

Exotic hadrons: recent LHCb discoveries

Zehua Xu On behalf of the LHCb collaboration

Peking University

2021.03.10 @ La Thuile 2021

Outline

> Study of $B_s^0 \to J/\psi \pi^+ \pi^- K^+ K^-$ decays

[JHEP 02 (2021) 024]

► Evidence of a $J/\psi\Lambda$ resonance and observation of excited Ξ^{*-} states in the $\Xi_b \rightarrow J/\psi\Lambda K^-$ [arXiv:2012.10380, to appear in Science Bulletin]

> Observation of new resonances decaying to $J/\psi K^+$ and $J/\psi \phi <$

[arXiv:2103.01803]

Introduction

 Multiquark states are first predicted in 1964 in quark model, the original papers by M.Gell-Mann and G.Zweig.

The Nobel Prize in Physics 1969

- Mesons are 2-quark bounding states, baryons are 3-quark states, does multi-quark state exist?
- First tetraquark candidate observed at BELLE in 2003, first pentaquark candidate at LHCb in 2015.

Many exotic states observed at LHCb

59 new hadron states (conventional & exotic) observed at LHC, most of them discovered at LHCb [Taken from CERNCOURIER]

Diagram of discovery The ATLAS, CMS and LHCb collaborations have discovered 59 new hadronic states so far – the most recent being the four tetraquarks reported in this article. Credit: CERN 3/10/21

Study of $B_s^0 \to J/\psi \pi^+ \pi^- K^+ K^-$ decays

Study of $B_s^0 \rightarrow J/\psi \pi^+ \pi^- K^+ K^-$ decays

Motivation:

[JHEP 02 (2021) 024]

- $\succ \chi_{c1}(3872)$ and $J/\psi\phi$ structures can be studied in this decay
- Production rate measurements can shed light on the nature of exotic states

► Decays of $B_s^0 \to J/\psi K^{*0} \overline{K}^{*0}$ and $B_s^0 \to \chi_{c1}(3872)K^+K^-$ observed for the first time.

> Most precise single measurement of B_s^0 mass:

$$m_{
m B^0_s} = 5366.98 \pm 0.07 \pm 0.13 \, {
m MeV}/c^2$$
 .

X(4740) observed in this channel

> A peak around 4740 MeV in $J/\psi\phi$ mass spectrum

Fitting with the Breit-Wigner lineshape:

 $\begin{array}{rcl} m_{{\rm X}(4740)} &=& 4741 \pm 6 \ \pm 6 \ {\rm MeV}/c^2 \,, \\ \Gamma_{{\rm X}(4740)} &=& 53 \pm 15 \pm 11 \, {\rm MeV} \,, \end{array}$

- Significance of $X(4740) > 5\sigma$
- Are X(4700) and X(4740) the same state? Further amplitude studies are required.
 - Two channels peaks roughly at the same place

Evidence of a $J/\psi\Lambda$ resonance and observation of excited Ξ^{*-} states in the $\Xi_b \to J/\psi\Lambda K^-$

Motivation

➤ Two pentaquark states (P_c⁺) observed in Λ⁰_b → J/ψpK⁻ decay in 2015 at LHCb.
 ➤ New narrow P_c(4312)⁺ observed in 2019 at LHCb, P_c(4450)⁺ is resolved to two states. (with 10 times statistics)
 [PRL 115 (2015) 072001]
 [PRL 122 (2019) 222001]

9

With *u* quark changed to *s* quark, $\Xi_b^- \rightarrow J/\psi \Lambda K^-$ is an ideal channel to search for hidden-charm pentaquark (P_{cs}) state with strangeness.

Run 1 + Run 2 data sample

▶ ~1750 Ξ_b^- signals, purity ~ 80%

[arXiv:2012.10380]

Significance of a P_{cs} in this channel [arXiv:2012.10380]

 \succ ~3.1σ significance of *P_{cs}* (Syst. uncertainty and look-elsewhere effect considered)

A significant improvement is also found in the $\cos\theta_{P_{cs}}$ distributions when the P_{cs} included in fitting

Fitting results

- > Two Ξ^{*-} states observed for the first time in Ξ_b^- decay
- Mass of $P_{cs}(4459)^0$ 19 MeV below the $\Xi_c^0 \overline{D}^{*0}$ threshold, similar to $P_c(4440)^+$ and $P_c(4457)^+$ pentaquark states.

Observation of new resonances decaying to $J/\psi K^+$ and $J/\psi \phi$ in $B^+ \to J/\psi \phi K^+$

Motivation-1

- ➤ The channel $B^+ \rightarrow J/\psi \phi K^+$ was studied at LHCb using Run 1 sample.(First amplitude analysis for this channel)
- The width of X(4140) is $83 \pm 21^{+21}_{-14}$ MeV, larger than the value measured from other experiments.

Year	Experiment	$B ightarrow J\!/\psi\phi K$		X(4140) peak		[PRD 95 (2017]	012002
	luminosity	yield	Mass [MeV]	Width [MeV]	Sign.	Fraction $\%$	
2008	CDF 2.7 fb^{-1} [1]	58 ± 10	$4143.0 {\pm} 2.9 {\pm} 1.2$	$11.7^{+8.3}_{-5.0}{\pm}3.7$	3.8σ		
2009	Belle [22]	325 ± 21	4143.0 fixed	11.7 fixed	1.9σ		
2011	$CDF \ 6.0 \ fb^{-1} \ [29]$	115 ± 12	$4143.4 {}^{+2.9}_{-3.0}{\pm}0.6$	$15.3^{+10.4}_{-6.1}\pm2.5$	5.0σ	$14.9 \pm 3.9 \pm 2.4$	
2011	LHCb 0.37 fb^{-1} [21]	346 ± 20	4143.4 fixed	15.3 fixed	1.4σ	< 7 @ 90%CL	
2013	CMS 5.2 fb $^{-1}$ [25]	2480 ± 160	$4148.0 {\pm} 2.4 {\pm} 6.3$	$28 \ ^{+15}_{-11} \ \pm 19$	5.0σ	$10{\pm}3 \; ({\rm stat.})$	
2013	D0 10.4 fb $^{-1}$ [26]	215 ± 37	$4159.0 {\pm} 4.3 {\pm} 6.6$	$19.9 {\pm} 12.6 {}^{+1.0}_{-8.0}$	3.0σ	$21{\pm}8{\pm}4$	
2014	BaBar [24]	189 ± 14	4143.4 fixed	15.3 fixed	1.6σ	< 13.3 @ 90%CL	
2015	D0 10.4 fb ⁻¹ [27]	$p\bar{p} \rightarrow J/\psi \phi$	$4152.5 {\pm} 1.7 {}^{+6.2}_{-5.4}$	$16.3 {\pm} 5.6 {\pm} 11.4$	4.7σ (5.	$7\sigma)$	
Average			$4147.1 {\pm} 2.4$	$15.7 {\pm} 6.3$			

Three other $J/\psi\phi$ structures, X(4274), X(4500) and X(4700) were observed in Run-1 analysis.

Motivation-2

- → Hint of $J/\psi K^+$ structure in Run 1 analysis.
- ► Z_{cs}^+ in $B^+ \to J/\psi \phi K^+$ decay has similar topology as Z_c^+ in $B^+ \to J/\psi K^- \pi^+$ decay, and P_c^+ in $\Lambda_b^0 \to J/\psi p K^-$
- The observation of X(2900) containing strange quark, and the evidence of P_{cs}^+ implies possible existence of Z_{cs}^+ .

Run 1 and Run 2 sample

Candidates / (2 MeV) 0000 Candidates / (2 MeV) 0000 Candidates / (2 MeV) Selection is optimized **D**ata LHCb — Total fit 9 fb⁻¹ \geq ~ 24k signal (6 times larger than ····· Background the previous publication) overall background fraction $\sim 4\%$ (a factor of 6 smaller) 1000 5250 5300 5350 $m_{J/\psi\phi K^+}$ [MeV] Several X states along $m_{I/\psi\phi}$. Clear structures in Dalitz plot 16 $m_{J/\psi K^+}^2$ [GeV²] $m_{\phi K^+}^2 [\text{GeV}^2]$ LHCb LHCb 20 14 18 9 fb⁻¹ 9 fb⁻¹ 12 16 14 10 Z_{cs} 12 3.5 10 state? 15 3 14 2.5 13 18 18 20 22 20 22 $m_{J/\psi\phi}^2$ [GeV²] $m_{J/\psi\phi}^2$ [GeV²]

Clearly visible: 4 structures in $J/\psi\phi$ and an obvious structure in $J/\psi K$

Zehua.XU

6D amplitude fitting

The fitting model was optimized based on previous analysis using Run 1 sample. More K* states cannot improve the fitting By testing the contributions from other states

 [arXiv:2103.01803]

 [arXiv:2103.01803]

Fitting results

[arXiv:2103.01803]

_						
	Contribution	Significance $[\times\sigma]$	$M_0[{ m MeV}]$	$\Gamma_0 [{ m MeV}]$	FF [%]	 Fit fraction
_	$X(2^{-})$					
	X(4150)	4.8 (8.7)	$4146\pm18\pm33$	$135\pm28{}^{+59}_{-30}$	$2.0 \pm 0.5 {}^{+ 0.8}_{- 1.0}$	
_	$X(1^{-})$					
	X(4630)	5.5(5.7)	$4626 \pm 16 {}^{+ 18}_{- 110}$	$174 \pm 27 {}^{+ 134}_{- 73}$	$2.6\pm0.5{}^{+2.9}_{-1.5}$	
_	All $X(0^+)$				$20 \pm 5 {}^{+ 14}_{- 7}$	
	X(4500)	20(20)	$4474\pm3\pm3$	$77\pm6{}^{+10}_{-8}$	$5.6 \pm 0.7 {}^{+2.4}_{-0.6}$	
	X(4700)	17 (18)	$4694 \pm 4 {}^{+ 16}_{- 3}$	$87\pm8{}^{+16}_{-6}$	$8.9 \pm 1.2 {}^{+4.9}_{-1.4}$	
	$\mathrm{NR}_{J/\psi\phi}$	4.8(5.7)			$28\pm8{}^{+19}_{-11}$	
	All $X(1^+)$				$26\pm3^{+8}_{-10}$	
	X(4140)	13(16)	$4118 \pm 11 {}^{+ 19}_{- 36}$	$162 \pm 21 {}^{+ 24}_{- 49}$	$17\pm3{}^{+19}_{-6}$	
	X(4274)	18 (18)	$4294 \pm 4 {}^{+ 3}_{- 6}$	$53\pm5\pm5$	$2.8\pm0.5{}^{+0.8}_{-0.4}$	
	X(4685)	15(15)	$4684 \pm 7 {}^{+ 13}_{- 16}$	$126 \pm 15 ^{+37}_{-41}$	$7.2 \pm 1.0 {}^{+4.0}_{-2.0}$	
	All $Z_{cs}(1^+)$				$25\pm5^{+11}_{-12}$	
	$Z_{cs}(4000)$	15(16)	$4003 \pm 6 {}^{+}_{-} {}^{4}_{-}$	$131\pm15\pm26$	$9.4\pm2.1\pm3.4$	
	$Z_{cs}(4220)$	5.9(8.4)	$4216 \pm 24 {}^{+43}_{-30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$10\pm4{}^{+10}_{-7}$	

≻ Two $Z_{cs}^+ \rightarrow J/\psi K^+$ states were observed, both significance > 5σ

> New X(4630) and X(4685) were observed, both significance > 5σ

> Previous results using Run 1 sample were confirmed with large significance

Zehua.XU

Z_{cs} results

> The J^P of $Z_{cs}(4000)^+$ is determined as 1^+ , the J^P of $Z_{cs}(4220)^+$ is 1^+ or 1^- > The fit projection onto $J/\psi K^+$ in two slices of $J/\psi \phi$

Resonance character of $Z_{cs}(4000)^+$ from Argand plot, obtained from lineshape independent fitting.

3/10/21

Comparison to BESIII

- ▷ BESIII experiment recently reported 5.3σ observation of a very narrow Z_{cs}^- in $D_s D^* + DD_s^*$ mass distributions, when our results were circulated in collaboration.
- Tests are applied:
 - Fixed $Z_{cs}(4000)^+$ to BESIII's result; twice the log-likelihood is worse by 160 units.
 - Adding on top of the default model almost doesn't improve the fit likelihood
- ➢ No evidence that Z_{cs}(4000)⁺ state is the same as the Z_{cs}(3985)[−] seen by BESIII.

X results

The measured mass of X(4140) is $4118 \pm 11^{+19}_{-36}$ MeV, with width $162 \pm 21^{+24}_{-49}$ MeV, not very narrow; the mass is around the threshold of $J/\psi\phi$.

No evidence of a narrow threshold resonance at $J/\psi\phi$ in our data

Comparing the unnormalized Legendre moments of Run 1 model and updated model, new X(4630) and X(4685) are required.

> The J^P of X(4685) is 1⁺, and the $J^P X(4630)$ is not determined.

Summary

Presented only newest analyses performed by LHCb

- > X(4740) is observed in $B_s^0 \rightarrow J/\psi \pi^+ \pi^- K^+ K^-$ decays
- > Evidence of P_{cs}^+ state in $\Xi_b^- \to J/\psi \Lambda K^-$ is reported for first time
- Four new $J/\psi K^+$ and $J/\psi \phi$ structures are observed $B^+ \rightarrow J/\psi \phi K^+$
 - 1. 4 X states previous observed are confirmed, and J^P determined with higher significances.
 - 2. $Z_{cs}(4000)^+ \rightarrow J/\psi K^+$ state is observed for first time, the significance is around 15σ , and $J^P = 1^+$ is also determined; another broad $Z_{cs}(4220)^+$ is also observed
 - 3. A new 1 + X(4685) is $> 15\sigma$, and new $X(4630) > 5\sigma$
 - 4. An exotic zoo channel, $B^+ \rightarrow J/\psi \phi K^+$

Prospects

- Prospects of more exotic states observed at LHCb:
 - > To check the consistence between the X(4740) in $B_s^0 \to J/\psi \pi^+ \pi^- K^+ K^$ and X(4700) in $B^+ \to J/\psi \phi K^+$.
 - > First P_{cs} evidence is reported, to confirm it with larger data sample.
 - > Some new exotic observations in $B^+ \rightarrow J/\psi \phi K^+$ channel, accompanied by some intriguing questions; expect more data sample.

- LHCb is now boosting the data to a new level
 - Expect to 7x more data (14x hadronic events) by 2029 than current, half of these by 2024
 - Could have another 6x increase from Upgrade II

Backup

Angular distribution

Argand plot

• Model independent fitting: the lineshape of $Z_{cs}(4000)^+$ is not presupposed.

Similar method to $Z_c(4430)^+$ study at LHCb: [Phys. Rev. Lett. 112, 222002]

8 $m(J/\psi K^+)$ points:

 $m \pm 1/6\Gamma, m \pm 1/2\Gamma, m \pm 5/6\Gamma, m \pm 5/4\Gamma$

Where *m* and Γ are the mass and width of $Z_{cs}(4000)^+$ obtained from nominal model.

 $Z_{cs}(4000)^+$ amplitude as the combination of independent complex amplitudes at 8 points covering the $Z_{cs}(4000)^+$ peak.

[arXiv:2103.01803]

Legendre moments

Unnormalized Legendre moments:

$< P_{\ell}^{U} > = \sum_{i=1}^{N_{\text{events}}} \frac{1}{\epsilon_{i}} P_{\ell}(\cos \theta)$

Legendre polynomial of order l and efficiency for each event i.

The moments distribution is obtained by a $\frac{1}{\epsilon_i} P_l(\cos\theta)$ weight.

Angular moments of $J/\psi\phi$ helicity angle

Legendre moments

[arXiv:2103.01803]

Angular moments of $J/\psi K^+$ helicity angle

Angular moments of ϕK^+ helicity angle

K* model improved

More K^* states are included first, $K^*(1410)$, K(1460) and $K_1(1400)$. Help to describe the data better than previous one.

