

Dark Matter and BSM Searches Highlights at ATLAS and CMS

Jeff Dandoy For the ATLAS and CMS Collaborations

34th Les Rencontres de Physique de la Vallée d'Aoste 11 March 2021

Standard Model Mysteries

Many mysteries remain unexplained by the Standard Model

Exciting time for Particle Exploration!

- Massively interesting dataset from LHC between 2015 and 2018
 - Roughly 140 fb⁻¹ of √s=13 TeV data collected by both ATLAS & CMS, thanks to impressive LHC operation & high data-taking efficiency of both experiments
- Facilitates a rich program of exploration for new physics, even amidst the pandemic

Don't want to discover more of these

Supersymmetry

- Elegant solutions to SM mysteries
- Still plenty of phase-space to be hiding

R-parity conservation Stable & invisible LSP (Lightest SUSY Particle) **R-parity violation** Fantastic decays

Supersymmetry

- Elegant solutions to SM mysteries
- Still plenty of phase-space to be hiding

R-parity conservation Stable & invisible LSP (Lightest SUSY Particle)

Strong production

h

Exotic Beyond-the-SM Physics

• Immense number of models inspiring many searches

DM+X visible only by initial-state radiation...

...or more complex final-states

Exotic Beyond-the-SM Physics

• Immense number of models inspiring many searches

 $\bar{\nu}'_{\tau}$ W^- q' τ^+ \bar{q}

Leptoquarks Fantastic lepton+quark decays

Vector-like fermions Fantastic boson + fermion decays

and much more (Composite Fermions, LLPs, Heavy Resonances, ...)

New Resonance Decays to Heavy SM Particles

- CMS "Beyond-2-Generations" and ATLAS "Higgs & DiBoson Searches" groups
- Focus on new resonances with **boosted decays to top-quarks**, *W*, *Z*, & Higgs

Dark Matter via Monojet

• Extremely energetic jets with no large recoil

Dark Matter via Monojet

- Extremely energetic jets with no large recoil
- Stronger results with 4x more data & improved background modeling or constraints (particularly Z→vv)

monojet *p*_T distribution

Dark Matter via Monojet

- Extremely energetic jets with no large recoil
- Stronger results with 4x more data & improved background modeling or constraints (particularly Z→vv)
- Greatly improved limits for *many* model interpretations
- Similarities with recent monophoton search

1.9 TeV Monojet Event in Data SATLAS

Run: 337215 Event: 2546139368 $E_{T}^{\text{miss}} = 1.9 \text{ TeV}$ 2017-10-05 10:36:30 CEST jet $p_{T} = 1.9 \text{ TeV}$

DM via Higgs - Invisible Combo Statlas

- Increasing emphasis on combinations to improve limits & identify interesting phase-space
- Combine H→inv channels:
- **ttH** (<u>0</u>*l* & <u>2</u>*l*) reinterpreted from SUSY top squarks
- VBF (dedicated <u>H→inv search</u>)
- 7 & 8 TeV combination of VBF, ZH, & WH
- Uncertainty correlations carefully considered, and assumptions cross-checked via extreme correlation scenarios

SUSY & more in bb+ E_T^{miss}

- Rich phenomenology available for final states with *b*-quarks & E_T^{miss}
- *b*-quarks identified by a displaced 2nd decay vertex via deep Neural Network (NN)

SUSY & more in bb+ E_T^{miss}

6-2

- Cut-&-count across two effective masses (m_{eff} & m_{CT}) for **High** Δm
- BDTs for Medium Δm & High/Low mass DM

arXiv:2101.12527

- Most sensitivity from jet kinematics & angular separations
- Low Δm (compressed): low-p_T b-tagging through presence of a soft secondary vertex (no associated jet)

Searching for Leptonic Decays

- Leptons are powerful handles at the LHC search targets BSM decays to ee and µµ
- Mass resonances via data-driven sideband fits
 - Heavy bosons, gravitons, DM mediators
- Exclusions up to ~5.2 TeV for generalized Z`
- Non-resonant enhancements at high mass, new gains using lepton scattering angle
 - Contact interactions via graviton excitations or fermion substructure
 - Exclude enhancements up to ∧ cutoff of ~36 TeV

Resonance search in ee channel

CMS

Searching for Leptonic Decays

CMS

New!

Unfolded ratios of µµ-to-ee production probe lepton-flavor-universality violation

Multilepton SUSY via Neural Networks

- Search for events with 3ℓ, 4ℓ+, & 2ℓ (same-sign)
 - Decays of EWK SUSY via $\tilde{\mathscr{E}}$ or W, Z, & Higgs bosons

Multilepton SUSY via Neural Networks

- Search for events with 3ℓ, 4ℓ+, & 2ℓ (same-sign)
 - Decays of EWK SUSY via $\tilde{\mathscr{E}}$ or W, Z, & Higgs bosons
- Neural network trained on several effective masses and Σp_T of decay products
 - Training parameteric in mass splitting Δm

NN output for low vs high-mass splitting

Multilepton SUSY via Neural Networks

- Neural network compared against cut-&-count method (>120 search regions)
- NN limits improve up to 150 GeV over cut-&-count regions
- Mass limits up to 1450 GeV (slepton-mediated) and 650 GeV (boson-mediated)

CMS

Trilepton Resonances via RPV SATLAS

- SUSY Lagrangian allows for RPV terms compatible with nature
 - Allows for spectacular trilepton resonance via electroweak SUSY

Trilepton Resonances via RPV SATLAS

- SUSY Lagrangian allows for RPV terms compatible with nature
 - Allows for spectacular trilepton resonance via electroweak SUSY
- Search categorized into 3 regions according visibility of the pair-produced 2nd decay (**invisible**, **partially-visible**, or **fully visible**)
 - Fully visible allows for selection on mass-asymmetry

Trilepton Candidate in Data SATLAS

arXiv:2011.10543

9-3

Trilepton Candidate in Data SATLAS

arXiv:2011.10543

Trilepton Candidate in Data SATLAS

Run: 336832 Event: 2197582176 2017-09-28 23:11:02 CEST

Trilepton Resonances via RPV SATLAS

- Trilepton invariant mass in data agrees well with SM
- Limits set against $W/Z/Higgs \& e/\mu/\tau$ branching fractions
- Full likelihoods (via pyHF) available for reinterpretations

Multijet Decays via RPV

CMS

• Another fantastic & unexplored RPV decay: $\tilde{t} \rightarrow \text{top} + 3 \text{ light quarks, giving up to 12 jets!}$

Multijet Decays via RPV

- Another fantastic & unexplored RPV decay: $\tilde{t} \rightarrow \text{top} + 3 \text{ light quarks, giving up to 12 jets!}$
- Search Njets distribution in 4 regions of NN output
 - Remove training dependence on Njets via Gradient Reversal technique & subsequent binning of NN score to give identical tt Njets shape
 - Reduces sensitivity to uncertainties that don't affect Njets shape

arXiv:2102.06976

 $\tilde{\chi}_1^0$

Multijet Decays via RPV

- Limits set on new \tilde{t} decay up to 700 GeV
- Minor preference of 2.8σ (local) for 400 GeV model
 - Includes discussion on source both minor data excess & reduced tension of uncertainties

Jet Substructure Advances

top-quark decay 3 prongs

- Many new searches for heavy particles with boosted hadronic decays to W, Z, Higgs, and top quarks
- Jet shape variables such as N-subjettiness (τ_N) distinguish decays with 1-prong (QCD), 2-prongs (W/Z boson), and 3-prongs (top quark)
- Iterative **pruning algorithms** (trimmed / softdrop jets)
- Better mass resolution & tagging efficiency

Initial large-R jet (top-quark)

Remove soft / wide-angle

Trimmed / softdrop jet

Excited $b^* \rightarrow t + W$

CMS

12-1

- High-mass excited states due to quark compositeness
- Search for back-to-back jets consistent with W & top-quarks
 - Top tagging: T₃/T₂, sub-jet b-tagging, & [105,220] GeV mass window
 → 45% signal efficiency & 3% QCD mistag rate
 - W-tagging: $T_2/T_1 \& [65, 105] \text{ GeV mass window} \rightarrow 80\%$ efficiency and 2% mistag rate
- Data-driven estimate of QCD by inverting top tag, and of $t\bar{t}$ by requiring a 2nd top tag

$\sum_{10^{-1}}^{10^2} totological b^* \rightarrow t + W$

10⁻²

Perform search in 2D plane of top-mass and top+W invariant mass and top+W invariant mass and top+W invariant mass and top-1 agreement with SM, largest disagreement at 2.4 TeV (2.3σ local)

1500 2000 2500 3000 3500 4000 m_{tw} [GeV]

top+W mass (in central top-mass window)

CMS-PAS-BCM-\$9-003

$\sum_{i=1}^{10^2} x_{i}^{0} cited b^* \rightarrow t + W$

10⁻²

- Perform search in 2D plane of top-mass and top+W invariant mass
 2 1500 2000 2500 3000 3500 4000
- $G_{\underline{a}}^{\underline{a}} = 1$ agreement with SM, largest disagreement at 2.4 TeV (2.3 σ local)
- Exclude b* massing to 3.1 TeV, 10x more sensitive to b*→t+W than dijet
 m_{tw} [GeV]

- Similar tagging techniques for singly-produced T' with fully-hadronic top & invisible Z→vv decays
 - Top-quark categories: Merged (3-prong top),
 Partially Merged (2-prong W + b-jet), & Resolved (3 jets)

CMS

- Similar tagging techniques for singly-produced T' with fully-hadronic top & invisible Z→vv decays
 - Top-quark categories: Merged (3-prong top), Partially Merged (2-prong W + b-jet), & Resolved (3 jets)
 - Discriminate on presence of 1 or more forward jets

- Similar tagging techniques for singly-produced T' with fully-hadronic top & invisible Z→vv decays
 - Top-quark categories: Merged (3-prong top), Partially Merged (2-prong W + b-jet), & Resolved (3 jets)
 - Discriminate on presence of 1 or more forward jets
- Search within transverse mass of top + invisible Z

 $\leq W(Z)$

b(t)

Т

- Similar tagging techniques for singly-produced T' with fully-hadronic top & invisible Z→vv decays
 - Top-quark categories: Merged (3-prong top), Partially Merged (2-prong W + b-jet), & Resolved (3 jets)
 - Discriminate on presence of 1 or more forward jets
- Search within transverse mass of top + invisible Z
- 2000000000 Limits set as a function of resonance width (up to 1.4 TeV) $\bar{b}(\bar{t})$ 40.7 fb⁻¹ (13 TeV) merged, \geq 1 fwd jet **CMS** *Preliminary* (2016+2017+2018, 13 TeV) Number of events / 0.1TeV 01 01 00 01 0.1TeV ³⁰ [%]¹m/¹J 0.5 [qd] (bqZt ← Data CMS 10⁴ W/Z + jets Preliminary 1.4 TeV T 1.6 TeV x100 Other T 1.2 TeV x100 0.35 bqL stat+syst ----- T 0.8 TeV x100 10² 0.3 α(bb 0.25 0.2 0.22 0.2 0.15 20 Excluded 10 15 1 Increasing 0.1 OCL 1 Width 10 <u>Data</u> Bkg 0.05 5.6 0.8 1.2 1.4 1.6 1.8 Õ.8 0.9 1.2 1.3 1.5 1.1 T' mass *m*_⊤[TeV] M₊[TeV]

Spin-0/1 Resonances to $W+\gamma$

- Resonances (narrow or 5% width) decaying to photon + boosted $W \rightarrow qq (\tau_2/\tau_1 \text{ tagging})$
- Data-driven fit optimized in low M_W sideband

Spin-0/1 Resonances to $W+\gamma$

- CMS
- Resonances (narrow or 5% width) decaying to photon + boosted $W \rightarrow qq (\tau_2/\tau_1 \text{ tagging})$
- Data-driven fit optimized in low M_W sideband
- Largest excess at ~1.6 TeV (1.7σ global)
- Limits set on XS of Spin-0 or 1 resonances

Top-philic Leptoquarks

ATLAS

 λ_{la}

e, *µ*

15-1

- Leptoquarks possible source of lepton-flavor-universality violation
- Cross-generational LQ \rightarrow t+e/µ identifies boosted tops via τ_3/τ_2 & other splitting-scale observables
- Input to BDT with kinematics in LQ restframe (Recursive Jigsaw technique)
- Limits set as a function of decay branching fraction to leptons

Cross-gen LQ arXiv:2010.02098, 3rd-gen LQ arXiv:2101.11582

Top-philic Leptoquarks

 λ_{lq}

 e, μ, τ

- Leptoquarks possible source of lepton-flavor-universality violation
- Cross-generational LQ \rightarrow t+e/µ identifies boosted tops via τ_3/τ_2 & other splitting-scale observables
- Input to BDT with kinematics in LQ restframe (Recursive Jigsaw technique)
- Limits set as a function of decay branching fraction to leptons
- Complements down-type LQ→t+τ search (both hadronic & leptonic decays)
- Searches within 6 final states according to # of e, μ , or τ_{had} & their charges

Searching Across Mass Splittings

- RPC top squark decay, kinematics depend upon Δm
- Large cut-&-count search using # jets (in tagged categories) & event kinematics

Searching Across Mass Splittings

- RPC top squark decay, kinematics depend upon Δm
- Large cut-&-count search using # jets (in tagged categories) & event kinematics
 - 3 distinct deep NNs identify boosted top or W, resolved tops (3 jets), & b-tagged jets
 - Small Δm uses soft secondary-vertex b-tagging & ISR boost to enhance E_T^{miss}

Searching Across Mass Splittings

- RPC top squark decay, kinematics depend upon Δm
- Large cut-&-count search using # jets (in tagged categories) & event kinematics
- 3 distinct deep NNs identify boosted top or W, resolved tops (3 jets), & b-tagged jets
- Small Δ m uses soft secondary-vertex b-tagging & ISR boost to enhance E_T^{miss}
- Mass limits set on gluinos (2.25 TeV) & top squarks (1.31 TeV), down to Δm of 10 GeV

Long-lived Particle Searches

- **New techniques needed** to identify displaced decay vertex & decay products
- No typical SM backgrounds, use data-driven techniques to estimate:
 - Cosmic muons
 - Combinatoric backgrounds (many pileup collisions & detector noise)
 - Reconstruction failures

- Long-lived $\tilde{\mathscr{\ell}}$ unexplored since LEP (90 GeV limits)
- Extended tracking ignores hits from prompt tracks (<10mm)

- Long-lived $\tilde{\mathscr{\ell}}$ unexplored since LEP (90 GeV limits)
- Extended tracking ignores hits from prompt tracks (<10mm)

- Long-lived $\tilde{\ell}$ unexplored since LEP (90 GeV limits)
- Extended tracking ignores hits from prompt tracks (<10mm)

- Long-lived $\widetilde{\ell}$ unexplored since LEP (90 GeV limits)
- Extended tracking ignores hits from prompt tracks (<10mm)

- Long-lived $\tilde{\mathscr{\ell}}$ unexplored since LEP (90 GeV limits)
- Extended tracking ignores hits from prompt tracks (<10mm)
 - New lepton identification out to 300 mm

p

- Long-lived $\widetilde{\ell}$ unexplored since LEP (90 GeV limits)
- Extended tracking ignores hits from prompt tracks (<10mm)
 - New lepton identification out to 300 mm
- No events observed \rightarrow first GMSB $\tilde{\mathscr{C}}$ limits at LHC with lifetimes of 10 ps to 10 ns
 - Full likelihoods (via pyHF) available for reinterpretations

Displaced Electrons (Simulated Event)

Simulated Signal Event Selectron Pair Production $\tilde{e} \rightarrow e\tilde{G}$ $m(\tilde{e}) = 500 \text{ GeV}, \tau(\tilde{e}) = 1 \text{ ns}$

- Long-lived particles decaying to 2 or 3 quarks (≥5 track vertex)
- Displaced vertex reconstruction benefits from upgraded inner detector & new pileup rejection techniques

d

- Long-lived particles decaying to 2 or 3 quarks (≥5 track vertex)
- Displaced vertex reconstruction benefits from upgraded inner detector & new pileup rejection techniques
- Scan dvv: data-driven background template from 1-vertex events
- No data events seen in search regions

- Limits set on long-lived \tilde{g} (2.5 TeV), \tilde{t} (1.5 TeV), $\& \tilde{\chi}^0$ (1.1 TeV) with mean lifetimes between 0.1 \rightarrow 100mm
- Low-lifetime search complements limits from displaced and delayed jet analyses

More on the Way

- Large BSM program to find new physics wherever it is hiding
 - New reconstruction & analysis techniques
 - New searches in uncovered channels
 - New collaborations & emphases on facilitating public reinterpretations
- Run 3 is around the corner and will double the dataset with detector improvements, new triggers, & brand new searches
- Look forward to unparalleled opportunities for discovering new TeV-scale physics!

More on the Way

- Large BSM program to find new physics wherever it is hiding
 - New reconstruction & analysis techniques
 - New searches in uncovered channels
 - New collaborations & emphases on facilitating public reinterpretations
- Run 3 is around the corner and will double the dataset with detector improvements, new triggers, & brand new searches
- Look forward to unparalleled opportunities for discovering new TeV-scale physics!

Searching for Leptonic Decays

CMS

arXiv:2103.02708

EWK SUSY via Neural Networks

- Search for events with 3ℓ, 4ℓ+, & 2ℓ (same-sign)
 - Decays of EWK SUSY through $\widetilde{\mathscr{E}}$ or *W*, *Z*, & Higgs bosons
- Neural network trained on several effective masses and Σp_T of decay products
 - Training parameteric in mass splitting Δm
- Neural network compared against cut-&-count method (>120 search regions)

Distribution of tests statistics from cut-&-count (show in grouped regions)

CMS-PAS-SUS-19-012

d

- Long-lived particles decaying to 2 or 3 quarks (≥5 track vertex)
- Scan dvv: data-driven background template from 1-vertex events
- Low expected background, no 2-vertex events seen in data

