DFG Deutsche Forschungsgemeinschaft

German Research Foundation

Jens Erler

Precision Physics, Fundamental Interactions and Structure of Matter

G

Les Rencontres de Physique de la Vallée d'Aoste, La Thuile, March 11, 2021

- * The electroweak (EW) precision program started about 50 years ago
- * M_W , M_Z , m_t , M_H (and m_c) have all been successfully predicted before their discoveries * 2012 the Standard Model (SM) was completed ...
 - ... and it is as successful as it is unsatisfactory (dark matter, naturalness, ...)
- * no new states discovered at the LHC yet, so perhaps they show up in EW physics first
- * <u>General remark</u>: the higher the precision, the more physics issues will enter in the interpretation of precision measurements
- * this is an obstacle when looking at single observables but is a feature in global analyses (across different observables <u>and</u> subfields of particle, nuclear and atomic physics)
- * some tensions in g_{μ} –2, M_{W} , and the first row CKM matrix unitarity constraint

Electroweak precision physics

W boson mass

- * tuning in on the Z resonance
 - * leptonic and heavy quark FB asymmetries in e^+e^- annihilation near $s = M_Z^2$
 - * leptonic FB asymmetries in pp (pp) Drell-Yan in a window around $m_{\parallel} = M_Z$
 - * LR asymmetry (SLC) and final state T polarization (LEP) and their FB asymmetries

	v scattering recent first measurements			tering (PVES)
leptonic	v _µ – e⁻		e- – e-	
DIS	heavy nuclei (TeV)	deuteron (E–122, P	S, SoLID)
elastic	CEvNS (COHE	RENT)	proton, ¹² C (Qw	reak, P2)
APV	heavy alkali atoms and ions		isotope ratios (Mainz)

Weak mixing angle measurements

 $A_{FB}(e)$ $A_{FB}(\mu)$ $A_{FB}(\tau)$ $A_{FB}(b)$ $A_{FB}(c)$ $A_{FB}(s)$ $A_{FB}(q)$ $P(\tau)$ $P_{FB}(\tau)
 A_{LR}(had)
 A_{LR}(lep)
 A_{LR,FB}(\mu)
 A_{LR,FB}(\mu)$ $A_{LR,FB}(\tau)$ CDF (e) CDF (μ) D0 (e) **D0 (**μ) ATLAS (e) ATLAS (µ) CMS (e) CMS (μ) LHCb (µ) Q_w(e) Q_w(p) Q_w(Cs) 0.235

LEP & SLC: 0.23151 ± 0.00016 Tevatron: 0.23148 ± 0.00033 LHC: 0.23129 ± 0.00033 <u>average direct</u> $0.23|48 \pm 0.000|3$ <u>global fit</u> 0.23153 ± 0.00004

Running weak mixing angle

Ferro-Hernández & JE, arXiv:1712.09146

on-shell vs. effective weak mixing angle

Higgs boson mass

Blondel et al. arXiv:1905.05078

$\Delta M_H = \pm 1.4 \text{ GeV}$

 $(\Delta M_{\rm H} = \pm 5.7 \text{ GeV} \text{ with no theory improvement})$

Parity Violating e- Scattering (PVES) — Elastic

Qweak @ CEBAF (JLab)

- hydrogen (completed)
- $E_e = 1149 \text{ MeV}$
- $|Q| = 158 \text{ MeV} (\theta = 7.9^{\circ})$
- $A_{PV} = 2.3 \times 10^{-7}$
- $\Delta A_{PV} = \pm 4.1\%$
- $\Delta Q_{\rm W}(p) = \pm \ 6.25\%$

$sin^2\theta_W = 0.2383 \pm 0.0011$

FFs from fit to ep asymmetries

arXiv:1905.08283

Standard Model Effective Field Theory (SMEFT)

	N _f = 3	N _f = 1	bosonic	Ψ ²	ψ ⁴ (ΔB = 0)	ψ ⁴ (ΔB ≠ 0)	
D = 0	1	1	1	_	_		$\Lambda_{\rm C} \neq 0$
D = 1			-	_	_		
D = 2	1	1	-	_		_	M _H ≠ 0
D = 3							
D = 4	55	7	1	6			SM
D = 5	12	2		12	_		m _∨ ≠ 0
D = 6	3045	84	15	31	30	8	
D = 7	1542	30		10	12	8	BSM
D = 8	44807	993	89	386	420	98	

Henning et al., arXiv:1512.03433

13 $L^2Q^2 = 7$ vector and axial-vector combinations + 4 scalar + 2 tensor

 $2 e_{Vq_{V}}(C_{0}) + 2 e_{Aq_{V}}(C_{1}) (APV, Qweak, P2) + 2 e_{Vq_{A}}(C_{2}) (SLAC-E122, PVDIS, SoLID)$ + 2 e_Aq_A (C₃) (e⁺@SoLID) – I constraint: $(\overline{u}_L \gamma^{\mu} u_L - \overline{d}_L \gamma^{\mu} d_L) \overline{e}_R \gamma_{\mu} e_R = 0$

Parity-violating 4-fermion electron-quark couplings

JE et al., arXiv:1401.6199

Scale exclusions post Qweak

year	from Ohad	global fit	development
2006	2.984 ± 0.008 LEPEWWG hep-ex/0509008	2.986 ± 0.007	CIPT for T_{T}
2010		2.991 ± 0.007	FOPT for T_T
2014		2.990 ± 0.007	Higgs discovery
2010	2.992 ± 0.008	2.998 ± 0.007	Voutsinas et al. arXiv:1908.01704
	2.9975 ± 0.0074	3.0024 ± 0.0061	Janot & Jadach, arXiv:1912.02067

α_s from the Z pole

observable	X s(
Γ _Z = 2495.5 ± 2.3 MeV	0.1215 ±
σ _{had} = 41.481 ± 0.033 nb	0.1201 ±
$R_e = 20.804 \pm 0.050$	0.1295 ±
$R_{\mu} = 20.784 \pm 0.034$	0.1264 ±
$R_{\tau} = 20.764 \pm 0.045$	0.1157 ±
$B_{W}(had) = 0.6741 \pm 0.0027$	0.104 ±
combination	0.1228 ±
global fit	0.1185 ±

<u>additional change</u>: $\Delta \sigma_{had} = -27 \text{ pb}$

change: $\Delta \sigma_{had} = -40 \text{ pb}, \Delta \Gamma_Z = \pm 0.3 \text{ MeV}$ Voutsinas et al., arXiv: 1908.01704 Janot & Jadach, arXiv:1912.02067

α_s from the Z pole

observable	$\alpha_s(M_z)$	FCC-ee	α _s @FCC-ee
Γ _Z = 2495.5 ± 2.3 MeV	0.1215 ± 0.0048	± 25 keV	± 0.00007
σ _{had} = 41.481 ± 0.033 nb	0.1201 ± 0.0065	± 4 pb	± 0.00064
$R_e = 20.804 \pm 0.050$	0.1295 ± 0.0082		
$R_{\mu} = 20.784 \pm 0.034$	0.1264 ± 0.0054	$\Delta R_{I} = \pm 0.0006$	± 0.00010
$R_{\tau} = 20.764 \pm 0.045$	0.1157 ± 0.0072		
$B_{W}(had) = 0.6741 \pm 0.0027$	0.104 ± 0.037	± 0.00002	± 0.00027
combination	0.1228 ± 0.0028		± 0.00006
global fit	0.1185 ± 0.0016		± 0.00005

change: $\Delta \sigma_{had} = -40 \text{ pb}, \Delta \Gamma_Z = \pm 0.3 \text{ MeV}$ Voutsinas et al., arXiv:1908.01704 additional change: $\Delta \sigma_{had} = -27 \text{ pb}$ Janot & Jadach, arXiv:1912.02067

S

S and T

S	0.00 ± 0.07
Т	0.05 ± 0.06
$\Delta \chi^2$	- 3.9

- * $M_{KK} \gtrsim 3.6 \text{ TeV}$ in warped extra dimension models
- * $M_V \gtrsim 4 \text{ TeV}$ in minimal composite Higgs models

Freitas & JE, PDG (2020)

S and T at the FCC-ee (and preliminary update)

S	0.01 ± 0.06	1.00	0.82
T	0.06 ± 0.04	0.82	1.00

S	± 0.0035	1.00	0.54
T	± 0.0016	0.54	1.00

FCC projections from **Blondel et al., arXiv:1905.05078** except $\Delta\Gamma_Z = 100 \text{ MeV} \rightarrow 25 \text{ MeV}$

(theory uncertainties ignored)

Conclusions

- * No conclusive evidence for physics beyond the SM found so far
 - * oblique parameters (STU...) more model-dependent and illustrative
 - * SMEFT systematic and model-independent framework (if no new "light" states)
 - * recent LEP luminosity update confirms $N_v = 3$ (<u>active</u> neutrinos), but α_s from electroweak processes now somewhat puzzling
 - * many precise and complementary measurements of $sin^2\theta_W$
- * future developments
 - ultra-high precision PVES (MOLLER, P2 and SoLID) competitive alternatives to high energy frontier
 - * a leap in precision can be expected from future lepton colliders ("Higgs factories") ILC, CEPC, FCC–ee, CLIC, muon collider
 - 20

