A Nearby Galaxy Perspective on Dust Evolution

(a) (b) under an all one galaxies workning verified and appropriate of the (then their applicant lates over inclusion) and the set of the se

Frédéric GALLIANO

& the DustPedia collaboration

AIM, CEA/Saclay, France

July 2, 2021

 $\delta_X \equiv$

$$\delta_{\mathsf{X}} \equiv \log\left(rac{X}{H}
ight)_{\mathsf{gas}} -$$

$$\delta_{\mathsf{X}} \equiv \log\left(\frac{X}{H}\right)_{\mathsf{gas}} - \log\left(\frac{X}{H}\right)_{\mathsf{ref}}$$

$$\begin{split} \delta_{\rm X} &\equiv \log\left(\frac{X}{H}\right)_{\rm gas} - \log\left(\frac{X}{H}\right)_{\rm rel} \\ &\simeq \delta_0 + A_{\rm X} F_{\star} \end{split}$$

$$egin{array}{ll} \delta_{\mathrm{X}} &\equiv \log\left(rac{X}{H}
ight)_{\mathrm{gas}} - \log\left(rac{X}{H}
ight)_{\mathrm{re}} \ &\simeq \delta_0 + A_{\mathrm{X}} \mathcal{F}_{\star} \end{array}$$

 \Rightarrow fraction of X locked in dust.

$$\begin{split} \delta_{\rm X} &\equiv \log\left(\frac{X}{H}\right)_{\rm gas} - \log\left(\frac{X}{H}\right)_{\rm re} \\ &\simeq \delta_0 + A_{\rm X} F_{\star} \end{split}$$

 \Rightarrow fraction of X locked in dust.

In the Milky Way:

Depletion of element X: $\delta_{X} \equiv \log\left(\frac{X}{H}\right)_{gas} - \log\left(\frac{X}{H}\right)_{ref}$ $\simeq \delta_{0} + A_{X}F_{\star}$ Depletion factor, F. \Rightarrow fraction of X locked in dust. In the Milky Way: Good correlation between F_{*} & $\langle n_{\rm H} \rangle \Rightarrow$ rapid grain growth in ISM. 10^{-4} 10^{-3} 0.01 0.1 10 10 Average density, $\langle n_{H} \rangle$ [cm⁻³]

Depletion of element X:

$$\begin{split} \delta_{\rm X} &\equiv \log\left(\frac{X}{H}\right)_{\rm gas} - \log\left(\frac{X}{H}\right)_{\rm r} \\ &\simeq \delta_0 + A_{\rm X} F_{\star} \end{split}$$

 \Rightarrow fraction of X locked in dust.

In the Milky Way:

- Good correlation between F_{*} & ⟨n_H⟩ ⇒ rapid grain growth in ISM.
- Rapid destruction by shocks (~ 300 Myr; e.g. Jones et al., 1994).

Depletion of element X:

$$\begin{split} \delta_{\rm X} &\equiv \log\left(\frac{X}{H}\right)_{\rm gas} - \log\left(\frac{X}{H}\right)_{\rm r} \\ &\simeq \delta_0 + A_{\rm X} F_{\star} \end{split}$$

 \Rightarrow fraction of X locked in dust.

In the Milky Way:

- Good correlation between F_{*}
 & ⟨n_H⟩ ⇒ rapid grain growth in ISM.
- Rapid destruction by shocks (~ 300 Myr; e.g. Jones et al., 1994).

 $\Rightarrow \simeq 90$ % of the grains were formed in the ISM (*e.g.* Tielens, 1998; Draine, 2009);

Depletion of element X:

$$\begin{split} \delta_{\rm X} &\equiv \log\left(\frac{X}{H}\right)_{\rm gas} - \log\left(\frac{X}{H}\right)_{\rm r} \\ &\simeq \delta_0 + A_{\rm X} F_{\star} \end{split}$$

 \Rightarrow fraction of X locked in dust.

In the Milky Way:

- Good correlation between F_{*}
 & ⟨n_H⟩ ⇒ rapid grain growth in ISM.
- Rapid destruction by shocks (~ 300 Myr; e.g. Jones et al., 1994).

 \Rightarrow ≈ 90 % of the grains were formed in the ISM (*e.g.* Tielens, 1998; Draine, 2009); \Rightarrow ≈ 10 % stardust (SN II & AGB).

How do environmental conditions affect the timescales of the following processes?

How do environmental conditions affect the timescales of the following processes?

1 Dust condensation in SNII ejecta;

How do environmental conditions affect the timescales of the following processes?

- Dust condensation in SNII ejecta;
- 2 Grain growth in cold clouds;

How do environmental conditions affect the timescales of the following processes?

Dust condensation in SNII ejecta;

3 Dust destruction by SNII blast waves.

2 Grain growth in cold clouds;

How do environmental conditions affect the timescales of the following processes?

- Dust condensation in SNII ejecta;
- 2 Grain growth in cold clouds;

3 Dust destruction by SNII blast waves.

 \Rightarrow in a statistical way.

How do environmental conditions affect the timescales of the following processes?

- Dust condensation in SNII ejecta;
- 2 Grain growth in cold clouds;

3 Dust destruction by SNII blast waves.

 \Rightarrow in a statistical way.

The Relevance of Nearby Galaxies

How do environmental conditions affect the timescales of the following processes?

- Dust condensation in SNII ejecta;
- 2 Grain growth in cold clouds;

3 Dust destruction by SNII blast waves.

 \Rightarrow in a statistical way.

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (Z), SF activity, etc.

How do environmental conditions affect the timescales of the following processes?

- Dust condensation in SNII ejecta;
- 2 Grain growth in cold clouds;

3 Dust destruction by SNII blast waves.

 \Rightarrow in a statistical way.

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (Z), SF activity, etc.

Dwarf/Irregular (low Z, gas rich)

F. Galliano (AIM)

How do environmental conditions affect the timescales of the following processes?

- Dust condensation in SNII ejecta;
- Grain growth in cold clouds;

3 Dust destruction by SNII blast waves.

 \Rightarrow in a statistical way.

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (Z), SF activity, etc.

Spiral/Disk (intermediate)

Dwarf/Irregular (low Z, gas rich)

F. Galliano (AIM)

How do environmental conditions affect the timescales of the following processes?

- Dust condensation in SNII ejecta;
- Grain growth in cold clouds;

- 3 Dust destruction by SNII blast waves.
- \Rightarrow in a statistical way.

The Relevance of Nearby Galaxies

Wider diversity of physical conditions than MW: gas fraction, metallicity (Z), SF activity, etc.

Spiral/Disk (intermediate)

Elliptical/Lenticular (high Z, gas poor)

Dwarf/Irregular (low Z, gas rich)

Galaxies from DustPedia (Davies et al., 2017):

Galaxies from DustPedia (Davies et al., 2017):

• 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).

Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- - 89 galaxies with all IR fluxes flagged.

Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- - 89 galaxies with all IR fluxes flagged.
- - 22 AGNs classified by Bianchi et al. (2018).

Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- - 89 galaxies with all IR fluxes flagged.
- - 22 AGNs classified by Bianchi et al. (2018).

 \Rightarrow 764 DustPedia galaxies.

Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- - 89 galaxies with all IR fluxes flagged.
- - 22 AGNs classified by Bianchi et al. (2018).
- \Rightarrow 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample (DGS; Madden et al., 2013):

• + 33 galaxies not in DustPedia (photometry from Rémy-Ruyer et al., 2013).

Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- - 89 galaxies with all IR fluxes flagged.
- - 22 AGNs classified by Bianchi et al. (2018).
- \Rightarrow 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample (DGS; Madden et al., 2013):

- + 33 galaxies not in DustPedia (photometry from Rémy-Ruyer et al., 2013).
- \Rightarrow 798 galaxies in total.

Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- - 89 galaxies with all IR fluxes flagged.
- - 22 AGNs classified by Bianchi et al. (2018).
- \Rightarrow 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample (DGS; Madden et al., 2013):

- + 33 galaxies not in DustPedia (photometry from Rémy-Ruyer et al., 2013).
- \Rightarrow 798 galaxies in total.

Ancillary Data Used as Prior Dependencies:

• Metallicity by De Vis et al. (2018; PG16S calibration).

Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- - 89 galaxies with all IR fluxes flagged.
- - 22 AGNs classified by Bianchi et al. (2018).
- \Rightarrow 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample (DGS; Madden et al., 2013):

- + 33 galaxies not in DustPedia (photometry from Rémy-Ruyer et al., 2013).
- \Rightarrow 798 galaxies in total.

- Metallicity by De Vis et al. (2018; PG16S calibration).
- Stellar mass from Nersesian et al. (2019).

Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- - 89 galaxies with all IR fluxes flagged.
- - 22 AGNs classified by Bianchi et al. (2018).
- \Rightarrow 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample (DGS; Madden et al., 2013):

- + 33 galaxies not in DustPedia (photometry from Rémy-Ruyer et al., 2013).
- \Rightarrow 798 galaxies in total.

- Metallicity by De Vis et al. (2018; PG16S calibration).
- Stellar mass from Nersesian et al. (2019).
- Total gas mass (HI+H₂) from De Vis *et al.* (2018).

Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- - 89 galaxies with all IR fluxes flagged.
- - 22 AGNs classified by Bianchi et al. (2018).
- \Rightarrow 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample (DGS; Madden et al., 2013):

- + 33 galaxies not in DustPedia (photometry from Rémy-Ruyer et al., 2013).
- \Rightarrow 798 galaxies in total.

- Metallicity by De Vis et al. (2018; PG16S calibration).
- Stellar mass from Nersesian et al. (2019).
- Total gas mass (HI+H₂) from De Vis *et al.* (2018).
- Additional resolved (interferometry) HI data of 19 dwarfs (Roychowdhury et al., in prep.).

Galaxies from DustPedia (Davies et al., 2017):

- 875 DustPedia galaxies observed by Herschel (photometry from Clark et al., 2018).
- - 89 galaxies with all IR fluxes flagged.
- - 22 AGNs classified by Bianchi et al. (2018).
- \Rightarrow 764 DustPedia galaxies.

Galaxies from the Dwarf Galaxy Sample (DGS; Madden et al., 2013):

- + 33 galaxies not in DustPedia (photometry from Rémy-Ruyer et al., 2013).
- \Rightarrow 798 galaxies in total.

- Metallicity by De Vis et al. (2018; PG16S calibration).
- Stellar mass from Nersesian et al. (2019).
- Total gas mass (HI+H₂) from De Vis *et al.* (2018).
- Additional resolved (interferometry) HI data of 19 dwarfs (Roychowdhury et al., in prep.).
- Star formation rates from Nersesian et al. (2019).

The Spectral Energy Distribution Model

The Spectral Energy Distribution Model

Grain Properties:

Grain Properties:

• THEMIS dust mixture (Jones *et al.*, 2017);

Grain Properties:

- THEMIS dust mixture (Jones *et al.*, 2017);
- Dale *et al.* (2001) ISRF prescription.

- THEMIS dust mixture (Jones *et al.*, 2017);
- Dale *et al.* (2001) ISRF prescription.
- \Rightarrow infer dust mass, M_{dust} .

- THEMIS dust mixture (Jones et al., 2017);
- Dale *et al.* (2001) ISRF prescription.
- \Rightarrow infer dust mass, M_{dust} .

Fitting Process:

- THEMIS dust mixture (Jones et al., 2017);
- Dale *et al.* (2001) ISRF prescription.
- \Rightarrow infer dust mass, M_{dust} .

Fitting Process:

Using HerBIE (Galliano, 2018):

NIR to mm fit;

- THEMIS dust mixture (Jones *et al.*, 2017);
- Dale *et al.* (2001) ISRF prescription.
- \Rightarrow infer dust mass, M_{dust} .

Fitting Process:

- NIR to mm fit;
- Correlated calibration uncertainties;

- THEMIS dust mixture (Jones et al., 2017);
- Dale *et al.* (2001) ISRF prescription.
- \Rightarrow infer dust mass, M_{dust} .

Fitting Process:

- NIR to mm fit;
- Correlated calibration uncertainties;
- Color corrections;

- THEMIS dust mixture (Jones *et al.*, 2017);
- Dale *et al.* (2001) ISRF prescription.
- \Rightarrow infer dust mass, M_{dust} .

Fitting Process:

- NIR to mm fit;
- Correlated calibration uncertainties;
- Color corrections;
- Hierarchical Bayesian approach ⇒ 1 single big PDF ∀ parameters & ∀ galaxies;

- THEMIS dust mixture (Jones et al., 2017);
- Dale *et al.* (2001) ISRF prescription.
- \Rightarrow infer dust mass, M_{dust} .

Fitting Process:

- NIR to mm fit;
- Correlated calibration uncertainties;
- Color corrections;
- Hierarchical Bayesian approach ⇒ 1 single big PDF ∀ parameters & ∀ galaxies;
- Ancillary data in the prior.

The Derived Scaling Relations

The Derived Scaling Relations

The Derived Scaling Relations

One-Zone Dust Evolution Model (Rowlands et al., 2014; De Vis et al., 2017):

One-Zone Dust Evolution Model (Rowlands *et al.*, 2014; De Vis *et al.*, 2017): SFH: delayed (Lee *et al.*, 2010);

One-Zone Dust Evolution Model (Rowlands et al., 2014; De Vis et al., 2017):

SFH: delayed (Lee *et al.*, 2010); **In/out-flow:** proportional to SFR;

One-Zone Dust Evolution Model (Rowlands et al., 2014; De Vis et al., 2017):

SFH: delayed (Lee et al., 2010);

In/out-flow: proportional to SFR;

SN yield: $\langle Y_{SN} \rangle$, free parameter (proportional to Todini & Ferrara, 2001);

One-Zone Dust Evolution Model (Rowlands et al., 2014; De Vis et al., 2017):

SFH: delayed (Lee *et al.*, 2010);

In/out-flow: proportional to SFR;

SN yield: $\langle Y_{SN} \rangle$, free parameter (proportional to Todini & Ferrara, 2001);

Grain growth: free efficiency, ϵ_{grow} (Mattsson *et al.*, 2012);

One-Zone Dust Evolution Model (Rowlands et al., 2014; De Vis et al., 2017):

SFH: delayed (Lee *et al.*, 2010);

In/out-flow: proportional to SFR;

SN yield: $\langle Y_{SN} \rangle$, free parameter (proportional to Todini & Ferrara, 2001);

Grain growth: free efficiency, ϵ_{grow} (Mattsson *et al.*, 2012);

SN destruction: free cleared gas mass, m_{gas}^{dest} (Dwek & Scalo, 1980).

Fitting the Scaling Relations:

Hierarchical Bayesian fit to M_{dust} , M_{gas} , M_{star} , SFR & 12 + log(O/H), varying:

One-Zone Dust Evolution Model (Rowlands *et al.*, 2014; De Vis *et al.*, 2017): SFH: delayed (Lee *et al.*, 2010); In/out-flow: proportional to SFR; SN yield: $\langle Y_{SN} \rangle$, free parameter (proportional to Todini & Ferrara, 2001); Grain growth: free efficiency, ϵ_{grow} (Mattsson *et al.*, 2012); SN destruction: free cleared gas mass, m_{gest}^{dest} (Dwek & Scalo, 1980).

Fitting the Scaling Relations:

Hierarchical Bayesian fit to M_{dust} , M_{gas} , M_{star} , SFR & 12 + log(O/H), varying:

Individual SFH & in/out-flow for each galaxy;

One-Zone Dust Evolution Model (Rowlands *et al.*, 2014; De Vis *et al.*, 2017): SFH: delayed (Lee *et al.*, 2010); In/out-flow: proportional to SFR; SN yield: $\langle Y_{SN} \rangle$, free parameter (proportional to Todini & Ferrara, 2001); Grain growth: free efficiency, ϵ_{grow} (Mattsson *et al.*, 2012); SN destruction: free cleared gas mass, m_{gas}^{dest} (Dwek & Scalo, 1980).

Fitting the Scaling Relations:

Hierarchical Bayesian fit to M_{dust} , M_{gas} , M_{star} , SFR & 12 + log(O/H), varying:

- Individual SFH & in/out-flow for each galaxy;
- Dust evolution efficiencies, $\langle Y_{SN} \rangle$, ϵ_{grow} & m_{gas}^{dest} common to each galaxies.

The Fitted Dust Evolution Tracks

The Fitted Dust Evolution Tracks

The Fitted Dust Evolution Tracks

The Fitted Dust Evolution Tracks

Conclusion: Dust Evolution Timescales

Conclusion: Dust Evolution Timescales

Conclusion: Dust Evolution Timescales

Dust evolution balance:

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way \Rightarrow rapid growth & destruction.

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way ⇒ rapid growth & destruction.

Low metallicity: dust formation dominated by SN II.

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way \Rightarrow rapid growth & destruction.

Low metallicity: dust formation dominated by SN II.

Take away points:

 Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions;

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way ⇒ rapid growth & destruction.

Low metallicity: dust formation dominated by SN II.

Take away points:

- Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions;
- Need both low- & high-Z sources
 ⇒ constrain both production regimes;

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way \Rightarrow rapid growth & destruction.

Low metallicity: dust formation dominated by SN II.

Take away points:

- Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions;
- Need both low- & high-Z sources
 ⇒ constrain both production regimes;
- Grain growth realistic for dust at high z \Rightarrow simply need Z $\gtrsim 1/5~Z_{\odot}.$

Dust evolution balance:

Solar metallicity: consistent with what we know of the Milky Way \Rightarrow rapid growth & destruction.

Low metallicity: dust formation dominated by SN II.

Take away points:

- Important to fit dust evolution models (not only overlay) ⇒ consistency & eliminate bad solutions;
- Need both low- & high-Z sources
 ⇒ constrain both production regimes;
- Grain growth realistic for dust at high $z \Rightarrow$ simply need $Z \gtrsim 1/5 Z_{\odot}$.
 - \Rightarrow important for interpreting NIKA2 observations @ high z

Evidence of Thermal Sputtering in Ellipticals

Peculiar trend of ellipticals:

- Dust deficient @ a given gas fraction;
- Their ISM is permeated by X-ray emitting coronal gas;
- Thermal sputtering could dominate (*e.g.* De Vis *et al.*, 2017).

In our sample:

 \Rightarrow correlation w/ X-ray luminosity supports this hypothesis \Rightarrow exclude ellipticals from dust evolution modelling.

The Dust-to-Metal Mass Ratio Variations

Inference of SFH-Related Parameters

