PANCO2
The second Pipeline for the Analysis of NIKA2 Cluster Observations

Florian Kéruzoré, LPSC, Grenoble
mmUniverse@NIKA2, June 2021
Introduction

- Cluster physics & cosmology need ICM pressure profile measurements
 - High-resolution SZ observations (see talk by L. Perotto)

- NIKA2 LPSZ: 50 clusters to measure pressure profile at high-z with high resolution SZ
 - Need fast and accurate individual pressure profile evaluations

- This work: a new Python software to measure ICM pressure distribution
 - Using bayesian MCMC to fit a pressure profile on an SZ map
 - **Forward modeling approach** that takes into account mm data features
 - **Flexible user inputs:** radial binning, parameter priors, choice of center, …
 - Optimized: uses efficient Python numerical computation libraries, MCMC multithreading

- So far tested on simulations and working on NIKA2 data (see talks by E. Artis, M. Muñoz)
 - Generalization to any instrument in progress
Algorithm

Validation on simulated input & results showcase

Validation on MUSIC hydrodynamical simulations

Conclusions & perspectives
Algorithm flowchart

Inputs
- Priors
- Cluster info (z, Y)
- P(r) model

NIKA2 pipeline outputs
- Transfer function
- NIKA2 map, noise covariance

External data (optional)
- Point source information
- X-ray density profile

MCMC adjustment
- NIKAZ map model
- Likelihood P(D | \(\theta\))
- Posterior distribution P(\(\theta | D\))
- MCMC sampling

Outputs
- Markov chains: posterior sampled in parameter space
- Pressure profile confidence intervals
- (T, K, M) profiles confidence intervals
- (R500, Y500, M500) confidence intervals
ICM pressure modeling

- Pressure distribution modeled by a pressure profile \(P(r) \)
- Two models implemented:
 - **gNFW:** \(P(r) = P_0 \left(\frac{r}{r_p} \right)^{-c} \left[1 + \left(\frac{r}{r_p} \right)^a \right]^{\frac{c-h}{a}} \)

 Normalisation \(P_0 \), two slopes \((b, c)\), transition radius \(r_p \) and sharpness \(a \)

 - **Binned:** \(P(R_i < r < R_{i+1}) = P_i \left(\frac{r}{R_i} \right)^{-\alpha_i} \)

 For \(n \) bins, \(n \) pressure \(P_i \) at radii \(R_i \), and \(\alpha_i = -\log(P_{i+1}/P_i) / \log(R_{i+1}/R_i) \)

 Inner and outer slopes (outside bins) are extrapolated
ICM pressure modeling

○ Pressure distribution modeled by a pressure profile $P(r)$

○ Two models implemented:

 • **gNFW:** $P(r) = P_0 (r/r_p)^{-c} \left[1 + (r/r_p)^a\right]^{\frac{c-b}{a}}$

 Normalisation P_0, two slopes (b, c), transition radius r_p and sharpness a

 • **Binned:** $P(R_i < r < R_{i+1}) = P_i (r/R_i)^{-\alpha_i}$

 For n bins, n pressure P_i at radii R_i, and $\alpha_i = -\frac{\log(P_{i+1}/P_i)}{\log(R_{i+1}/R_i)}$

 Inner and outer slopes (outside bins) are extrapolated

○ Advantages and drawbacks:

 gNFW

 • widely used
 → easy to compare with literature

 • smooth
 → easy to differentiate and extrapolate

 • restricted shape
 → cannot identify features

 • strongly correlated parameters
 → slow MCMC

 Binned

 • less restricted shape
 → can identify features

 • lower parameter correlations
 → faster MCMC

 • not smooth
 → trickier to differentiate and extrapolate

Best model depends on analysis goals
SZ signal modeling

- Pressure profile integrated along the line of sight
 Numerical integration for gNFW, analytical for binned

→ Compton parameter y map
SZ signal modeling

- Pressure profile integrated along the line of sight

 \[\text{Numerical integration for gNFW, analytical for binned} \]

 \[\rightarrow \text{Compton parameter } y \text{ map}\]

- Convolved by the NIKA2 beam (PSF smearing) and transfer function (pipeline filtering)

 \[\rightarrow \text{Filtered (data-like) } y \text{ map}\]
SZ signal modeling

- Pressure profile integrated along the line of sight
 Numerical integration for gNFW, analytical for binned

 → Compton parameter y map

- Convolved by the **NIKA2 beam** (PSF smearing) and **transfer function** (pipeline filtering)

 → Filtered (data-like) y map

- Conversion to surface brightness units
 Coefficient taken in input, treated as nuisance parameter

 → Filtered, calibrated SZ map
SZ signal modeling

- Pressure profile integrated along the line of sight
 Numerical integration for gNFW, analytical for binned

 \[\rightarrow \text{Compton parameter } y \text{ map} \]

- Convolved by the **NIKA2 beam** (PSF smearing) and **transfer function** (pipeline filtering)

 \[\rightarrow \text{Filtered (data-like) } y \text{ map} \]

- Conversion to surface brightness units
 Coefficient taken in input, treated as nuisance parameter

 \[\rightarrow \text{Filtered, calibrated SZ map} \]

- (Optional) Point source contamination: point sources with variable fluxes can be part of the model
 Treated as nuisance parameters; see Keruzore+20
SZ signal modeling

- Pressure profile integrated along the line of sight
 Numerical integration for gNFW, analytical for binned
 \[\rightarrow \text{Compton parameter } \gamma \text{ map} \]

- Convolved by the **NIKA2 beam** (PSF smearing)
 and **transfer function** (pipeline filtering)
 \[\rightarrow \text{Filtered (data-like) } \gamma \text{ map} \]

- Conversion to surface brightness units
 Coefficient taken in input, treated as nuisance parameter
 \[\rightarrow \text{Filtered, calibrated SZ map} \]

- (Optional) Point source contamination: point sources with variable fluxes can be part of the model
 Treated as nuisance parameters; see Keruzore+20

- Summary — Parameters of the model:
 - Pressure profile parameters
 - Conversion coefficient
 - (optional) Point source fluxes
 - (optional) Map zero level
Model fitting

- Model map from previous slide $M(\vartheta)$ fitted on the data with likelihood function:

$$-2 \log L(\vartheta) = \sum_{\text{pixels}} \left(\frac{D_{\text{NIKA2}} - M(\vartheta)}{\sigma_{\text{NIKA2}}} \right)^2 + \left(\frac{Y^\text{input}_\Delta - Y_\Delta(\vartheta)}{\delta Y^\text{input}_\Delta} \right)^2$$

Comparison between NIKA2 map D and model map $M(\vartheta)$ (with noise rms map σ)

Constraint on integrated SZ signal from input survey (Planck, ACT)

$$Y_\Delta(\vartheta) \propto \int_0^{R_\Delta} P_s(r; \vartheta) r^2 dr$$

- A noise covariance matrix can also be included for correlated noise
- Priors on parameters defined by the user \rightarrow posterior distribution
- MCMC sampling of the posterior distribution
 - Convergence check based on Gelman-Rubin and autocorrelation
 - User-defined analysis parameters: # of chains, burn-in length, convergence check parameters
- Once convergence is reached:
 - remove the chains considered unconverged by the convergence check
 - (optional) thinning: keep one point every autocorrelation length

\rightarrow Final chains
Algorithm

Validation on simulated input & results showcase

Validation on MUSIC hydrodynamical simulations

Conclusions & perspectives
Results on simulated input

- Test — run the fit:
 - Of a simulated cluster map
 - With white noise, realistic filtering
 - With constraints on Y_{500}
 - With a binned pressure profile
 - Combined with X-ray density profile

- Convergence reached in <10 minutes with 30 chains running on 30 threads

- Example will be included in the public release
Results: Data, model, residuals

Data

Best-fit model

Residuals

Data — Best-fit model

Residuals compatible with noise

Surface brightness [mJy/beam]
Results: Markov chains

$P_0 \ldots P_n$: pressure at radial bins;

Calib: Conversion coefficient;

Zero: map zero level

Chains visually converged
Results: parameter distributions

$P_0 \ldots P_n$: pressure at radial bins;

Calib: Conversion coefficient;

Zero: map zero level
Pressure profile interpolations

- For binned profiles, we need to interpolate the pressure profile between the radial bins.
- Interpolation scheme:
 - Perform interpolation on each pressure profile in the Markov chains
 - Use each profile to estimate quantities of interest (mass, temperature, etc)
 - Infer confidence intervals
- Power-law interpolation gives bumpy profiles, which leads to discontinuities in the mass profiles since $M_{\text{HSE}}(r) \propto \frac{dP}{dr}$
Pressure profile interpolations

- For binned profiles, we need to interpolate the pressure profile between the radial bins.

- Interpolation scheme:
 - Perform interpolation on each pressure profile in the Markov chains
 - Use each profile to estimate quantities of interest (mass, temperature, etc)
 - Infer confidence intervals

- Power-law interpolation gives bumpy profiles, which leads to discontinuities in the mass profiles since $M^{\text{HSE}}(r) \propto \frac{dP}{dr}$

- 3 interpolation methods implemented:
 - Power-law interpolation (linear in log-log) → bumpy profile
 - Spline interpolation (in log-log) → smooth but can give weird extrapolation
 - gNFW fit on each MCMC sample → smooth and “physics motivated”

Best method depends on analysis goals
Results: pressure profile

Pressure profile

- **NIKA2 binned**
- **NIKA2 power law interp.**
- **Input profile**

If binned, correlation matrix of the pressure bins

Recovered pressure profile in excellent agreement with the true input profile
Results: Entropy, temperature, mass

If available X-ray density:

X-ray + SZ profiles combination for further thermodynamical properties:

- Temperature $kT_e = P_e / n_e$
- Entropy $K_e = P_e n_e^{-5/3}$
- HSE mass $M^{HSE}(r) = -\frac{1}{G\mu m_p} \frac{r^2}{n_e} \frac{dP_e}{dr}$
Results: integrated quantities

If available X-ray density:

1. Compute overdensity profiles $\delta(r)$ from each mass profile from MCMC chains

2. Solve each profile for $\delta(r) = 500$
 $\rightarrow R_{500}$ value for each MCMC sample
 \rightarrow probability distribution for R_{500}

3. For each sample, compute $M(< R_{500}), Y(< R_{500})$
 $\rightarrow M_{500}, Y_{500}$ values for each MCMC sample
 \rightarrow probability distribution for M_{500}, Y_{500}
Outline

Algorithm

Validation on simulated input & results showcase

Validation on MUSIC hydrodynamical simulations

Conclusions & perspectives
Scope

- **Goal:** testing on “real life” clusters
- **Data used:** simulated NIKA2 observations of clusters from hydrodynamical simulations
 - Clusters from the MUSIC simulation (Sembolini+13)
 - 32 clusters forming a sample similar to the NIKA2 LPSZ
 - Maps from Ruppin+19: include cluster SZ signal, PSF filtering, transfer function filtering, correlated noise
- **PANCO2 analysis:** fit the pressure profile of the ICM
 - Binned pressure profile
 - From the center of the map (some clusters are off-centered)
 - Taking into account noise covariance matrix
Results examples: $z = 0.54$

Recovered profiles in agreement with true profiles
Results examples: $z = 0.82$

Recovered profiles in agreement with true profiles
Outline

Algorithm

Validation on simulated input & results showcase

Validation on MUSIC hydrodynamical simulations

Conclusions & perspectives
Summary

- **A new software** to fit pressure profiles on SZ maps
 - Takes into account mm data features through forward-modeling
 - Fit done using bayesian MCMC for inference on ICM physical properties
 - Highly customizable analyses
 - Very efficient: most simple analysis ~10 minutes

- **Validated** on simulations
 - Excellent agreement between truth and results for simple simulations
 - Same for complex hydrodynamical simulations

- **Official pipeline** for the NIKA2 SZ Large Program
 - Routinely used for LPSZ analyses
 - Efficient enough for cluster sample analyses

- **Public release**: stay tuned!
 - Generalization to any other instrument in progress
 - Will come with extensive documentation and an accompanying paper

Many thanks to all beta-testers for their reports and the resulting improvements