Flavor Fits

Peter Stangl AEC & ITP University of Bern

The flavor anomalies

$b ightarrow { m s}\, \mu^+\mu^-$ anomaly

Several LHCb measurements deviate from Standard model (SM) predictions by 2-3 σ :

• Angular observables in $B \to K^* \mu^+ \mu^-$.

LHCb, arXiv:2003.04831, arXiv:2012.13241

▶ Branching ratios of $B \to K\mu^+\mu^-$, $B \to K^*\mu^+\mu^-$, and $B_s \to \phi\mu^+\mu^-$.

LHCb, arXiv:1403.8044, arXiv:1506.08777, arXiv:1606.04731

Hints for LFU violation in $b \rightarrow s \, \ell^+ \ell^-$ decays

Measurements of lepton flavor universality (LFU) ratios $R_{K}^{[1,6]}$, $R_{K*}^{[0.045,1.1]}$, $R_{K*}^{[1.1,6]}$ show deviations from SM by about 2.5 σ each. LHCb, arXiv:1705.05802, arXiv:1903.09252 Belle, arXiv:1904.02440, arXiv:1908.01848

 $R_{K^{(*)}} = \frac{BR(B \to K^{(*)}\mu^{+}\mu^{-})}{BR(B \to K^{(*)}e^{+}e^{-})}$ 2.0 2.0 R_{K} LHCb 1.5 1.5 $\overset{*}{B} \overset{1.0}{H}$ 1.0 Data BaBar 0.5 0.5 I HCb Belle BaBar LHCb Run 1 + 2015 + 2016 SM prediction 0.0 0.0 15 5 10 15 20 5 10 í٥ $q^2 \; ({\rm GeV}^2/c^2)$ $q^2 \,[{\rm GeV}^2/c^4]$

Hints for LFU violation in $b \rightarrow c \, \ell \, \nu$ decays

Measurements of LFU ratios R_D and R_{D^*} by BaBar, Belle, and LHCb show combined deviation from SM by about 3-4 σ .

LHCb, arXiv:1506.08614, arXiv:1708.08856

Belle, arXiv:1507.03233, arXiv:1607.07923, arXiv:1612.00529, arXiv:1904.08794

HFLAV, hflav.web.cern.ch

Combination of $B_{s,d} \rightarrow \mu^+ \mu^-$ measurements

Measurements of BR($B_{s,d} \rightarrow \mu^+ \mu^-$) by LHCb, CMS, and ATLAS show combined deviation from SM by about 2σ .

New physics interpretation

Setup

- Global likelihood from smelli python package for comparing theory predictions to experimental data
 Aebischer, Kumar, PS, Straub, arXiv:1810.07698
- Quantify agreement between theory and experiment by likelihood L, $\Delta \chi^2$, and pull

$$\text{pull}_{1D} = 1\sigma \cdot \sqrt{\Delta\chi^2}$$
, where $-\frac{1}{2}\Delta\chi^2 = \ln L(\vec{0}) - \ln L(\vec{C}_{\text{best fit}})$.

$$\text{pull}_{\text{2D}} = 1\sigma, 2\sigma, 3\sigma, \dots$$
 for $\Delta\chi^2 \approx 2.3, 6.2, 11.8, \dots$

- New physics scenarios in effective field theories:
 - Weak Effective Theory (WET) at scale 4.8 GeV
 - Standard Model Effective Field Theory (SMEFT) at scale 4 TeV

$b ightarrow s\ell\ell$ in the weak effective theory

• Effective Hamiltonian at scale m_b : $\mathcal{H}_{eff}^{bs\ell\ell} = \mathcal{H}_{eff, SM}^{bs\ell\ell} + \mathcal{H}_{eff, NP}^{bs\ell\ell}$

$$\mathcal{H}_{\text{eff, NP}}^{bs\ell\ell} = -\mathcal{N} \sum_{\ell=e,\mu} \sum_{i=9,10,S,P} \left(C_i^{bs\ell\ell} O_i^{bs\ell\ell} + C_i'^{bs\ell\ell} O_i'^{bs\ell\ell} \right) + \text{h.c.}$$

• Operators considered here ($\ell = e, \mu$)

$$\begin{split} O_9^{bs\ell\ell} &= (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \ell) \,, \qquad O_9^{\prime bs\ell\ell} &= (\bar{s}\gamma_\mu P_R b)(\bar{\ell}\gamma^\mu \ell) \,, \\ O_{10}^{bs\ell\ell} &= (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \gamma_5 \ell) \,, \qquad O_{10}^{\prime bs\ell\ell} &= (\bar{s}\gamma_\mu P_R b)(\bar{\ell}\gamma^\mu \gamma_5 \ell) \,, \\ O_S^{bs\ell\ell} &= m_b(\bar{s}P_R b)(\bar{\ell}\ell) \,, \qquad O_S^{\prime bs\ell\ell} &= m_b(\bar{s}P_L b)(\bar{\ell}\ell) \,, \\ O_P^{bs\ell\ell} &= m_b(\bar{s}P_R b)(\bar{\ell}\gamma_5 \ell) \,, \qquad O_P^{\prime bs\ell\ell} &= m_b(\bar{s}P_L b)(\bar{\ell}\gamma_5 \ell) \,. \end{split}$$

Not considered here

- Dipole operators: strongly constrained by radiative decays.
 e.g. [arXiv:1608.02556]
- Four quark operators: dominant effect from RG running above m_B.

Jäger, Leslie, Kirk, Lenz [arXiv:1701.09183]

Scenarios with a single Wilson coefficients

Coefficient	type	best fit	1σ	$pull_{1D} = \sqrt{\Delta\chi^2}$
$C_9^{bs\mu\mu}$	$L \otimes V$	-0.97	[-1.11, -0.83]	6.4 σ
$C_9^{\prime b s \mu \mu}$	$R \otimes V$	+0.14	[-0.04, +0.29]	0.7σ
$C_{10}^{bs\mu\mu}$	$L \otimes A$	+0.72	[+0.59, +0.85]	5.8σ
$C_{10}^{\prime bs\mu\mu}$	$R\otimes A$	-0.18	[-0.29, -0.07]	1.7σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	$L\otimes R$	+0.16	[+0.03, +0.30]	1.2σ
$C_9^{bs\mu\mu}=-C_{10}^{bs\mu\mu}$	$L \otimes L$	-0.54	[-0.61, -0.46]	6.9 σ

Only small pull for

- Coefficients with $\ell = e$ (cannot explain $b \rightarrow s\mu\mu$ anomaly and $B_s \rightarrow \mu\mu$)
- Scalar coefficients (can only reduce tension in $B_s \rightarrow \mu \mu$)

see also similar fits by other groups: Algueró et al., arXiv:1903.09578 (Kowalska et al., arXiv:1903.10932

Ciuchini et al., arXiv:2011.01212 Arbey et al., arXiv:1904.08399 Datta et al., arXiv:1903.10086

- 2020 results: Angular observables
 - updated $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

• new
$$B^+ \rightarrow K^{*+} \mu^+ \mu^-$$

WET at 4.8 GeV

2020 results: Angular observables

• updated $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

• new
$$B^+ \rightarrow K^{*+} \mu^+ \mu^-$$

compatible at 1σ

• Combination of angular observables clearly dominated by $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

WET at 4.8 GeV

WET at 4.8 GeV

- 2020 results: Angular observables
 - updated $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - new $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

- Combination of angular observables clearly dominated by $B^0 \to K^{*0} \mu^+ \mu^-$
- $b \rightarrow s \mu \mu$ branching ratios and angular observables compatible at 1σ

WET at 4.8 GeV

- 2020 results: Angular observables
 - updated $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - ▶ new $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

- Combination of angular observables clearly dominated by $B^0 \to K^{*0} \mu^+ \mu^-$
- ► $b \rightarrow s \mu \mu$ branching ratios and angular observables compatible at 1σ

WET at 4.8 GeV

- 2020 results: Angular observables
 - updated $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - ▶ new $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

- Combination of angular observables clearly dominated by $B^0 \to K^{*0} \mu^+ \mu^-$
- ► $b \rightarrow s \mu \mu$ branching ratios and angular observables compatible at 1σ
- Combination of b → sµµ BRs and angular obs. prefers negative C_g^{bsµµ}

WET at 4.8 GeV

- 2020 results: Angular observables
 - updated $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - new $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

- ▶ Combination of angular observables clearly dominated by $B^0 \to K^{*0} \mu^+ \mu^-$
- $b \rightarrow s \mu \mu$ branching ratios and angular observables compatible at 1σ
- Combination of b → sµµ BRs and angular obs. prefers negative C₉^{bsµµ}
- Combination with $\Lambda_b \rightarrow \Lambda \mu^+ \mu^$ slightly reduces tension with SM

WET at 4.8 GeV

- 2020 results: Angular observables
 - updated $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - new $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

compatible at 1σ

- ▶ Combination of angular observables clearly dominated by $B^0 \to K^{*0} \mu^+ \mu^-$
- ► $b \rightarrow s\mu\mu$ branching ratios and angular observables compatible at 1σ
- Combination of b → sµµ BRs and angular obs. prefers negative C₉^{bsµµ}
- Combination with $\Lambda_b \rightarrow \Lambda \mu^+ \mu^$ slightly reduces tension with SM

"bightarrows $\mu\mu$ anomaly"

 Some tension between different R_{K*} measurements, in particular due to "low-q² bin" R^[0.045,1.1]_{K*} by LHCb

WET at 4.8 GeV

- Some tension between different R_{K*} measurements, in particular due to "low-q² bin" R^[0.045,1.1]_{K*} by LHCb
- Combination of R_{K^*} measurements compatible with $b \rightarrow s \mu \mu$ observables at 1σ

WET at 4.8 GeV

- Some tension between different R_{K*} measurements, in particular due to "low-q² bin" R^[0.045,1.1]_{K*} by LHCb
- ► Combination of R_{K^*} measurements compatible with $b \rightarrow s\mu\mu$ observables at 1σ
- *R_K* closer to SM than *R_{K*}* but smaller uncertainty

WET at 4.8 GeV

WET at 4.8 GeV

- Some tension between different R_{K*} measurements, in particular due to "low-q² bin" R^[0.045,1.1]_{K*} by LHCb
- Combination of R_{K^*} measurements compatible with $b \rightarrow s \mu \mu$ observables at 1σ
- *R_K* closer to SM than *R_{K*}* but smaller uncertainty
- Combination of $R_K \& R_{K^*}$ in slight tension with $b \rightarrow s\mu\mu$ observables

► $B_s \rightarrow \mu^+ \mu^-$ and correlated observables ($\Delta F = 2$) prefer positive $C_{10}^{bs\mu\mu}$

WET at 4.8 GeV

WET at 4.8 GeV

- ► $B_s \rightarrow \mu^+ \mu^-$ and correlated observables ($\Delta F = 2$) prefer positive $C_{10}^{bs\mu\mu}$
- Combination of B_s → µ⁺µ[−] and other b → sµµ observables:
 - ▶ $b \rightarrow s\mu\mu \& B_s \rightarrow \mu\mu \& corr. obs.$ depend only on muonic coeff.
 - R_K & R_{K*} sensitive to LFUV, insensitive to universal coeff.

WET at 4.8 GeV

- ► $B_s \rightarrow \mu^+ \mu^-$ and correlated observables ($\Delta F = 2$) prefer positive $C_{10}^{bs\mu\mu}$
- Combination of $B_s \rightarrow \mu^+ \mu^-$ and other $b \rightarrow s \mu \mu$ observables:
 - ▶ $b \rightarrow s\mu\mu \& B_s \rightarrow \mu\mu \& corr. obs.$ depend only on muonic coeff.
 - R_K & R_{K*} sensitive to LFUV, insensitive to universal coeff.

WET at 4.8 GeV

- ► $B_s \rightarrow \mu^+ \mu^-$ and correlated observables ($\Delta F = 2$) prefer positive $C_{10}^{bs\mu\mu}$
- Combination of B_s → µ⁺µ[−] and other b → sµµ observables:
 - ► $b \rightarrow s\mu\mu \& B_s \rightarrow \mu\mu \& corr. obs.$ depend only on muonic coeff.
 - R_K & R_{K*} sensitive to LFUV, insensitive to universal coeff.
- Combination of B_s → µ⁺µ[−] and NC LFU observables (R_K, R_{K*}, D_{P_{A'}, 5'})
 - ▶ NCLFU obs. $\&B_s \rightarrow \mu\mu$: very clean theory prediction, insensitive to universal $C_o^{\text{univ.}}$
 - ▶ $b \rightarrow s\mu\mu$ sensitive to univ. coeff. possibly afflicted by underestimated hadr. uncert.

► Global fit in $C_9^{bs\mu\mu}$ - $C_{10}^{bs\mu\mu}$ plane prefers negative $C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$

Tension between fits to b → sµµ observables and R_K & R_{K*} could be reduced by LFU contribution to C₉

WET at 4.8 GeV

WET at 4.8 GeV

► Perform two-parameter fit in space of $C_9^{\text{univ.}}$ and $\Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$: $C_9^{bsee} = C_9^{bs\tau\tau} = C_9^{\text{univ.}}$ $C_9^{bs\mu\mu} = C_9^{\text{univ.}} + \Delta C_9^{bs\mu\mu}$ $C_{10}^{bsee} = C_{10}^{bs\tau\tau} = 0$ $C_{10}^{bs\mu\mu} = -\Delta C_9^{bs\mu\mu}$ scenario first considered in

scenario first considered in Algueró et al., arXiv:1809.08447

- Preference for non-zero C₉^{univ.}
- ► C₉^{univ.} can arise from RG effects:

Bobeth, Haisch, arXiv:1109.1826 Crivellin, Greub, Müller, Saturnino, arXiv:1807.02068

RG effects require scale separation

Consider SMEFT at 4 TeV

 $b \rightarrow s\tau\tau \qquad b \rightarrow c\tau\nu \qquad \ell$ $b_{L} \rightarrow s\tau\tau \qquad b_{L} \rightarrow c\tau\nu \qquad \tau_{L} \qquad b_{L} \rightarrow c_{L} \qquad \tau_{L} \qquad c_{L} \qquad \tau_{L} \qquad c_{L} \qquad \tau_{L} \qquad c_{L} \qquad$

Possible operators: $[\mathbf{0}_{lq}^{(3)}]_{3323} = (\bar{l}_3 \gamma_\mu \tau^a l_3)(\bar{q}_2 \gamma^\mu \tau^a q_3):$

- Might also explain $R_{D^{(*)}}$ anomalies!
- ► $[\mathbf{O}_{lq}^{(1)}]_{3323} = (\bar{l}_3 \gamma_{\mu} l_3) (\bar{q}_2 \gamma^{\mu} q_3):$ Strong constraints from $B \to K \nu \nu$ require $[\mathbf{C}_{lq}^{(1)}]_{3323} \approx [\mathbf{C}_{lq}^{(3)}]_{3323}$

Buras et al., arXiv:1409.4557

- $[O_{qe}]_{2333} = (\bar{q}_2 \gamma_\mu q_3)(\bar{e}_3 \gamma^\mu e_3)$ cannot explain $R_{D^{(*)}}$
- Four-quark operators cannot explain R_{D(*)}, models yielding large enough contributions already in tension with data

 Clear preference for non-zero [C⁽¹⁾_{Iq}]₃₃₂₃ = [C⁽³⁾_{Iq}]₃₃₂₃

- Clear preference for non-zero [C⁽¹⁾_{lq}]₃₃₂₃ = [C⁽³⁾_{lq}]₃₃₂₃
- ▶ $R_{D^{(*)}}$ explanation: Very good agreement between $R_{D^{(*)}}$, $R_{K^{(*)}}$ and $b \rightarrow s\mu\mu$ explanations

- ► Clear preference for non-zero [C⁽¹⁾_{lq}]₃₃₂₃ = [C⁽³⁾_{lq}]₃₃₂₃
- ▶ $R_{D^{(*)}}$ explanation: Very good agreement between $R_{D^{(*)}}$, $R_{K^{(*)}}$ and $b \rightarrow s\mu\mu$ explanations
- Only a simple SMEFT scenario
 Consider explicit models that yield this coefficients
 - \Rightarrow Good candidate: *U*₁ Leptoquark

see talks by Javier Fuentes-Martín and Julie Pagès

All these scenarios are merely parameterizations, not actual new physics models.

All these scenarios are merely parameterizations, not actual new physics models.

Having an effect *only* in one or two Wilson coefficients is *impossible* to get in any model.

All these scenarios are merely parameterizations, not actual new physics models.

Having an effect *only* in one or two Wilson coefficients is *impossible* to get in any model.

Need to consider actual models!

smelli – the SMFFT likelihood

- The WET and SMEFT likelihood function used for all plots in this talk is public and provided by a Python package:

 - Smelli the SMEFT LikeLIhood https://github.com/smelli/smelli

```
Aebischer. Kumar, PS, Straub, arXiv:1810.07698
```

- More than 400 observables included
 - Rare B decays
 - Semi-leptonic B and K decays
 - Meson-antimeson mixing
 - FCNC K decays
 - (LFV) tau and muon decays
 - Z and W pole EWPOs
 - ▶ a 2
 - beta decays *new*
 - Higgs physics *new* Falkowski, Straub arXiv:1911.07866
- Just plug in the Wilson coefficients predicted by your model!

$$\vec{C}_{\text{SMEFT}}(\Lambda_{\text{NP}})$$

$$\downarrow$$

$$\vec{C}_{\text{SMEFT}}(\mu_h) \longrightarrow \text{EWPO}$$

$$\downarrow$$

$$\vec{C}_{\text{WET}}(\mu_l) \xrightarrow{\text{QFV}}_{\text{LFV}}$$

$$\downarrow$$

$$MDM$$

$$\frac{L_{\text{global}}(\vec{C})}{L_{\text{global}}^{\text{SM}}}$$

Basis for implementation

- Computing hundreds of relevant flavour observables properly accounting for theory uncertainties
 - flavio https://flav-io.github.io

Straub, arXiv:1810.08132

- Already used in O(100) papers since 2016
- Representing and exchanging thousands of Wilson coefficient values, different EFTs, possibly different bases
 - Wilson coefficient exchange format (WCxf) https://wcxf.github.io/

Aebischer et al., arXiv:1712.05298

- RG evolution above* and below the EW scale, matching from SMEFT to the weak effective theory (WET)
 - Wilson https://wilson-eft.github.io Aebischer, Kumar, Stra

Aebischer, Kumar, Straub, arXiv:1804.05033

* based on DsixTools Celis, Fuentes-Martin, Vicente, Virto, arXiv:1704.04504

Conclusions

Conclusions

- ▶ New and updated measurements of $B^0 \to K^{*0}\mu^+\mu^-$ and $B^+ \to K^{*+}\mu^+\mu^$ angular observables and new combination of $B_s \to \mu\mu$.
- ▶ New physics in the single muonic Wilson coefficients $C_9^{bs\mu\mu}$, $C_{10}^{bs\mu\mu}$, and $C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$ gives clearly better fit to data than SM (pull $\approx 6\sigma$).
- Slight tension between $R_{K^{(*)}}$ and $b \to s\mu\mu$ in $C_9^{bs\mu\mu}-C_{10}^{bs\mu\mu}$ scenario can be reduced by **lepton flavor universal** $C_9^{univ.}$.
- Lepton flavor universal C₉^{univ.} can be generated through RG effects from semi-tauonic Wilson coefficients that can explain R_p(*).
- EFT scenarios are a good guide for model building but cannot replace actual models. Do a flavor fit in your model with smelli: https://github.com/smelli/smelli

Backup slides

• $[C_{lq}^{(1,3)}]_{3323} = 0.1 \times [C_{lq}^{(1,3)}]_{3333}$ as expected from e.g. U(2) flavor symmetry

- $[C_{lq}^{(1,3)}]_{3323} = 0.1 \times [C_{lq}^{(1,3)}]_{3333}$ as expected from e.g. U(2) flavor symmetry
- Large 3rd gen. coefficient modifies LFU in τ and Z decays, strongly constrained

Feruglio, Paradisi, Pattori, arXiv:1705.00929

Slightly different results by different groups

Descotes-Genon, PS, Talk at Beyond the Flavour Anomalies https://conference.ippp.dur.ac.uk/event/876/

	All			LFUV		
1D Hyp.	1σ	$\text{Pull}_{\rm SM}$	p-value	1σ	$\text{Pull}_{\rm SM}$	p-value
$\mathcal{C}_{9\mu}^{ ext{NP}}$	[-1.19, -0.88]	6.3	37.5%	[-1.25, -0.61]	3.3	60.7%
$\mathcal{C}_{9\mu}^{\rm NP}=-\mathcal{C}_{10\mu}^{\rm NP}$	[-0.59, -0.41]	5.8	25.3 %	[-0.50, -0.28]	3.7	75.3 %
$\mathcal{C}_{9\mu}^{\rm NP}=-\mathcal{C}_{9'\mu}$	[-1.17, -0.87]	6.2	34.0 %	[-2.15, -1.05]	3.1	53.1%

Coefficient	type	best fit	1σ	${\sf pull}_{\sf 1D} = \sqrt{\Delta\chi^2}$
$C_9^{bs\mu\mu}$	$L \otimes V$	-0.93	[-1.07, -0.79]	6.2 σ
$C_9^{\prime b s \mu \mu}$	$R \otimes V$	+0.14	[-0.02, +0.31]	0.9σ
$C_{10}^{bs\mu\mu}$	$L \otimes A$	+0.71	[+0.58, +0.84]	5.7 σ
$C_{10}^{\prime b s \mu \mu}$	$R \otimes A$	-0.20	[-0.29, -0.08]	1.7σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	$L \otimes R$	+0.15	[+0.02, +0.29]	1.2σ
$m{C}_9^{bs\mu\mu}=-m{C}_{10}^{bs\mu\mu}$	$L \otimes L$	-0.53	[-0.61, -0.46]	6.9 σ

C_9 vs. $C_9 = -C_{10}$ with global likelihood

Likelihood contours for different sets of observables taken into account

- ▶ Most groups doing fits of $b \rightarrow s\ell\ell$ observables do not include $\Delta F = 2$ obs.: They do not depend on $b \rightarrow s\ell\ell$ Wilson coefficients
- In global likelihood, △F = 2 obs. naturally included (global!)
- Choice whether to include them or not: clear difference in C₁₀^{bsμμ} direction (red contour vs. blue contour)
- This explained the differences between the different groups!

Why does the inclusion of $\Delta F = 2$ observables has such an impact on the fit in the $C_{10}^{bs\mu\mu}$ direction if $\Delta F = 2$ observables do not depend on $C_{10}^{bs\mu\mu}$?

Why does the inclusion of $\Delta F = 2$ observables has such an impact on the fit in the $C_{10}^{bs\mu\mu}$ direction if $\Delta F = 2$ observables do not depend on $C_{10}^{bs\mu\mu}$?

Theory correlations...

Correlations in a toy example

• Correlations for observables O_1 , O_2 (uncertainties $\sigma_{1,2}$, correlation coeff. ρ):

$$-2\ln \mathcal{L}(O_1, O_2) = \frac{1}{1 - \rho^2} \left(\frac{D_1^2}{\sigma_1^2} + \frac{D_2^2}{\sigma_2^2} - 2\rho \frac{D_1 D_2}{\sigma_1 \sigma_2} \right) , \qquad D_{1,2} = (O_{1,2} - \hat{O}_{1,2})$$

▶ If $D_1(C_{10})$ depends on C_{10} and D_2 is constant in C_{10} , then $\Delta \ln \mathcal{L}$ between $C_{10} = 0$ and $C_{10} = \tilde{C}_{10}$ yields

$$\Delta \ln \mathcal{L} \propto \frac{D_1^2(0) - D_1^2(\tilde{C}_{10})}{\sigma_1^2} - 2 \rho D_2 \frac{D_1(0) - D_1(\tilde{C}_{10})}{\sigma_1 \sigma_2}$$

- First term is present whether we include O_2 or not (up to $\frac{1}{1-o^2}$ prefactor)
- Second term makes a difference
 - if $\rho \neq 0$, i.e. **0**₁ and **0**₂ are correlated
 - if $D_2 \neq 0$, i.e. experimental estimate \hat{O}_2 shows deviation from SM prediction O_2

Correlations in the global likelihood

The same is true for $\Delta F = 2$ observables, in particular ϵ_{K} :

- ▶ theory predictions of ϵ_K and $BR(B_s \rightarrow \mu\mu)$ are correlated, $BR(B_s \rightarrow \mu\mu)$ depends on C_{10}
- experimental estimate of ϵ_{K} shows deviation from SM prediction

Should we include $\Delta F = 2$ observables in $b \rightarrow s\ell\ell$ fit or not?

Two different assumptions:

- ▶ Including them and only varying C_{10} means we assume all other Wilson Coefficients $C_i = 0$, i.e. we fix the SM point in these directions
- Excluding them is (nearly) equivalent to setting certain $C_i \neq 0$ such that theory prediction and experimental estimate of $\Delta F = 2$ observables agree

Bayesian approach: marginalise over "nuisance coefficients" C_i

- ▶ Including them and only varying C_{10} corresponds to prior on C_i strongly peaked around SM value $C_i = 0$
- **Excluding them** is equivalent to flat prior that allows the posterior for C_i to be peaked around $C_i \neq 0$

What can we learn from this?

- There are different assumptions we can make by including or excluding certain observables
- It is not obvious (at least to me) if there is a "correct" one, but we should be aware of the differences
- The $\Delta \chi^2$ values between best-fit point and SM point can be different and one has to think about what "SM point" actually means if one does not fix $C_i = 0$