Rare decays and anomalies at LHCb

- La Thuile 2021 –
- Les Rencontres de Physique de la Vallée d'Aoste March 10, 2021

Mick Mulder on behalf of the LHCb collaboration

Rare Decays

- Loop-level decays mediated by weak interaction
 (Flavour Changing Neutral Currents)
- Transition strongly suppressed: loops, CKM elements, sometimes GIM mechanism
- Perfect for indirect discovery: even small contributions have large effects on rare decays!
- Previous discoveries:
 - charm quark based on (lack of) $K_L^0 \rightarrow \mu^+ \mu^-$
 - mass of top quark > 50 GeV with $B^0 \overline{B}^0$ mixing
- Recently, some anomalies have shown up in rare B decays...

Rare B decays: $b \rightarrow sll$ and $b \rightarrow dll$

- Precise tests of SM with third generation of matter
- Mediated by "penguin" or "box" diagrams in SM
- Branching fractions $\leq O(10^{-6})$
- New Physics (Z' / leptoquark) can be tree-level, contribute strongly!

Rare B decays: $b \rightarrow sll$ and $b \rightarrow dll$

- Precise tests of SM with third generation of matter
- Mediated by "penguin" or "box" diagrams in SM
- Branching fractions $\leq O(10^{-6})$
- New Physics (Z' / leptoquark) can be tree-level, contribute strongly!

Anomalies

Results in rare B decays deviate from predictions in Run 1 LHCb data.... (not only there)

10/03/21

Effective field theory

- Are anomalies consistent with each other?
- Use effective field theory at B-hadron scale, just like beta decay four-point interaction!

$$\mathcal{H}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} V_{\text{CKM}} \sum_i \mathcal{C}_i \mathcal{O}_i$$

- Fermion operators $O_i^{(\prime)}$, Wilson coefficients $C_i^{(\prime)}$
- Leptonic current types (SM, New Physics):
 - $C_7^{(\prime)}$ photon penguin
 - $C_{10}^{(\prime)})C_9^{(\prime)}$ (axial) vector
 - $(C_P^{(\prime)})C_S^{(\prime)}$ (pseudo) scalar
- Model-independent comparison through global fits indicate consistent deviation! reduction of C₉ for muons (perhaps also in C₁₀)?

Example of global fit to C_9 , C_{10}

On the menu today (new)

• $B_{(s)}^0 \rightarrow \mu^+ \mu^- + B_s^0 / B^0$ production fraction at LHCb (f_s / f_d)

• Angular analyses: $B^+ \to K^{*+}\mu^+\mu^-$, $B^0 \to K^{*0}e^+e^-$ (photon polarisation)

• Lepton universality: $R_K = B(B^+ \rightarrow K^+ \mu^+ \mu^-)/B(B^+ \rightarrow K^+ e^+ e^-)$

 $\rightarrow \mu^{+}\mu$

- Leptonic $b \rightarrow s(d)ll$ decay
 - Helicity suppression: very rare in SM, sensitive to C₁₀
 - Scalar contributions (C_s, C_P) enhanced (not helicity suppressed!)
 - **Precise theory predictions**, even for branching fraction
- Predictions
 - $B(B_s^0 \to \mu^+ \mu^-) = (3.66 \pm 0.14) \times 10^{-9}$
 - $B(B^0 \to \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$
 - $\frac{B(B^0 \to \mu^+ \mu^-)}{B(B_s^0 \to \mu^+ \mu^-)} = 0.0281 \pm 0.0006$
- Today: combination of recent measurements (ATLAS, CMS, LHCb) with data up to 2016;

Last LHCb result

$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$: effective lifetime [NEW!]

- Neutral $B^0_{(s)}$ mesons mix with their anti-particle, forming two mass/CP eigenstates
- Heavy/CP-odd B_s^0 eigenstate is longer-lived, only one that decays to $\mu^+\mu^-$ in SM
- Test which B_s^0 eigenstates contribute by measuring $B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime!
- Result from CMS, LHCb combination: $\tau_{\rm eff} = 1.91^{+0.37}_{-0.35} \ \rm ps$
- More statistics needed to distinguish between B_s^0 eigenstates

2

3

 $au_{B^0_{\mathrm{s}}
ightarrow \mu^+ \mu^-} [\mathrm{ps}]$

10/03/21

0

$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$: branching fraction [NEW!]

- Combination of 2D likelihoods measured by experiments
- Results:
 - $B(B_s^0 \to \mu^+ \mu^-) = (2.69^{+0.37}_{-0.35}) \times 10^{-9}$
 - $B(B^0 \to \mu^+ \mu^-) = (0.6 \pm 0.7) \times 10^{-10}$
- Consistent with SM, between experiments
- Correlated, dominant systematic uncertainty on $B(B_s^0 \rightarrow \mu^+ \mu^-)$: B_s^0/B_d^0 production ratio, $f_s/f_d = \sim 6\%$, about 50% of stat. unc.
- Experiments working on Run 2 updates

[LHCb-CONF-2020-002]

f_s/f_d : introduction [NEW!] [LHCb-PAPER-2020-046]

- $f_s/f_d = B_s^0/B_d^0$ production ratio
 - Required to measure B_s^0 branching fractions such as $B(B_s^0 \to \mu^+ \mu^-)$
 - Interesting per se as probe of hadronisation and fragmentation
 - Previously found to depend on p_T (not on η)
 - Assume equal production of B_d^0 , B^+
- f_s/f_d measured at LHCb with ratio of B_s^0/B_d^0 (or B^+) efficiency-corrected yields using prediction for branching fraction ratio:

$$\frac{n_{\rm corr}(B^0_s \to X)}{n_{\rm corr}(B^{0(+)} \to Y)} = \frac{\mathcal{B}(B^0_s \to X)}{\mathcal{B}(B^{0(+)} \to Y)} \frac{f_s}{f_{d(u)}}$$

Five previous measurements (2011 to 2020):
 combination to determine single value with higher precision

Combination of f_s/f_d measurements: inputs

- Previous LHCb measurements performed at 7, 8, 13 TeV, $p_T \in [0.5, 40]$ GeV, $\eta \in [2, 6.4]$ [NEW!]
- Three decay modes: $B \rightarrow D\mu X$, $B \rightarrow Dh$, $B \rightarrow J/\psi X$ (no prediction)
- Update external inputs for B → DµX, B → Dh (e.g. D branching fraction, B lifetimes): significant improvement in sensitivity!
 [LHCb-PAPER-2020-046]

 $B \rightarrow D\mu X$, 13 TeV $B \rightarrow Dh$, 7 TeV $B \rightarrow I/\psi X$, various \sqrt{s} Fractions LHCb LHCb LHCb $\sqrt{s} = 13 \text{ TeV}$ 0.135 0.3 0.13 and 0.25 0.12 0. 0.05 0.1 0.213 10 15 20 10000 20000 30000 40000 Proton-proton collision energy [TeV] $p_{T}(H_{b})$ [GeV] $p_{\tau}(B)$ [MeV/c]

Combination of f_s/f_d measurements: results [NEW!]

- First observation of \sqrt{s} dependence, hint of p_T dependence variation vs \sqrt{s}
- Integrated value (13 TeV) in LHCb acceptance: $\frac{f_s}{f_d} = 0.2539 \pm 0.0079$
- Uncertainty reduced by ~ factor 2 to ~3%
- Also measure $B(B_s^0 \to J/\psi \phi)$, $B(B_s^0 \to D_s^- \pi^+)$ with similar precision
- Update previous B_s^0 branching fraction measurements
- Essential improvement for future measurements of $B(B_s^0 \rightarrow \mu^+ \mu^-)$

[LHCb-PAPER-2020-046]

Semileptonic rare B decays

- "Regular" rare B decay
 - Includes spectator quark
 - At least 3-body final state
- Physics depends on dilepton invariant mass: q^2
- Additional observables:
 - Branching fraction (difficult to predict)
 - Angular observables (better, still tricky)
 - Lepton universality (clean tests of SM)
 - Note: not testing CP violation in these observables (yet)

Angular analysis of $B^+ \rightarrow K^{*+} \mu^+ \mu^- [NEW!]$

LHCb tracking detectors:

- First full angular analysis of $B^+ \to K^{*+} \mu^+ \mu^-$ mode
- Reconstruct $K^{*+} \rightarrow K_S^0 \pi^+$ decay; K_S^0 candidates decay inside (outside) VELO, resulting in long (downstream) pions
- Analyse in four samples: Run 1+2 and LL/DD
- Around 740 candidates from mass fit

modified from

J.Phys.:Conf.Ser.664(2015)072047

Angular analysis of $B^+ \rightarrow K^{*+} \mu^+ \mu^-$ [NEW!] [arXiv:2012.13241]

- Fitting strategy:
 - 1. Fit to B^+ , K^{*+} candidate mass (2D) to constrain non-resonant $B^+ \rightarrow K_S^0 \pi^+ \mu^+ \mu^-$ contribution
 - 2. Fit to mass, 3 helicity angles (4D) to determine 8 angular observables
- Two angular bases (S_i, P_i) available
- 5 different foldings of angles to determine observables without bias or loss of sensitivity
- Angular acceptance determined from corrected simulation samples

leptonic and hadronic decay part

Angular analysis of $B^+ \to K^{*+} \mu^+ \mu^-$

- Determine results of all 8 angular observables, including P'_5 (plot)
- Evaluate consistency with SM of results in S_i basis with global fit using Flavio
- Results inconsistent with SM at 3σ level, favour reduction in C_9

Photon polarisation with $B^+ \rightarrow K^{*0}e^+e^-$ [NEW!]

- Angular analysis with electrons close to photon resonance, sensitive to right-handed currents in $b \rightarrow s\gamma$ transition
- Uses very low $q^2 : [0.0008, 0.257] \text{GeV}^2$
- Update of Run 1 analysis with full Run 1 + Run 2 data
 - Increased signal purity
 - Lower reach in q^2
- Folding $\tilde{\phi} = \phi + \pi$ if $\phi < 0$ (sensitive to all relevant observables)
- Fit to mass and 3 helicity angles to extract angular observables
- Electrons provide extra challenge:
 - Bremsstrahlung leads to energy losses, worse mass shape
 - More difficult to trigger

Photon polarisation with $B^+ \rightarrow K^{*0}e^+e^-$ [NEW!]

- Angular projections and results shown below left
- Results consistent with SM, strongest constraints on C'_7 (right-handed $b \rightarrow s\gamma$)

Lepton universality: R_K

Lepton universality: only difference between muons, electrons is mass

- Strong test with $R_K = \frac{B(B^+ \to K^+ \mu^+ \mu^-)}{B(B^+ \to K^+ e^+ e)}$
- Prediction: $R_K = 1 \pm O(1\%)$ (for $q^2 > 0.1 \text{ GeV}^2$)
- Normalise experimental measurement with double ratio relative to $B^+ \rightarrow K^+ J/\psi (\rightarrow \mu^+ \mu^-/e^+ e^-)$

[PRL122 (2019) 191801⁻

Lepton universality: R_K

- $R_K = 0.846^{+0.060+0.016}_{+0.054-0.014}$ (stat,syst)
- Compatible with Standard Model at 2.5σ
- Fewer muons than expected, similar amount of electrons
- Ongoing updates with full Run 1 + Run 2 data

Summary

- Rare $b \rightarrow sll$ decays are sensitive probe of new physics
- Many observables combined through global fit to Wilson coefficients
- Global fits suggest a consistent set of anomalies...
- $B(B_s^0 \to \mu^+ \mu^-)$ reaching new level of precision
- New f_s/f_d measurement significantly reduces dominant systematic uncertainty on $B(B_s^0 \to \mu^+\mu^-)$, $B(B_s^0 \to \phi\mu^+\mu^-)$
- Angular measurements provide complementary constraints
- More measurements coming soon!

10/03/21

Combination of f_s/f_d : technicalities

[LHCb-PAPER-2020-046]

- Combination through χ^2 minimization
- External inputs included as Gaussian constraints with appropriate correlations (e.g. $B \rightarrow D\mu X, B \rightarrow Dh$ 100% correlated with $\tau_{B_s^0}/\tau_{B_d^0}$)
- Fit procedure validated with pseudoexperiments, found to be unbiased and with proper coverage
- Some $B \rightarrow Dh$ theoretical inputs deviate from expectation, included on y-scale to appropriately show fit result

Angular decay rate $(B^{+/0} \rightarrow K^{(*)(+/0)}\ell^+\ell^-)$

leptonic and hadronic decay part

$$\begin{split} \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} & \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2\,\mathrm{d}\vec{\Omega}} \Big|_{\mathrm{P}} = \\ \frac{9}{32\pi} \left[\frac{3}{4}(1-F_{\mathrm{L}})\sin^2\theta_K + F_{\mathrm{L}}\cos^2\theta_K \\ & +\frac{1}{4}(1-F_{\mathrm{L}})\sin^2\theta_K\cos2\theta_\ell \\ & -F_{\mathrm{L}}\cos^2\theta_K\cos2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos2\phi \\ & +S_4\sin2\theta_K\sin2\theta_\ell\cos\phi + S_5\sin2\theta_K\sin\theta_\ell\cos\phi \\ & +S_{6s}\sin^2\theta_K\cos\theta_\ell + S_7\sin2\theta_K\sin\theta_\ell\sin\phi \\ & +S_8\sin2\theta_K\sin2\theta_\ell\sin\phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin2\phi \right] \end{split}$$

10/03/21