Crunching Away the Hierarchy Problem

Csaba Csáki (Cornell) with Raffaele d'Agnolo, Michael Geller, Ameen Ismail

2021 La Thuile Conference March 11, 2021

<u>Hierarchy problem</u>

All elementary scalars expected to be **ultra heavy**

$$\Delta m_H^2 \propto rac{g^2}{16\pi^2} \Lambda^2$$

Mass of Higgs not protected by symmetries (like fermion, gauge boson)

• Sensitive to any UV scale physics - Λ a stand-in for mass of whatever new physical particle appears there

Symmetry based approach

- New physics at the TeV scale shields from UV corrections - SUSY, compositeness/XD
- Typically expect new colored particles at the TeV scale ``top partners"
- Not observed at the LHC putting these models under serious stress

<u>Direct bounds</u>

Spin 1/2 top partners

Symmetry based approach

- New physics at the TeV scale shields from UV corrections - SUSY, compositeness/XD
- Typically expect new colored particles at the TeV scale ``top partners"
- Not observed at the LHC putting these models under serious stress
- Could still avoid them via ``neutral naturalness/ Twin Higgs" type models
- Those still possible, though deviation to Higgs coupling will test those eventually as well

Cosmological selection/relaxation

- Correction to Higgs mass not suppressed
- Cosmological dynamics of some light field leads to selection of realistic vacuum
- Examples: relaxion, N-naturalness, ...
- Very interesting direction, quite baroque models (or regions of parameter space)

Anthropic approach

- Multiverse with different patches each patch has a different Higgs mass and O(1) quartics.
- Only patches with small Higgs VEV can support life (otherwise no chemistry?)
- No way to experimentally verify
- Also motivation for split SUSY

- Our proposal: somewhere in between, take best aspects of each approach
- Assume we still have a multiverse with the various patches having different Higgs masses/VEVs
- There is also a hidden CFT that is spontaneously broken producing a (light) dilaton
- True ground state of CFT has large negative vacuum energy leading to the rapid crunch of the patch in that vacuum

• The true minimum has a very large negative CC

- The techniquarks of the CFT charged under SU(2) EW symmetry leads to interaction between dilaton and SM Higgs
- If Higgs VEV non-zero < TeV second metastable minimum of the dilaton potential appears at small vacuum energy
- Patches with large or vanishing Higgs VEV will quickly dynamically crunch, only patches with small Higgs VEVs will survive over a long period
- Patches with small Higgs VEV will dominate after long time (unlike anthropics)

• New minimum of potential due to $\langle H
angle \sim {
m TeV}$

• At new minimum CC should be smaller so that universe can undergo normal inflation and expansion

The RS/GW setup

• GW field ϕ in the bulk, with small mass δ

• Effective dilaton potential after integrating out bulk $V_{\rm GW}(\chi) = -\lambda \chi^4 + \lambda_{\rm GW} \frac{\chi^{4+\delta}}{k^{\delta}}$

Effect of the Higgs

• Higgs also in the bulk (otherwise can not influence dilaton)

• Assume UV brane Higgs potential is varying in different patches and $m_{H,i}^2$ is $\mathcal{O}(\Lambda^2)$

Effect of the Higgs

- Assume bulk Higgs mass $\frac{m_b^2}{k^2} \approx -3 + \alpha$ (Higgs approx. linear)
- General z-dependence ~ $z^{2\pm\sqrt{4+m_b^2}}$
- Effect of UV source on IR brane: $H_{\rm UV}\chi^{\sqrt{4+m_b^2-2}} = H_{\rm UV}\chi^{\frac{\alpha}{2}-1}$
- Adding IR localized Higgs terms will result in terms

$$|H|^2\chi^{2+lpha} \qquad |H|^4\chi^{2lpha} \qquad \qquad |H|^2\chi^{2+lpha+\epsilon}$$

The CFT interpretation

- A CFT which is charged under SU(2). Turn on two operators:
- singlet \mathcal{O}_{ϵ} of dimension 4ϵ
- doublet \mathcal{O}_H of dimension $3 + \alpha/2$.
- We couple the doublet operator to the Higgs in the UV: $\tilde{\lambda}_H \mathcal{O}_H^{\dagger} H + \tilde{\lambda}_e \mathcal{O}_e$
- In the IR, we get the effective potential:

$$V_{eff} = a_0 \chi^4 + a_1 \tilde{\lambda}_H^2 H^2 \chi^{2+\alpha} + a_2 \tilde{\lambda}_H^4 H^4 \chi^{2\alpha} + a_3 \tilde{\lambda}_{\epsilon} \chi^{4+\epsilon} + a_4 \tilde{\lambda}_{\epsilon} \tilde{\lambda}_H^2 H^2 \chi^{2+\alpha+\epsilon} + \dots$$

• The full potential: $V(\chi, H) = V_{GW}(\chi) + V_{H\chi}(\chi, H) + V_H(H)$.

$$V_{H}(H) = -m_{H,i}^{2} H^{\dagger} H + \lambda (H^{\dagger} H)^{2}$$
$$V_{GW}(\chi) = -\lambda \chi^{4} + \lambda_{GW} \frac{\chi^{4+\delta}}{k^{\delta}}$$
$$V_{H\chi}(\chi, H) = \lambda_{2} |H|^{2} \frac{\chi^{2+\alpha}}{k^{\alpha}} - \lambda_{H\epsilon} |H|^{2} \frac{\chi^{2+\alpha+\epsilon}}{k^{\alpha+\epsilon}} - \lambda_{4} |H|^{4} \frac{\chi^{2\alpha}}{k^{2\alpha}}$$

• Second minimum (close to the origin) exists only if <H> is smaller than a critical value

Generating the hierarchies

- The scale of the Higgs VEV is set by $h_{crit} \sim k \left(\frac{\lambda_2}{\lambda_{H\epsilon}}\right)^{\frac{1}{\epsilon}}$
- To get $h_{crit} \ll k$ need $\epsilon \ll 1$ and $\lambda_2 < \lambda_{H\epsilon}$
- Technically similar to the GW implementation of RS hierarchy (but here Higgses are elementary, totally different physics driving the hierarchy)

 In CFT language again need operators with small anomalous dimensions

Generating the hierarchies

Since Higgs is in the bulk, we will also have SU(2) bulk gauge bosons and their KK modes. Those have to be > 3-4 TeV from LHC bounds.

• Implies little hierarchy
$$\frac{h}{\chi_{\min}} \simeq \frac{h_{\text{crit}}}{\chi_{\min}} \lesssim 0.1$$

• Since $\chi_{\min} \simeq \left(\frac{h^2}{k^{\alpha}} \frac{2\alpha\lambda_4}{(2+\alpha)\lambda_2}\right)^{\frac{1}{2-\alpha}}$ need $\lambda_2, \lambda_{H\epsilon} < 10^{-2} \alpha \lambda_4$

- To avoid low Landau-pole $\lambda_4 \lesssim 3$, leading to $\lambda_2 \lesssim 10^{-2}$

• To ensure $V_{\chi H}$ dominates over $V_{\rm GW}$ at $\chi_{\rm crit}$ also need $\lambda \sim \lambda_{\rm GW} \lesssim \frac{\lambda_2^2}{\lambda_4}$ $\lambda, \lambda_{\rm GW} \lesssim 10^{-5}$

<u>A light dilaton</u>

 Consequence of little hierarchy: dilaton must be quite light and weakly coupled

• Mixing with Higgs: $\sin \theta \sim \frac{(\lambda_2 - \lambda_{H\epsilon})}{N} \frac{h\chi_{\min}}{m_h^2}$

• Dilaton mass $m_{\chi} \simeq m_h \sqrt{\frac{h}{\chi_{\min}} \frac{\pi \sin \theta}{\sqrt{6}N}} - \frac{8\pi^2 (\lambda - \lambda_{\rm GW})}{N^2} \frac{\chi_{\min}^2}{m_h^2}}$

- Mass bound: $0.2m_h \gtrsim m_\chi \gtrsim 2\pi \frac{\chi_{\min}}{N} \sqrt{2(\lambda \lambda_{\rm GW})}$
- Since $\chi_{\min} \simeq \text{TeV}, N \lesssim 40 \text{ and } \lambda, \lambda_{\text{GW}} \gtrsim 10^{-6}$

• Numerically $0.1 \text{ GeV} \lesssim m_{\chi} \lesssim 10 \text{ GeV}$

A weakly coupled dilaton

- Dilaton will inherit Higgs interactions with SM matter from small mixing $\sin \theta \sim m_{\chi}^2/m_h^2$
- Numerically $10^{-7} \le \sin \theta \le 10^{-2}$
- Direct coupling to bulk gauge bosons via

$$\frac{\chi}{2\chi_{\min}\log\frac{R'}{R}}(F_{\mu\nu}^2 + Z_{\mu\nu}^2 + 2W_{\mu\nu}^2)$$

- Significant for photons $\frac{1}{4\Lambda_{\gamma\gamma}}\tilde{\chi}F_{\mu\nu}^2$, sub-leading for W,Z

Scan of parameter space

• Generated 10⁵ points in region

 $k = 10^{11}$ GeV, $\delta = 0.01$, N = 3 and $\alpha = 0.05$, while uniformly sampling the other parameters from the ranges $\lambda_{\rm GW} \in (0.5, 1.5) \times 10^{-5}$, $\lambda_2 \in (0.5, 1.5) \times 10^{-2}$, $\lambda_{H\epsilon} \in$ $(2, 4) \cdot \lambda_2$, $\lambda_4 \in (2, 3)$, and $\epsilon \in (0.03, 0.1)$. We also took $\lambda = 1.1 \lambda_{\rm GW}$ and set the Higgs VEV $\langle H \rangle \simeq 174$ GeV.

Requiring:

- The metastable vacuum must exist and be located at $\chi_{\rm crit} > 1$ TeV.
- $h_{\text{crit}} \leq 2$ TeV so the Higgs VEV is natural.
- The metastable vacuum reproduces the SM values of the Higgs mass and VEV and corresponds to a stable local minimum of the 2 dimensional potential.
- The O(4) bounce action S_4 between the two potential minima is at least $\mathcal{O}(200)$ so that tunnelling is suppressed.

Scan of parameter space

 Second scan 5 10⁴ points to test region with smaller dilaton masses

 $N = 8, \ \alpha = 0.1, \ \lambda_{\rm GW} = 2 \times 10^{-6},$

 $\lambda_2 \in (0.5, 1) \times 10^{-2}$, and $\epsilon \in (0.05, 0.1)$

And same requirements

Dilaton couplings

Constraints on dilaton

- Rare B-meson decays LHCb and future LHCb projections
- $e^+e^- \rightarrow Z\chi$ at FCCee on the Z-pole
- Projections for searches for hidden light particles

Constraints on dilaton

- Direct photon coupling tested at LEP from $e^+e^- \rightarrow \gamma \chi \rightarrow 3\gamma$
- FCCee will cover full region
- · Future heavy ion collisions will also have some sensitivity

Experimental signals

- Light dilaton that can be observed (large regions already excluded)
- Also have W,Z KK modes but these don't play a role in stabilizing hierarchy
- No top partners!
- While the construction is based on RS model, the Higgs is elementary here
- Physics (and signals) are completely different from holographic composite Higgs/MCHM-type constructions

Cosmological constraints

 During inflation Hubble scale should be below EW so that dilaton potential sensitive to Higgs VEV

$$M_I < \sqrt{M_W M_{\rm Pl}} \simeq 10^7 {\rm ~TeV}$$

- Cutoff should be below this $\Lambda < M_I < 10^7 {
 m ~TeV}$
- Energy density in true vacuum really negative $\lambda \chi^4_{GW} > M_I^4 \longrightarrow k \gtrsim 17 M_I \text{ for } \lambda \simeq 10^{-5}$
- If CC problem solved by anthropics maximal CC should not overwhelm negative CC at GW minimum: $\Lambda_{max} < \lambda \chi^4_{GW}$

Avoiding Eternal Inflation

 Ensure that patch actually crunches for VEV's with small or large <H>

• Field should roll down to true minimum, not get stuck eternally inflating. To ensure: quantum diffusion never dominates over classical evolution

 At large Higgs VEVs second derivative of potential at least O(v²) - and Hubble already required to be smaller

• At zero Higgs VEV situation more subtle - only have χ^4 term very small. Need to add new gauge group in bulk - a la Servant/von Harling

- New approach to the hierarchy problem
- Regions in space with large (or 0) Higgs VEV dynamically crunch
- Implementation via RS/GW construction
- Predicts light dilaton, can be measured
- No top partners, but W,Z KK modes
- Can also find a similar ``solution" to the CC problem (but didn't fit on the margins)

Backup slides

Properties of the potential

• Find critical value of h by neglecting GW piece

$$V_{H\chi}(\chi,H) = \lambda_2 |H|^2 \frac{\chi^{2+\alpha}}{k^{\alpha}} - \lambda_{H\epsilon} |H|^2 \frac{\chi^{2+\alpha+\epsilon}}{k^{\alpha+\epsilon}} - \lambda_4 |H|^4 \frac{\chi^{2\alpha}}{k^{2\alpha}}$$
$$h_{crit} \sim k \left(\frac{\lambda_2}{\lambda_{H\epsilon}}\right)^{\frac{1}{\epsilon}}$$

• Value of χ at inflection point: χ

$$\chi_{\rm crit} = k \left(\frac{\lambda_2}{\lambda_{H\epsilon}} \frac{4 - \alpha^2}{(2 + \epsilon)^2 - \alpha^2} \right)^{1/\epsilon}$$

• The minimum:

$$\chi_{\min} \simeq \left(\frac{h^2}{k^{\alpha}} \frac{2\alpha\lambda_4}{(2+\alpha)\lambda_2}\right)^{\frac{1}{2-\alpha}}$$

The small x region

• To ensure we don't get stuck at small χ need to add additional piece to dilaton potential $\lambda_{\gamma} \chi^{\gamma} \tilde{\Lambda}^{4-\gamma}$

- Effect of additional small explicit breaking of scale invariance at scale $\tilde{\Lambda} \ll k$
- Until scale $\chi_* \sim \tilde{\Lambda} \lambda_{\gamma}^{\frac{1}{4-\gamma}}$ effect negligible, but below description in terms of dilaton breaks down. Effectively as if negative mass of order χ_*^2
- Can get this by putting another gauge group in the bulk (for example QCD itself)

$$\frac{1}{g^2(Q,\chi)} = \frac{\log\frac{k}{\chi}}{kg_5^2} - \frac{b_{\rm UV}}{8\pi^2}\log\frac{k}{Q} - \frac{b_{\rm IR}}{8\pi^2}\log\frac{\chi}{Q} + \tau$$

The small x region

• The dynamical scale of the bulk gauge group:

$$\tilde{\Lambda}(\chi) = \left(k^{b_{\rm UV}} \chi^{b_{\rm IR}} e^{-8\pi^2 \tau} \left(\frac{\chi}{k}\right)^{-b_{\rm CFT}}\right)^{\frac{1}{b_{\rm UV}+b_{\rm IR}}} = \Lambda_0 \left(\frac{\chi}{\chi_{\rm min}}\right)^n$$

- For QCD and benchmark point $\chi_{\min} \simeq 1 \text{ TeV}$ and $\langle H \rangle = 0$ we get $\tilde{\Lambda}(\chi_{\min}) \sim \Lambda_{\text{QCD}} \sim 100 \text{ MeV}$ and $\chi_* \sim$
- $10 100 {
 m ~MeV} \sim \Lambda_{\rm QCD}$
- This will ensure no eternal inflation as long as $\Lambda < \sqrt{\chi_* M_{\rm Pl}} \lesssim 10^5 ~{\rm TeV}$
- With other bulk gauge groups can push ∧ to 10⁷ TeV
- This will also give $h_{\min} \sim 0.1 \chi_*$