

European Research Council

Precision flavour physics at LHCb: CP violation and CKM constraints

Sevda Esen on behalf of the LHCb collaboration

LHCD

Les Rencontres de Physique de la Vallée d'Aoste March 10, 2021

CKM MATRIX AND CP VIOLATION IN SM

- Key test of the SM: Verify unitarity of CKM matrix
 - Magnitudes: Measure branching fractions or mixing frequencies
 - Phases: Measure CPV
- Sensitivity to BSM effects from global consistency of various measurements

TODAY'S MENU

- CPV in charm decays: three world best measurements
- CPV in beauty: latest γ measurement and more $K \pi$ puzzle
- V_{ub}/V_{cb} : first V_{ub} measurement from B_s^0 decay
- ϕ_s : first time with electrons in the final state
- Δm_s : world best measurement

 $C\!P$ violation in $D^0 \!
ightarrow h^+ h^-$ [LHCb-Paper-2020-045 in preparation]

• Cabibbo-suppressed decays of D^0 into CP eigenstates K^+K^- and $\pi^+\pi^-$

- Contribution from B decays reduced with IP(D⁰) < 60µm
- $D^0 \overline{D}^0$ and $\pi^+\pi^-$ kinematics weighted to remove detection asymmetries

 $C\!P$ violation in $D^0 \!
ightarrow h^+ h^-$ [LHCb-PAPER-2020-045 in preparation]

(5)

CP violation in $D^0
ightarrow K^0_{
m S} K^0_{
m S}$ decay [LHCB-PAPER-2020-047 in preparation of the property of the pro

• Only exchange diagrams contribute at the tree level (vanishing at $SU(3)_F$ limit)

7

đ

 $C\!P$ violation in $D^0
ightarrow K^0_{
m S} K^0_{
m S}$ decay [LHCB-PAPER-2020-047 in preparation of the preparation of the

Sample	2017 + 2018		2015 + 2016	
	\mathcal{A}^{CP} [%]	Yield	\mathcal{A}^{CP} [%]	Yield
LL PV-comp.	$-4.3 \pm 1.6 \pm 0.6$	4056 ± 77	$0.3 \pm 2.5 \pm 1.3$	1388 ± 41
LL PV-inc.	$-3.0 \pm 7.9 \pm 1.4$	430 ± 41	$-11 \pm 17 \pm 3$	178 ± 31
LD PV-comp.	$-2.9 \pm 3.8 \pm 0.9$	1145 ± 49	$-7.2 \pm 5.8 \pm 1.7$	411 ± 25
LD PV-inc.	$-5 \pm 17 \pm 2$	349 ± 64	$-10 \pm 31 \pm 4$	58 ± 18
DD	$-35 \pm 47 \pm 6$	87 ± 28	_	_

 $\mathcal{A}^{CP}_{K^0_S K^0_S}$ = (-3.1 ± 1.2 ± 0.4 ± 0.2)%

À

CP VIOLATION IN $D^\pm_{(s)} o h^\pm \pi^0/\eta$ decays [LHCB-PAPER-2021-001 in preference]

• $\mathcal{A}^{CP}(D^+ \rightarrow \pi^+ \pi^0) < 10^{-5}$ in SM due to isospin symmetry

CP VIOLATION IN $D^\pm_{(s)} o h^\pm \pi^0/\eta$ decays [LHCB-PAPER-2021-001 in prefution of the paper-2021-001 in paper-202

10

À

CP violation in $D^\pm_{(s)} o h^\pm \pi^0/\eta$ decays [LHCB-paper-2021-001 in prefuce)

$$A_{CP}(D^{+} \to \pi^{+}\pi^{0}) = (-1.3 \pm 0.9 \pm 0.6) \%$$

$$A_{CP}(D^{+} \to K^{+}\pi^{0}) = (-3.2 \pm 4.7 \pm 2.1) \%$$

$$A_{CP}(D_{s}^{+} \to K^{+}\pi^{0}) = (-0.8 \pm 3.9 \pm 1.2) \%$$

$$A_{CP}(D_{s}^{+} \to \pi^{+}\eta) = (-0.2 \pm 0.8 \pm 0.4) \%$$

$$A_{CP}(D_{s}^{+} \to \pi^{+}\eta) = (-0.8 \pm 0.7 \pm 0.5) \%$$

$$A_{CP}(D_{s}^{+} \to K^{+}\eta) = (-6 \pm 10 \pm 4) \%$$

$$A_{CP}(D_{s}^{+} \to K^{+}\eta) = (-0.9 \pm 3.7 \pm 1.1) \%$$

$$O \qquad 5 \qquad 10$$

$$A_{CP}(D^{+} \to \pi^{+}\pi^{0}) = (-0.9 \pm 3.7 \pm 1.1) \%$$

À

(11)

Measurement of γ with $B^{\pm} ightarrow D^{(*)} h^{\pm}$ [arXiv:2012.09903]

À

12)

- $B^{\pm} \rightarrow D (\rightarrow K^0_{\rm s} h^+ h^-) h^{\pm}$
 - Mass fit in each Dalitz plot bin
 - D strong phase from CLEO and BESIII
 - $\gamma = (68.7^{+5.2}_{-5.1})^{\circ}$

 $C\!P$ violation in $B_{(s)}
ightarrow h^+ h^+$ decays [arXiv:2012.05319]

13

- Time dependent *CP* asymmetries in $B^0 \to \pi^+\pi^-$, $B^0_s \to K^+K^-$
- Time integrated *CP* in $B^0_{(s)} \to K\pi$
- Sensitive to β_s, γ, ΔM_{d.s}
- Combination with run 1: C_{KK} = 0.172 ± 0.031, S_{KK} = 0.139 ± 0.032
- First observation of time dependent *CP* violation in *B_s*

À

CP violation in $B^+ \to K^+ \pi^0$ decays [arXiv:/2012.12789]

- $\mathcal{A}^{\mathcal{O}}(B^0 \to K^*\pi^-) = \mathcal{A}^{\mathcal{O}}(B^* \to K^*\pi^0)$ from isospin symmetry 5.5 σ deviation from equality seen
- Production and detection asymmetries from $B^+ \rightarrow J/\psi K^+$
- $\mathcal{A}^{CP}(B^+ \to K^+ \pi^0) = 0.025 \pm 0.015 \pm 0.006 \pm 0.003$
- $\mathcal{A}^{CP}(B^0 \to K^+\pi^-) \neq \mathcal{A}^{CP}(B^+ \to K^+\pi^0)$ by 8.8 σ

Measurement of V_{ub}/V_{cb} [arXiv:2012.05143]

- Using 2 fb^{-1} of data at $\sqrt{s} = 8 \text{ TeV}$
- Signal: $B_s^0 \to K^- \mu^+ \nu_\mu$
- Normalization: $B_s^0 \rightarrow D_s^- \mu^+ \nu_\mu$
- $R = \frac{B(B_s^0 \rightarrow K^- \mu^+ \nu_\mu)}{B(B_s^0 \rightarrow D_s^- \mu^+ \nu_\mu)} = \frac{|V_{ub}|}{|V_{cb}|} \times \frac{FF_K}{FF_{D_s}}$
- Bins: $q^2 < 7$ and $q^2 > 7 GeV^2/c^4$

 ϕ_s with $B^0_s \to J/\psi(\to e^+e^-)\phi$ [LHCB-PAPER-2020-042 in preparation]

- Follows similar strategy as $J\!/\psi \rightarrow \mu^+\mu^-$ analysis
- First time dependent angular analysis with an electron final state

16

 ϕ_s with $B^0_s o J/\psi(o e^+e^-)\phi$ [LHCB-PAPER-2020-042 in preparation]

NEW

17)

- Follows similar strategy as $J\!/\psi \rightarrow \mu^+\mu^-$ analysis
- First time dependent angular analysis with an electron final state
- $\phi_s = (0.00 \pm 0.28 \pm 0.05) rad$

PRELIMINARY

MEASUREMENT OF Δm_s [arXiv:2011.12041] and [LHCB-PAPER-2021-005 in prep. NFW

- Mixing asymmetry $\frac{unmixed-mixed}{unmixed+mixed}$ proportional to $(1 2\omega)\cos(\Delta m_s t)$
- Tagging power $\varepsilon_{\rm tag}(1-2\omega)^2 \approx 6\%$
- Two decay modes: $B_s^0 \rightarrow D_s^- \pi^+$ and $B_s^0 \rightarrow D_s^- \pi^+ \pi^- \pi^+$

18

MEASUREMENT OF Δm_s [arXiv:2011.12041] and [LHCB-PAPER-2021-005 IN PREP

(19)

SUMMARY

- CPV in charm decays: three world best measurements
- CPV in beauty: latest γ measurement and more $K \pi$ puzzle
- V_{ub}/V_{cb} : first V_{ub} measurement from B_s^0 decay
- ϕ_s : first time with electrons in the final state NEW!
- Δm_s : world best measurement NEW!

