth:** free efficiency, ϵ_{grow} (Mattsson et al., 2012);
- **SN destruction:** free cleared gas mass, $m_{\text{gas}}^{\text{dest}}$ (Dwek & Scalo, 1980).

Fitting the Scaling Relations:

Hierarchical Bayesian fit to M_{dust}, M_{gas}, M_{star}, SFR & $12 + \log(\text{O/H})$, varying:
- Individual SFH & in/out-flow for each galaxy;
- Dust evolution efficiencies, $\langle Y_{SN} \rangle$, ϵ_{grow} & $m_{\text{gas}}^{\text{dest}}$ common to each galaxies.
The Fitted Dust Evolution Tracks

F. Galliano (AIM)
Observing the mm Universe with NIKA2
July 2, 2021 10/12

(Galliano et al., 2021)
The Fitted Dust Evolution Tracks

F. Galliano (AIM)
Observing the mm Universe with NIKA2
July 2, 2021 10/12

(Galliano et al., 2021)
The Fitted Dust Evolution Tracks

⇒ Low-Z regime crucial to constrain \(\langle Y_{\text{SN}} \rangle \).

\[Z_{\text{dust}} \equiv \frac{M_{\text{dust}}}{M_{\text{gas}}} \]

Specific gas mass, \(sM_{\text{gas}} = \frac{M_{\text{gas}}}{M_{\text{star}}} \)

Metallicity, \(12 + \log(O/H) \)

(Galliano et al., 2021)
The Fitted Dust Evolution Tracks

⇒ Low-Z regime crucial to constrain $\langle Y_{\text{SN}} \rangle$.

(Galliano et al., 2021)
Inference of Dust Evolution Parameters

Accounting for systematics:
\[\langle Y_{SN} \rangle \lesssim 0.03 \, M_\odot / SN; \]
\[\epsilon_{\text{grow}} \gtrsim 3000; \]
\[m_{\text{dest}} \text{gas} \gtrsim 1200 \, M_\odot / SN. \]

(for a Salpeter IMF).

Sensitivity to IMF:
Consistent results with Chabrier IMF, provided that the SFR and \(M_\star \) are estimated consistently.

(Galliano et al., 2021)
Inference of Dust Evolution Parameters

Accounting for systematics:
\[
\langle Y_{SN} \rangle \lesssim 0.03 M_{\odot}/SN;
\]
\[
\epsilon_{\text{grow}} \gtrsim 3000;
\]
\[
m_{\text{dest}}^{\text{gas}} \gtrsim 1200 M_{\odot}/SN.
\]

(for a Salpeter IMF).

Sensitivity to IMF:
Consistent results with Chabrier IMF, provided that the SFR and \(M_{\ast} \) are estimated consistently.

(Galliano et al., 2021)
Inference of Dust Evolution Parameters

Accounting for systematics:
- $\langle Y_{SN} \rangle \lesssim 0.03 \, M_\odot / SN$;
- $\epsilon_{grow} \gtrsim 3000$;
- $m_{dest}^{gas} \gtrsim 1200 \, M_\odot / SN$.

(for a Salpeter IMF).

Sensitivity to IMF:
Consistent results with Chabrier IMF, provided that the SFR and M_\star are estimated consistently.

(Galliano et al., 2021)
Inference of Dust Evolution Parameters

Accounting for systematics:
\[\langle Y_{SN} \rangle \lesssim 0.03 \, M_\odot/\text{SN}; \]
\[\epsilon_{\text{grow}} \gtrsim 3000; \]
\[m_{\text{dest}} \gtrsim 1200 \, M_\odot/\text{SN}. \]
(for a Salpeter IMF).

Sensitivity to IMF:
Consistent results with Chabrier IMF, provided that the SFR and \(M_\star \) are estimated consistently.

(Galliano et al., 2021)
Conclusion: Dust Evolution Timescales

Dust evolution balance:
- Solar metallicity: consistent with what we know of the Milky Way ⇒ rapid growth & destruction.
- Low metallicity: dust formation dominated by SNII.

Take away points:
- Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions;
- Need both low- & high-Z sources ⇒ constrain both production regimes;
- Grain growth realistic for dust at high z ⇒ simply need $Z \gtrsim \frac{1}{5} Z_\odot$.

⇒ important for interpreting NIKA2 observations @ high z (Galliano et al., 2021)
Conclusion: Dust Evolution Timescales

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way ⇒ rapid growth & destruction.

Low metallicity: dust formation dominated by SNII.

Take away points:

Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions; Need both low- & high-Z sources ⇒ constrain both production regimes; Grain growth realistic for dust at high z ⇒ simply need $Z \gtrsim 1/5 Z_\odot$.

⇒ important for interpreting NIKA2 observations @ high z (Galliano et al., 2021)

(Galliano et al., 2021)
Conclusion: Dust Evolution Timescales

Dust evolution balance:
- Solar metallicity: consistent with what we know of the Milky Way ⇒ rapid growth & destruction.
- Low metallicity: dust formation dominated by SNII.

Take away points:
- Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions;
- Need both low- & high-Z sources ⇒ constrain both production regimes;
- Grain growth realistic for dust at high z ⇒ simply need $Z \gtrsim \frac{1}{5} Z_\odot$.

⇒ important for interpreting NIKA2 observations @ high z

(Galliano et al., 2021)
Conclusion: Dust Evolution Timescales

Dust evolution balance:
- Solar metallicity: consistent with what we know of the Milky Way \(\Rightarrow \) rapid growth & destruction.
- Low metallicity: dust formation dominated by SNII.

Take away points:
- Important to fit dust evolution models (not only overlay) \(\Rightarrow \) consistency & eliminate bad solutions;
- Need both low- & high-Z sources \(\Rightarrow \) constrain both production regimes;
- Grain growth realistic for dust at high \(z \) \(\Rightarrow \) simply need \(Z \gtrsim \frac{1}{5} Z_\odot \).

\(\Rightarrow \) important for interpreting NIKA2 observations @ high \(z \) (Galliano et al., 2021)

(Galliano et al., 2021)
Conclusion: Dust Evolution Timescales

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way ⇒ rapid growth & destruction.

Low metallicity: dust formation dominated by SNII.

Take away points: Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions; Need both low- & high-Z sources ⇒ constrain both production regimes; Grain growth realistic for dust at high z ⇒ simply need $Z \approx \frac{1}{5} Z_\odot$.

⇒ important for interpreting NIKA2 observations @ high z (Galliano et al., 2021)
Conclusion: Dust Evolution Timescales

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way ⇒ rapid growth & destruction.

Low metallicity: dust formation dominated by SNII.

Take away points:
- Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions;
- Need both low- & high-Z sources ⇒ constrain both production regimes;
- Grain growth realistic for dust at high z ⇒ simply need $Z \gtrsim 1/5 Z_{\odot}$.

⇒ important for interpreting NIKA2 observations @ high z (Galliano et al., 2021)
Conclusion: Dust Evolution Timescales

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way ⇒ rapid growth & destruction.

Low metallicity: dust formation dominated by SN II.

Take away points:
- Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions;
- Need both low- & high-
 - Z sources ⇒ constrain both production regimes;
- Grain growth realistic for dust at high z ⇒ simply need $Z \gtrsim \frac{1}{5} Z_\odot$.

⇒ important for interpreting NIKA2 observations @ high z (Galliano et al., 2021)

(Galliano et al., 2021)
Conclusion: Dust Evolution Timescales

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way ⇒ rapid growth & destruction.

Low metallicity: dust formation dominated by SN II.

Take away points:

Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions; Need both low- & high-Z sources ⇒ constrain both production regimes; Grain growth realistic for dust at high z ⇒ simply need $Z \gtrsim \frac{1}{5} Z_\odot$.

⇒ important for interpreting NIKA2 observations @ high z (Galliano et al., 2021)
Conclusion: Dust Evolution Timescales

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way ⇒ rapid growth & destruction.

Low metallicity: dust formation dominated by SN II.

Take away points:

- Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions;

(Galliano et al., 2021)
Conclusion: Dust Evolution Timescales

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way ⇒ rapid growth & destruction.

Low metallicity: dust formation dominated by SN II.

Take away points:

- Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions;
- Need both low- & high-Z sources ⇒ constrain both production regimes;

(Galliano et al., 2021)
Conclusion: Dust Evolution Timescales

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way ⇒ rapid growth & destruction.

Low metallicity: dust formation dominated by SN II.

Take away points:

- Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions;
- Need both low- & high-\(Z\) sources ⇒ constrain both production regimes;
- Grain growth realistic for dust at high \(z\) ⇒ simply need \(Z \gtrsim 1/5 Z_\odot\).

(Galliano et al., 2021)
Conclusion: Dust Evolution Timescales

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way ⇒ rapid growth & destruction.

Low metallicity: dust formation dominated by SN II.

Take away points:

- Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions;
- Need both low- & high-Z sources ⇒ constrain both production regimes;
- Grain growth realistic for dust at high z ⇒ simply need \(Z \gtrsim 1/5 Z_\odot \).
- Important for interpreting NIKA2 observations @ high z

(Galliano et al., 2021)
Evidence of Thermal Sputtering in Ellipticals

Peculiar trend of ellipticals:
- Dust deficient @ a given gas fraction;
- Their ISM is permeated by X-ray emitting coronal gas;
- Thermal sputtering could dominate (e.g. De Vis et al., 2017).

In our sample:
⇒ correlation w/ X-ray luminosity supports this hypothesis
⇒ exclude ellipticals from dust evolution modelling.

(Galliano et al., 2021)
The Dust-to-Metal Mass Ratio Variations

Dust-to-metal ratio: Fraction of elements locked in dust.

In our sample: Clear variation with Z, by 2 orders of magnitude.

Possible biases:
- H I halo \Rightarrow factor $\lesssim 1.5$;
- Grain opacity \Rightarrow factor $\lesssim 2$;
- Size distribution \Rightarrow factor $\lesssim 3$;
- Very cold dust \Rightarrow unlikely.

\Rightarrow factor $\lesssim 4.25 \ll 10^2$.

(Galliano et al., 2021)
Inference of SFH-Related Parameters

(Galliano et al., 2021)