

Rare decays from NA62

La Thuile 2021 Viacheslav Duk, INFN Perugia

V.Duk, INFN Perugia

10.03.2021 • 1

Outline

oNA62 experiment $\circ K^+ \rightarrow \pi^+ \nu \nu$ $\circ K^+ \rightarrow \pi^+ X$ $\circ \pi^0 \rightarrow \text{invisible}$ $\circ K^+ \rightarrow \pi^+ \mu^+ \mu^-$ Conclusions

NA62: fixed target experiment at CERN SPS

Technique: Kaon decays in flight

Timeline:

- > 2015: commissioning
- > 2016-2018: physics runs
- > 2021-2024: physics runs

Primary goal: Measure BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) ECN3 hall at CERN

NA62 collaboration: ~200 participants, ~30 institutions

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, Fairfax GMU, Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moscow, Naples, Perugia, Pisa, Prague, Protvino, Rome I, Rome II, San Luis Potosi, TRIUMF, Turin, Vancouver UBC

NA62 experimental setup

[NA62 Detector Paper, 2017 JINST 12 P05025]

Primary beam:

- 400 GeV/c protons
- 3x10¹² protons per spill

Secondary beam:

- 75 GeV/c (±1%)
- Divergency < 100 µrad
- 70% pions, 6% K⁺, 24% protons

V.Duk, INFN Perugia

Key detectors:

- PID: KTAG, RICH, LKr, MUV1-2, MUV3
- Momentum: GTK, STRAW
- Time: GTK, KTAG, RICH, CHOD
- Photon veto: LAV, LKr, IRC, SAC

$K^+ \rightarrow \pi^+ \nu \nu$ in SM

Theoretical calculation of BR within SM

- FCNC loop process
- Short distance effects: theoretically clean
- Long distance effects: hadronic elements measured with $K \rightarrow e \nu \pi^0$ decay
- Parametric uncertainty dominates in δ(BR)

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = (0.84 \pm 0.03) \times 10^{-10} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^{\circ}}\right)^{0.74} = (0.84 \pm 0.10) \times 10^{-10}$$
$$BR(K_{L} \to \pi^{0} \nu \overline{\nu}) = (0.34 \pm 0.05) \times 10^{-10} \left(\frac{|V_{ub}|}{0.00388}\right)^{2} \left(\frac{|V_{cb}|}{0.0407}\right)^{2} \left(\frac{\sin \gamma}{\sin 73.2^{\circ}}\right)^{2} = (0.34 \pm 0.06) \times 10^{-10}$$
$$\bullet \text{ V.Duk, INFN Perugia}$$

10.03.2021 • 5

$K^+ \rightarrow \pi^+ \nu \nu$ in New Physics

Plenty of models

- Littlest Higgs with T-parity
- Simplified Z, Z' models
- MSSM scenarios
- LFU violation models
- Custodial Randall-Sundrum

NP signatures

- BR(NP)/BR(SM) could reach O(1)
- Deviation from SM both in neutral and charged mode

JHEP 11 (2015) 166

Eur. Phys. J. C (2017) 77:618

JHEP 0903 (2009) 108

 $K^+ \rightarrow \pi^+ \nu \nu$: state of the art

E787/949: $BR(K^+ \to \pi^+ \nu \overline{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

• Kaons decay at rest

Phys. Rev. D 79, 092004 (2009)

Phys. Rev. D 77, 052003 (2008)

NA62:

- Kaon decays in flight
- 2016 (published), 2017 (published) and 2018 (this talk) data available

2016 data

2017 data

- 1 event observed
- BR(K⁺ $\rightarrow \pi^+ \nu \nu$) < 14x10⁻¹⁰ @ 90% CL

• 2 events observed

• BR(K⁺ $\rightarrow \pi^+ \nu \nu$) < 1.78x10⁻¹⁰ @ 90% CL

Phys. Lett. B 791 (2019) 156-166 • V.Duk, INFN Perugia JHEP 11 (2020) 42

10.03.2021 • 7

$K^+ \rightarrow \pi^+ \nu \nu$: analysis strategy

Analysis key stones

- Time resolution: O(100 ps)
- Kinematic suppression O(10⁴)
- PID: muon suppression > 10^7
- Photon veto: π^0 suppression > 10^7

Main backgrounds

Process	Branching ratio
$K^+ \rightarrow \pi^+ \pi^0$	0.2066
$K^+ \rightarrow \mu^+ \nu_{\mu}$	0.6356
$K^+ \longrightarrow \pi^+ \pi^+ \pi^-$	0.0558
$K^+ \rightarrow \pi^+ \pi^- e \nu_e$	4.3x10 ⁻⁵
$K^{+} \rightarrow \pi^{+} \nu \overline{\nu} $ (SM)	8.4x10 ⁻¹¹

Improvements in analysis wrt 2016-2017:

- 7 categories (hardware configuration, momentum interval)
- Selection optimized for each category
- Increased signal acceptance
- MVA for upstream bkg evaluation

Main kinematical variable

$$m_{miss}^2 = (p_K - p_\pi)^2$$

2 signal regions

Normalisation: $K^+ \rightarrow \pi^+ \pi^0$

K⁺ $\rightarrow \pi^+ \nu \nu$: kinematics (2018 data)

 $K^+ \rightarrow \pi^+ \nu \nu$: SES (2018 data)

S.E.S. =
$$\frac{Br(\pi\nu\nu)}{N_{\pi\nu\nu}^{exp}}$$

$$N_{\pi\nu\nu}^{exp} \approx N_{\pi\pi} \epsilon_{trigger} \epsilon_{RV} \frac{A_{\pi\nu\nu}}{A_{\pi\pi}} \frac{Br(\pi\nu\nu)}{Br(\pi\pi)}$$

Contribution to SES	δ(SES)
ε _{trigger}	5%
Acceptance	3.5%
$\epsilon_{\rm RV}$	2%
Normalisation	0.7%
Instantaneous intensity	0.7%
Total	6.5%

SES = $(1.11 \pm 0.07) \times 10^{-11}$

$K^+ \rightarrow \pi^+ \nu \nu$: background from kaon decays

$K^+ \rightarrow \pi^+ \pi^0$ evaluation

Event fraction in $K^+ \rightarrow \pi^+ \pi^0$ region, measured on control data

$$N_{\pi\pi}^{exp}(region) = N(\pi^{+}\pi^{0}) \times f_{kin}(region)$$

Expected bkg in signal region Data in K⁺ $\rightarrow \pi^{+}\pi^{0}$ region

- Similar procedure for $K^+ \rightarrow \mu^+ \nu$ and $K^+ \rightarrow \pi^+ \pi^+ \pi^-$
- $K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ estimated from MC

$K^+ \rightarrow \pi^+ \nu \nu$: upstream background

Kaon:

Intime pileup K⁺

Pion:

- Early K⁺ decay + scattering in the 1st spectrometer chamber
- Interactions of beam particles in the beam spectrometer

Upstream bkg estimation:

- Data driven approach
- Use the geometric origin to define samples for the validation

$K^+ \rightarrow \pi^+ \nu \nu$: expected bkg (2018 data)

	Expected N _{evt}
SM signal	$7.58 \pm 0.40(syst) \pm 0.75(ext)$
Total background	5.28 +0.99 -0.74
$K^+ \rightarrow \pi^+ \pi^0(\gamma)$	0.75 ± 0.04
$K^+ \rightarrow \mu^+ \nu(\gamma)$	0.49 ± 0.05
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$	0.50 ± 0.11
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	0.24 ± 0.08
$K^+ \rightarrow \pi^+ \gamma \gamma$	< 0.01
$K^+ \rightarrow l^+ \nu \pi^0$	< 0.001
upstream	3.30 +0.98 -0.73

$K^+ \rightarrow \pi^+ \nu \nu$: opening the box (2018 data)

17 events observed

Expected SM signal: 7.6 Expected background: 5.3

K⁺ $\rightarrow \pi^+ \nu \nu$: missing mass spectrum (2018 data)

$K^+ \rightarrow \pi^+ \nu \nu$: combined result

- Categories 0-5: 2018 data, 5 GeV/c momentum bins in the range 15-45 GeV/c
- Categories 6-8: integrated over momentum
- S1, S2: different hardware configurations
- Maximum likelihood fit to combine all categories

Combined result:

 $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (11.0^{+4.0}_{-3.5\,stat.} \pm 0.3_{syst.}) \times 10^{-11} (3.5\sigma \text{ significance})$

10.03.2021 • 16

 $K^+ \rightarrow \pi^+ \nu \nu$: correlation with $K_L \rightarrow \pi^0 \nu \nu$

$K^+ \rightarrow \pi^+ \nu \nu$ analysis: beyond BR measurement

Hidden sector searches with 2017 data:

- $K^+ \rightarrow \pi^+ X$, X invisible
- $K^+ \rightarrow \pi^+ \pi^0$ region: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow$ invisible

 $K^+ \rightarrow \pi^+ X$

Motivation:

• X could be a feebly interacting particle (FIP)

Scalar (Higgs portal)

$$\mathcal{L}_{\text{scalar}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - (\mu S + \lambda S^2) H^{\dagger} H$$
$$\mu = \sin \theta \quad \lambda = 0$$

JHEP 05 (2010) 010 JHEP 02 (2014) 123

$$\mathcal{L}_{\rm SM} = \frac{\partial_{\mu}a}{f_{\ell}} \sum_{\alpha} \bar{\ell_{\alpha}} \gamma_{\mu} \gamma_{5} \ell_{\alpha} + \frac{\partial_{\mu}a}{f_{q}} \sum_{\beta} \bar{q_{\beta}} \gamma_{\mu} \gamma_{5} q_{\beta}$$

JHEP 03 (2015) 171 Phys. Rev. D16 (1977) 1791-1797 Phys. Rev. D95 (2017) 095009

Analysis strategy:

- Selection, normalisation and bkg evaluation from the $\pi\nu\nu$ analysis
- Signal acceptance: generate MC samples for 200 mass hypotheses
- Shape analysis of the m_{miss}^2 distribution to search for a signal peak

 $K^+ \rightarrow \pi^+ X$

X invisible

X decays to SM particles

JHEP 03 (2021) 058

 $\pi^0 \rightarrow \text{invisible}$

Motivation:

- BR($\pi^0 \rightarrow \nu \nu$) = O(10⁻²⁴)
- Any observation means New Physics

Current limit (BNL): BR($\pi^0 \rightarrow \nu \nu$) < 2.7x10⁻⁷ @ 90% CL

Phys. Rev. D 72 (2005) 091102

Final result: $BR(\pi^0 \to invisible) \le 4.4 \times 10^{-9}$ at 90% C.L.

JHEP 02 (2021) 201

Factor of 60 improvement wrt the previous result

V.Duk, INFN Perugia

10.03.2021 • 21

 $K^+ \rightarrow \pi^+ X$, $m_X \sim m(\pi^0)$

$K^+ \rightarrow \pi^+ X$, dark scalar interpretation

X decays to SM particles

X invisible

$K^+ \rightarrow \pi^+ X$, ALP interpretation

X decays to SM particles

X invisible

 $K^+ \rightarrow \pi^+ \mu^+ \mu^- (K \pi \mu \mu)$

Main interest:

- Search for anomalies in $s \rightarrow dll similar$ to $b \rightarrow sll$
- LFU test together with $K \rightarrow \pi ee$ (K πee)

Kπμμ in SM: Nucl. Phys. B291 (1987) 692-719

Phys. Part. Nucl. Lett. 5 (2008) 76-84

- FCNC decay
- Decay rate calculated within ChPT: $K^+ \rightarrow \pi^+ \gamma^*$

Kinematical variables:
$$x = m(\pi^+\mu^+)^2/M_K^2$$
, $z = m(\mu^+\mu^-)^2/M_K^2$

$K\pi\mu\mu$: event selection

- 2017+2018 data
- FF parameter measurement
- BR(Kπµµ) measurement
- Normalisation: $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

Event selection:

- Generic 3-track selection
- Pion PID: E/p < 0.9, !MUV3
- Muon PID: E/p < 0.2, MUV3
- $|m(\pi\mu\mu) M_K| < 8 \text{ MeV/}c^2$
- 28011 events selected
- Expected bkg: N(bkg) = 12.5 ± 1.7(stat) ± 12.5 (syst)

$K\pi\mu\mu$: fit of formfactors

FF parameter measurement from the fit of z distributions:

- Reweight MC for various (a, b)
- $a = -0.592 \pm 0.015$
- $b = -0.699 \pm 0.058$
- $\chi^2/ndf = 20.3/14$
- P-value = 0.122
- Correlation coefficient Q(a,b) = -0.973

ter b	-0.6	Best fit
ame	_	Total error:
ara	_	
factor p	-0.65	—68.3% CL
Form	-0.7	
	_0.75 	
	-	NA62 Preliminary
	-0.8	–0.61 –0.6 –0.59 –0.58 –0.57 Form factor parameter a

parameter	value	Stat. error	Syst. error	Ext . error	Total error
а	-0.592	0.013	0.007	0.001	0.015
b	-0.699	0.046	0.035	0.003	0.058

• V.Duk, INFN Perugia

Κπμμ BR

NA62 Preliminary PDG Average (2020) Model-dependent BR(K $\pi\mu\mu$): E787 (1997) BR(K $\pi\mu\mu$) = (9.27 ± 0.11) x 10⁻⁸ 207 events E865 (2000) 430 events HyperCP (2002) 110 events NA48/2 (2011) 3120 events NA62 (2020) – this result 28011 events 5 6 8 9 10 7 4 $B(K^+ \rightarrow \pi^+ \mu^+ \mu^-) \times 10^8$

parameter	value	Stat. error	Syst. error	Ext. error	Total error
$BR \ge 10^8$	9.27	0.07	0.08	0.04	0.11

V.Duk, INFN Perugia

10.03.2021 • 28

11

Kπµµ and LFU

- E865: K π ee Phys. Rev. Lett. 83 (1999) 4482-4485
- NA48/2: Kπee Phys. Lett. B 677 (2009) 246-254
- NA48/2: Kπμμ Phys. Lett. B 697 (2011) 107-115

No tension between (a, b) from $K\pi\mu\mu$ and $K\pi ee$

V.Duk, INFN Perugia

Conclusions

 \Box K⁺ $\rightarrow \pi^+ \nu \nu$ (2016+2017+2018 data) paper in preparation

- 20 events observed in 2016(1) + 2017(2) + 2018(17)
- BR(K⁺ $\rightarrow \pi^+ \nu \nu$) = 11(4) x 10⁻¹¹, 3.5 σ significance
- BR compatible with SM within 1σ

$\Box \pi^0 \rightarrow \text{invisible} (2017 \text{ data})$ JHEP 02 (2021) 201

- BR($\pi^0 \rightarrow \text{invisible}$) < 4.4 x 10⁻¹⁰ @ 90% CL
- Factor of 60 improvement

$\Box K^+ \rightarrow \pi^+ X (2017 \text{ data})$ JHEP 03 (2021) 058

- BR(K⁺ $\rightarrow \pi^+ X) < O(10^{-10})$
- UL improved for m_X in 40-80 MeV and 160-260 MeV

$\Box K^+ \rightarrow \pi^+ \mu^+ \mu^- (2017 + 2018 \text{ data}) \quad \text{Paper in preparation}$

- BR(K⁺ $\rightarrow \pi^+ \mu^+ \mu^-$) = 9.27(11) x 10⁻⁸
- FF parameters: a = -0.592(13) , b = -0.699(58)
- (a, b) compatible with measurements from $K^+ \rightarrow \pi^+ e^+ e^-$

Prospects

- Data taking in 2021-2024
- New detectors against upstream bkg (beam spectrometer station, veto counter)
- New calorimeter downstream MUV against K decay bkg

