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How Fast-Folding Proteins Fold
Kresten Lindorff-Larsen,1*† Stefano Piana,1*† Ron O. Dror,1 David E. Shaw1,2†

An outstanding challenge in the field of molecular biology has been to understand the process
by which proteins fold into their characteristic three-dimensional structures. Here, we report the
results of atomic-level molecular dynamics simulations, over periods ranging between 100 ms
and 1 ms, that reveal a set of common principles underlying the folding of 12 structurally diverse
proteins. In simulations conducted with a single physics-based energy function, the proteins,
representing all three major structural classes, spontaneously and repeatedly fold to their
experimentally determined native structures. Early in the folding process, the protein backbone
adopts a nativelike topology while certain secondary structure elements and a small number of
nonlocal contacts form. In most cases, folding follows a single dominant route in which elements
of the native structure appear in an order highly correlated with their propensity to form in the
unfolded state.

Protein folding is a process of molecular
self-assembly during which a disordered
polypeptide chain collapses to form a com-

pact and well-defined three-dimensional struc-
ture. Hundreds of studies have been devoted to
understanding the mechanisms underlying this
process, but experimentally characterizing the
full folding pathway for even a single protein—
let alone for many proteins differing in size,
topology, and stability—has proven extremely
difficult. Similarly, simulating the folding of a
small protein at an atomic level of detail is a
daunting task. Both experimental and compu-
tational studies have thus generally focused on
one protein at a time, with such studies each
performed under different conditions or with
different techniques. Possibly because of the
resulting heterogeneity of the available data,
numerous theories have been proposed to de-
scribe protein folding and no consensus has
been reached on which of these theories, if any,
is correct (1).

Our research group has developed a special-
ized supercomputer, called Anton, which greatly
accelerates the execution of atomistic molecular
dynamics (MD) simulations (2, 3). In addition,
we recently modified the CHARMM force field
in an effort to make it more easily transferable
among different protein classes (4). Here, we have
combined these advances to study the folding
process of fast-folding proteins through equilib-
rium MD simulations (2). We studied 12 protein
domains (5) that range in size from 10 to 80 amino
acid residues, contain no disulfide bonds or pros-
thetic groups, and include members of all three
major structural classes (a-helical, b sheet and
mixed a/b). Of these 12 protein domains, 9 repre-
sent the nine folds considered in a review of fast-
folding proteins (6). Asmost of these nine proteins
contain only a helices, we also included two ad-

ditional a/b proteins and a stable b hairpin to
increase the structural diversity of the set of pro-
teins examined.

In our simulations, all of which used a single
force field (4) and included explicitly represented
solvent molecules, 11 of the 12 proteins folded
spontaneously to structures matching their exper-
imentally determined native structures to atomic

resolution (Fig. 1). The native state of the 12th
protein, the Engrailed homeodomain, proved
unstable in simulation. We were, however, able
to fold a different homeodomain (7) with the
same overall structure; the results reported below
pertain to this variant, rather than the Engrailed
homeodomain.

For all 12 proteins that folded in simulation,
we were also able to perform simulations near
the melting temperature, at which both folding
and unfolding could be observed repeatedly in
a single, long equilibrium MD simulation. For
each of the 12 proteins, we performed between
one and four simulations, each between 100 ms
and 1 ms long, and observed a total of at least
10 folding and 10 unfolding events. In total, we
collected ~8 ms of simulation, containing more
than 400 folding or unfolding events. For 8 of
the 12 proteins, the most representative structure
of the folded state fell within 2 Å root mean
square deviation (RMSD) of the experimental
structure (Fig. 1). This is particularly notable
given that the RMSD calculations included the
flexible tail residues and that, in some cases,
there was no experimental structure available

1D. E. Shaw Research, New York, NY 10036, USA. 2Center
for Computational Biology and Bioinformatics, Columbia
University, New York, NY 10032, USA.

*These authors contributed equally to the manuscript.
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david.shaw@DEShawResearch.com (D.E.S.); kresten.lindorff-
larsen@DEShawResearch.com (K.L.-L.); stefano.piana-
agostinetti@DEShawResearch.com (S.P.)

Fig. 1. Representative structures of the folded state observed in reversible folding simulations of 12
proteins. For each protein, we show the folded structure obtained from simulation (blue) superimposed on
the experimentally determined structure (red), along with the total simulation time, the PDB entry of the
experimental structure, the Ca-RMSD (over all residues) between the two structures, and the folding time
(obtained as the average lifetime in the unfolded state observed in the simulations). Each protein is
labeled with a commonly used name, although in several cases, we studied mutants of the parent se-
quence [amino acid sequences of the 12 proteins and simulation details are presented in (5)]. PDB entries
in italics indicate that the structure has not been determined for the simulated sequence and that, instead,
we compare it with the structure of the closest homolog in the PDB. The calculated structure was obtained
by clustering the simulations (26) to avoid bias toward the experimentally determined structure.
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ZOOLOGY OF ENHANCED SAMPLING METHODS

Markov State Models (Folding@Home), Milestoning, Transition Path Sampling, Transition 
Interface Sampling, Forward Flux Sampling, Temperature Accelerated Molecular 
Dynamics, Metadynamics, Umbrella Sampling, Blue Moon Sampling, String 
Method,Stochastic Difference, … [and counting]

They are all too computationally demanding for many 
biologically relevant problems.
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Hadrons Proteins

PHASE DIAGRAM



PHASE 1: MATHEMATICAL FORMALISM  & HIGH 
PERFORMANCE COMPUTING
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A USEFUL ANALOGY
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IS THIS A "FREE LUNCH”? 

All atom 3D structure of the native state are given in 
input, not predicted



VARIATIONAL APPROACHES TO  
TRANSITION PATH SAMPLING

Self Consistent Path SamplingBias Functional Approach

Variational Scheme to Compute Protein Reaction Pathways Using Atomistic Force Fields
with Explicit Solvent

S. a Beccara,1,3 L. Fant,2 and P. Faccioli2,3,*
1European Centre for Theoretical Nuclear Physics and Related Areas (ECT*-FBK),

Strada delle Tabarelle 287, Villazzano (Trento) 38123, Italy
2Dipartimento di Fisica, Università degli Studi di Trento, Via Sommarive 14, Povo (Trento) 38123, Italy

3Trento Institute for Fundamental Physics and Applications (INFN-TIFPA), Via Sommarive 14,
Povo (Trento) 38123, Italy

(Received 23 May 2014; revised manuscript received 29 October 2014; published 4 March 2015)

We introduce a variational approximation to the microscopic dynamics of rare conformational
transitions of macromolecules. Within this framework it is possible to simulate on a small computer
cluster reactions as complex as protein folding, using state of the art all-atom force fields in
explicit solvent. We test this method against MD simulations of the folding of an α and a β protein
performed with the same all-atom force field on the Anton supercomputer. We find that our
approach yields results consistent with those of MD simulations, at a computational cost orders of
magnitude smaller.

DOI: 10.1103/PhysRevLett.114.098103 PACS numbers: 87.15.ap, 87.10.Tf, 87.14.E-

The development of the special-purpose Anton super-
computer has recently opened the way to MD simulations
of biomolecules consisting of several hundred atoms,
covering time intervals in the millisecond range [1]. By
using this facility, Shaw and co-workers characterized the
reversible folding of several small proteins, showing that
the existing all-atom force fields are able to attain the
correct protein native structures [1–3]. Unfortunately,
many biologically important conformational reactions
occur at time scales many orders of magnitude larger than
the millisecond. Hence, it is important to continue the
development of more efficient algorithms to sample the
reactive pathways space (see, e.g., Ref. [4] and references
therein).
In particular, in the dominant reaction pathways (DRP)

approach [5–8], microscopic trajectories XðτÞ, connecting
given initial and final molecular configurations Xi ¼ Xð0Þ
and Xf ¼ XðtÞ, are determined by maximizing their prob-
ability density P½X% in the Langevin dynamics. This
algorithm was first validated against MD using both
simplified and realistic atomistic force fields (see, e.g.,
Ref. [8]). Next, it was applied to characterize in atomistic
detail conformational reactions far too slow to be inves-
tigated by means of plain MD. Notable examples include
the folding of a knotted protein [9] and the latency
transition of several serpins [10].
One crucial limitation of the DRP method is that it can

only be applied in implicit solvent simulations. In this work
we overcome this limitation by introducing a new varia-
tional approximation suitable also for atomistic simulations
in an explicit solvent.
Let (X; Y) represent a point of the system’s configuration

space, where X¼ðx1;…;xNÞ and Y ¼ ðy1;…; yN0Þ denote

the solute and solvent coordinates, respectively. The
Langevin equations for the solvent and solute are

miẍi ¼ −miγi _xi −∇iU þ ηiðtÞ;
mjÿj ¼ −mjγj _yj −∇jU þ ηjðtÞ; ð1Þ

where UðX; YÞ is the potential energy, ηi is a white noise,
and mi and γi denote mass and viscosity, respectively.
We are interested in the probability density for the solute

to make a transition from Xi to Xf in a time t, along a given
path XðτÞ. This is given by the path integral (PI),

P½X% ¼
Z

DYe−SOM½X;Y%−UðXi;YiÞ=kBT; ð2Þ

where SOM½X; Y% is the Onsager-Machlup functional,
to be defined below. Maximizing P½X% with respect to
the path X yields the DRP optimum condition [5–7]:
ðδ=δXÞhSOM½X; Y%iY ¼ 0, where the average h·iY refers
to the PI over YðτÞ.
Unfortunately, computing this average with the accuracy

required for the path optimization is computationally
unfeasible, because of large statistical fluctuations. To
overcome this problem, we need to derive an optimum
criterion that does not involve any average over the solvent
dynamics.
We begin by considering a modified stochastic dynam-

ics, defined by introducing into Eq. (1) an external
(possibly time-dependent) biasing force Fbias

i ðX; tÞ, acting
on the solute atoms only and accelerating the transition to
the product. The probability of a given reactive pathway
XðτÞ in the biased dynamics is given by

PRL 114, 098103 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 MARCH 2015
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Dominant Reaction Pathways 

Quantitative Protein Dynamics from Dominant Folding Pathways

M. Sega,1 P. Faccioli,2,3 F. Pederiva,4 G. Garberoglio,1 and H. Orland5

1C.N.R./I.N.F.M. and Dipartimento di Fisica, Università degli Studi di Trento, Via Sommarive 14, Povo (Trento), I-38050 Italy
2Dipartimento di Fisica Università degli Studi di Trento e I.N.F.N, Via Sommarive 14, Povo (Trento), I-38050 Italy

3European Centre for Theoretical Studies in Nuclear Physics and Related Areas (E.C.T.), Strada delle Tabarelle 284,
Villazzano (Trento), I-38050 Italy

4Dipartimento di Fisica and C.N.R./I.N.F.M.-DEMOCRITOS National Simulation Center, Università degli Studi di Trento,
Via Sommarive 14, Povo (Trento), I-38050 Italy

5Service de Physique Théorique, Centre d’Etudes de Saclay, F-91191 Gif-sur-Yvette Cedex, France
(Received 30 January 2007; published 12 September 2007)

We develop a theoretical approach to the protein-folding problem based on out-of-equilibrium
stochastic dynamics. Within this framework, the computational difficulties related to the existence of
large time scale gaps are removed, and simulating the entire reaction in atomistic details using existing
computers becomes feasible. We discuss how to determine the most probable folding pathway, identify
configurations representative of the transition state, and compute the most probable transition time. We
perform an illustrative application of these ideas, studying the conformational evolution of alanine
dipeptide, within an all-atom model based on the empiric GROMOS96 force field.
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A critical part of the protein-folding problem is to under-
stand its kinetics and the underlying physical processes. To
this aim, several different theoretical methods have been
recently developed, spanning from analytical approaches
[1] to detailed computer simulations [2,3]. A major prob-
lem in simulating the folding process using standard mo-
lecular dynamics (MD) is the huge gap between the time
scale of ‘‘elementary moves,’’ of the order of 10–100 ps,
and that of the entire folding process, which ranges from a
few microseconds for fast folders [4], up to several seconds
or even minutes for more complex proteins. This peculiar-
ity of the folding process makes the brute-force molecular
dynamics approach too demanding, and a substantial part
of the efforts in the field of protein-folding simulation aims
at bridging this gap.

In a recent paper [5] we presented a novel theoretical
framework for investigating the folding dynamics, named
hereafter Dominant Folding Pathways (DFP), which is
based on a reformulation in terms of path integrals of the
dynamics described by the Langevin equation. The DFP
analysis allows to compute rigorously (i.e., without any
assumptions other than the validity of the underlying
Langevin equation) the most probable conformational
pathway connecting two arbitrary conformations. The ma-
jor advantage of the method is the possibility of bypassing
the computational difficulties associated with the existence
of different time scales in the problem, while retaining the
ability to recover information on the time evolution of the
system. The resulting computational simplification is dra-
matic and makes it feasible to study the formation pattern
of conformational structures along the entire folding pro-
cess using realistic all-atom force fields, on available
computers.

In this Letter we further develop our formalism and we
present the first DFP simulation performed in full atomistic
detail. We show how the DFP analysis gives access to
important information about the dynamics of the folding
process, such as the characterization and determination of
the transition state, and the most probable transition time.
In addition, we show that in this formalism the native state
is characterized by a single effective parameter, and this
leads to an interesting relationship between kinetic and
thermodynamical quantities.

Let us begin our discussion by briefly reviewing the key
concepts of the DFP method, here presented for a simple
one-dimensional system, without loss of generality.

The DFP method can be applied to any system described
by the over-damped Langevin equation
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where U is the potential energy of the system, !$t% is a
Gaussian random force with zero average and correlation
given by h!$t%!$t0%i ! 2D"$t"t0%. Note that in the origi-
nal Langevin equation there is a mass term, m !x. However,
as shown in [6 ], for proteins, this term can be neglected
beyond time scales of the order of 10"13 s.

The probability of finding the system in a conformation
xf at time tf starting from a conformation xi at ti is a
solution of the well-known Fokker-Planck Equation, and
can be expressed as a path-integral:
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3C.N.R./I.N.F.M. and Dipartimento di Fisica, Universitá degli Studi di Trento, Via Sommarive 14, Povo (Trento), I-38050 Italy

4Dipartimento di Fisica and C.N.R./I.N.F.M.-DEMOCRITOS National Simulation Center, Universitá degli Studi di Trento,
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We present a method to investigate the kinetics of protein folding and the dynamics underlying the
formation of secondary and tertiary structures during the entire reaction. By writing the solution of the
Fokker-Planck equation in terms of a path integral, we derive a Hamilton-Jacobi variational principle from
which we are able to compute the most probable pathway of folding. The method is applied to the folding
of the Villin headpiece subdomain simulated using a Go model. An initial collapsing phase driven by the
initial configuration is followed by a rearrangement phase, in which secondary structures are formed and
all computed paths display strong similarities. This completely general method does not require the prior
knowledge of any reaction coordinate and is an efficient tool to perform simulations of the entire folding
process with available computers.
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Understanding the kinetics of protein folding [1] and the
dynamical mechanisms involved in the formation of their
structures in an all-atom approach involves simulating a
statistically significant ensemble of folding trajectories for
a system of !104 degrees of freedom. Unfortunately, the
existence of a huge gap between the microscopic time
scale of the rotational degrees of freedom !10"12 s and
the macroscopic time scales of the full folding process
!10"6– 101 s makes it extremely computationally chal-
lenging to follow the evolution of a typical !100-residue
protein for a time interval longer than a few tens of
nanoseconds.

Several approaches have been proposed to overcome
such computational difficulties and address the problem
of identifying the relevant pathways of the folding re-
action [2]. Unfortunately, these methods are either af-
fected by uncontrolled systematic errors associated to
ad hoc approximations or can be applied only to small
proteins with a typical folding time of the order of a few
nanoseconds (fast folders). In this Letter, we present a
novel approach to overcome these difficulties: We adopt
the Langevin approach and devise a method to rigor-
ously define and practically compute the most statisti-
cally relevant protein folding pathway. As a first explor-
atory application, we have studied the folding transi-
tion of the 36-monomer Villin headpiece subdomain
(Protein Data Bank code 1VII). This molecule has been
extensively studied in the literature because it is the small-
est polypeptide that has all of the properties of a single
domain protein, and, in addition, it is one of the fastest
folders [3]. The ribbon representation of this system is
shown in Fig. 1. We analyze the transition from different
random self-avoiding coil states to the native state, whose

structure was obtained from the Brookhaven Protein Data
Bank.

Our study is based on the analogy between Langevin
diffusion and quantum propagation. Previous studies have
exploited such a connection to study a variety of diffusive
problems using path-integral methods [4,5]. In this work,
we develop the formalism to determine explicitly the evo-
lution of the position of each monomer of the protein,
during the entire folding transition, without relying on a
specific choice of the reaction coordinate.

Before entering the details of our calculation, it is con-
venient to review the mathematical framework in a simple
case. For this purpose, let us consider Langevin diffusion
of a point particle in one dimension, subject to an external
potential U#x$:
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where !#t$ is a Gaussian noise with zero average and
correlation given by h!#t$!#t0$i % 2D"#t" t0$. In this
equation, D is the diffusion constant of the particle in the
solvent; kB and T are, respectively, the Boltzmann constant
and the temperature.

FIG. 1 (color online). Ribbon representation of the Villin
headpiece subdomain, drawn using RASTER3D [11].
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We investigate the folding mechanism of the WW domain Fip35
using a realistic atomistic force field by applying the Dominant
Reaction Pathways approach. We find evidence for the existence
of two folding pathways, which differ by the order of formation
of the two hairpins. This result is consistent with the analysis of
the experimental data on the folding kinetics of WW domains
and with the results obtained from large-scale molecular dynamics
simulations of this system. Free-energy calculations performed in
two coarse-grained models support the robustness of our results
and suggest that the qualitative structure of the dominant paths
are mostly shaped by the native interactions. Computing a folding
trajectory in atomistic detail only required about one hour on 48
Central Processing Units. The gain in computational efficiency
opens the door to a systematic investigation of the folding path-
ways of a large number of globular proteins.

atomistic simulations ∣ protein folding

Unveiling the mechanism by which proteins fold into their
native structure remains one of the fundamental open

problems at the interface of contemporary molecular biology,
biochemistry, and biophysics. A critical point concerns the char-
acterization of the ensemble of reactive trajectories connecting
the denatured and native states, in configuration space.

In this context, a fundamental question which has long been
debated (1) is whether the folding of typical globular proteins in-
volves a few dominant pathways; i.e., well defined and conserved
sequences of secondary and tertiary contact formation, or if it can
take place through a multitude of qualitatively different routes. A
related important question concerns the role of nonnative interac-
tions in determining the structure of the folding pathways (2, 3).

In principle, atomistic molecular dynamics (MD) simulations
provide a consistent framework to address these problems from a
theoretical perspective. However, due to their high computational
cost, MD simulations can presently only be used to investigate the
conformational dynamics of relatively small polypeptide chains,
and are only able to cover time intervals much smaller than the
folding times of typical globular proteins.

In view of these limitations, a considerable amount of theore-
tical and experimental activity has been devoted to investigate the
folding of protein subdomains, which consist of only a few tens of
amino acids, and fold on submillisecond time scales (4). In par-
ticular, a number of mutants of the 35 amino acid WW domain of
human protein pin1 have been engineered which fold in few tens
of microseconds (5). The mutant's small size and their ultrafast
kinetics make them ideal benchmark systems, for which numer-
ical simulations can be compared with a large body of experimen-
tal data (5–7).

In particular, a MD simulation was performed to investigate
the dynamics of a mutant named Fip35 (see Fig. 1), for a time
interval longer than 10 μs. Unfortunately, in that simulation
no folding transition was observed (8, 9).

The folding of this WW domain was later investigated by
Pande and coworkers, using a world wide distributed computing
scheme (10). According to this study the transition proceeds in a
very heterogeneous way; i.e., through a multitude of qualitatively
different and nearly equiprobable folding pathways.

Noé, et al. performed a Markov state model analysis of a large
number of short (≲200 ns) nonequilibrium MD trajectories (11)
performed on the WW domain of human Pin 1 protein. In their
paper the authors reported a complex network of transition path-
ways, which differ by the specific order in which the different local
meta-stable states were visited. On the other hand, in all pathways
the formation of hairpins takes place in a definite sequence (see
e.g., Fig. 2). In particular, from the statistical model it was in-
ferred that in about 30% of the folding transitions, the second
hairpin forms first, as in the right box.

A different conclusion has been reached by Shaw, et al., by
analyzing a ms-long MD trajectory with multiple unfolding/
refolding events, obtained using a special-purpose supercompu-
ter (12). In that simulation theWWdomain of Fip35 was found to
fold and unfold predominantly along a pathway in which hairpin 1
is fully structured, before hairpin 2 begins to fold, as shown in the
left box of Fig. 2. In a recent paper (13), Krivov reanalyzed the
same ms-long MD trajectory in order to identify an optimal set of
reaction coordinates. His conclusion was that the folding of this
WW domain is thermally activated rather than incipient downhill
and that the transition also occurs through a second pathway, in
which hairpin 2 forms before hairpin 1. The statistical weights of
the two pathways estimated from the number of folding events
are 80%! 20% and 20%! 10%.

While all these theoretical studies yield folding times in rather
good agreement with available experimental data on folding
kinetics, they provide different pictures of the folding mechanism
and raise a number of issues.

Firstly, it is important to assess the degree of heterogeneity of
the folding mechanism and to clarify whether the most statisti-
cally significant folding pathways are those in which the hairpins
form in sequence. Important related questions are also whether
the folding mechanism is correlated with the structure of the
initial denatured conditions from which the reaction is initiated
and with the temperature of the heat bath. Finally, it is interesting
to address the problem of the relative role played by native and
nonnative interactions in determining the structure of folding
pathways. Indeed, while native interactions are arguably shaping
the dynamics in the vicinity of the native state, nonnative inter-
actions may in principle play an important role in the transition
region and at the rate limiting stages of the reaction.

In order to tackle these questions, in this work we use the
Dominant Reaction Pathways (DRP) approach (14–18), a frame-
work which allows to very efficiently compute the statistically
most significant pathways connecting given denatured configura-
tions to the native state at an atomistic level of detail, with rea-
listic force fields. To further support our results and to study the
role of native and nonnative interactions we map the free
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FIG. 1. (a) Graphical representation of the Dyson Eq. (44) for the exciton propa-
gator. The line with open white triangle denotes the full (non-perturbative) time-
ordered exciton propagator, while the other continuous line appearing in the
righthand-side represents the free exciton propagator. (b) Example of loop diagram
neglected in the proposed approximation. The dashed line denotes the stochastic
propagator of classical damped Langevin oscillations of the configuration vector
δQ. (c) Estimating the 1PI term by the lowest-order self-energy diagram.

Equation (43) provides the starting point to apply our non-
perturbative approximation scheme. To this end, we consider the
standard Dyson equation, obtained by resumming all 1-particle irre-
ducible (1PI) diagrams for the single-exciton propagator G [see
Fig. 1(a)]. In frequency representation and omitting all indices for
sake of simplicity, the Dyson equation reads

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω), (44)

where Σ(ω) denotes the sum over all 1PI diagrams. Splitting this
equation into its forward and backward components leads to two
decoupled Dyson expressions

Gf �b(ω) = Gf �b
0 (ω)

1 −Gf �b
0 (ω)Σ f �b(ω) . (45)

To evaluate Σf /b(ω), further approximations are required. First
of all, we neglect all diagrams containing exciton loops, such as the
one shown in Fig. 1(b). The reason is that the energy of molecular
vibrations is much lower than that required to lift electronic excita-
tions. Furthermore, we can assume that the couplings f inm entering
Eq. (19) are small and estimate the 1PI in perturbation theory. At the
leading-order, this corresponds to re-summing the self-energy dia-
gram reported in Fig. 1(c). Insisting using this re-summation scheme
even beyond the small coupling regime corresponds to defining a
dynamical mean-field approximation.44

Explicit evaluation of the self-energy diagram leads to

Σ f �b
nm(ω) � f lnm′U

†
lj′V

†
m′s[i(Es − ω) ± γ]Vsn′Uj′hf

h
n′m

βM ⌦2
j′�⌦2

j′ − (Es − ω)(Es ∓ iγ − ω)� , (46)

and the corresponding f /b components of the propagator are

Gf �b(n,m;ω) = ±i�V†
ns(ω − Es ± iε)Vsm ± iΣf �b

nm(ω)�−1, (47)

whereV is the unitarymatrix which diagonalizes the f 0 matrix. Plug-
ging Eq. (47) into the Fourier transform of Eq. (43), we reach the
following expression for the response function in the simplified case
where only diagonal entries of the self-energy Σf �b

nn = Σf �b
n are rele-

vant, i.e., when vibrations only couple to the diagonal elements of
the Frenkel Hamiltonian

R(ω) = −2�
n

(ω − En) + iReΣf
n(ω)

(ω − En)2 − �Σf
n(ω)�2 + 2i(ω − En)ReΣf

n(ω) . (48)

An analytic formula for the absorption coefficient κa(ω) can
be obtained by combining real and imaginary parts, according to
Eqs. (34)–(36). It is instructive to analyze the structure of its imagi-
nary part ImR(ω), which controls the position and the width of the
resonances

ImR(ω) = −�
n

2ReΣf
n(ω)�(ω − En)2 + �Σf

n(ω)�2�
�(ω − En)2 − �Σf

n(ω)�2�2 + 4�(ω − En)ReΣf
n(ω)�2 .

(49)

The splitting and shifting of the poles generated by the vibronic
coupling is determined by the self-energy function Σf

n(ω), given in
Eq. (46). For illustration purposes, here we discuss its expression, in
the case of a single normal mode

Σf
nm(ω) = δnmf 2

βM⌦
γ⌦2 + i(ω − En)�(ω − En)2 −⌦2 + γ2�

�(ω − En)2 −⌦2�2 + γ2(ω − En)2 . (50)

This equation shows how the vibronic correction of the response
function scales with the temperature and bath viscosity. Note that
the shifting, splitting, and broadening of the resonances are large
when the difference between ω and the excitonic energies is com-
parable with the frequency of the vibrational normal mode ⌦. We
emphasize that the new resonances correspond to the vibronic
states, i.e., unstable bound-states of excitonic and vibrational
modes.

In Sec. V, we apply this scheme to compute an absorption
spectrum of a relevant macromolecular system.

V. ABSORPTION SPECTRUM OF THE FMO COMPLEX
In this section, we report on an application of MQFT to

computing the absorption spectrum of the FMO complex, which
represents one of the most thoroughly studied photosynthetic
systems.

Structurally, the FMO complex is a trimer, in which each
monomer is composed by a protein scaffold non-covalently bound
to 8 bacteriochlorophylls of type-a (BChla)45 [see Figs. 2(a) and
2(b)].46,47 Exciton propagation is mainly confined within each
monomer and involves only the 7 inner chlorophylls.47

In the following, we adopt a model in which excitonic and con-
formational degrees of freedom are treated at the explicit level and
their dynamics is defined by the Hamiltonian discussed in Sec. II. In
particular, we coarse-grain the electronic dynamics at the level of the
excitonic states created or annihilated at the 7 inner chlorophyll sites
of each monomer, i.e.,

HEx = 21�
n,m=1 f

0
nm â†

nâm. (51)

The matrix elements f 0nm carry the information about the energies
of each site and the transition amplitudes between the chlorophylls.
The diagonal elements have been obtained from density functional
theory (DFT) calculations on each chlorophyll, while off diagonal
matrix elements can be estimated from the dipole-dipole interac-
tions between chlorophyll transition densities (for a detailed dis-
cussion, see Refs. 45, 48, and 49). We neglect all couplings between
chlorophylls belonging to different monomeric units. Consequently,
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FIG. 1. (a) Graphical representation of the Dyson Eq. (44) for the exciton propa-
gator. The line with open white triangle denotes the full (non-perturbative) time-
ordered exciton propagator, while the other continuous line appearing in the
righthand-side represents the free exciton propagator. (b) Example of loop diagram
neglected in the proposed approximation. The dashed line denotes the stochastic
propagator of classical damped Langevin oscillations of the configuration vector
δQ. (c) Estimating the 1PI term by the lowest-order self-energy diagram.

Equation (43) provides the starting point to apply our non-
perturbative approximation scheme. To this end, we consider the
standard Dyson equation, obtained by resumming all 1-particle irre-
ducible (1PI) diagrams for the single-exciton propagator G [see
Fig. 1(a)]. In frequency representation and omitting all indices for
sake of simplicity, the Dyson equation reads

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω), (44)

where Σ(ω) denotes the sum over all 1PI diagrams. Splitting this
equation into its forward and backward components leads to two
decoupled Dyson expressions

Gf �b(ω) = Gf �b
0 (ω)

1 −Gf �b
0 (ω)Σ f �b(ω) . (45)

To evaluate Σf /b(ω), further approximations are required. First
of all, we neglect all diagrams containing exciton loops, such as the
one shown in Fig. 1(b). The reason is that the energy of molecular
vibrations is much lower than that required to lift electronic excita-
tions. Furthermore, we can assume that the couplings f inm entering
Eq. (19) are small and estimate the 1PI in perturbation theory. At the
leading-order, this corresponds to re-summing the self-energy dia-
gram reported in Fig. 1(c). Insisting using this re-summation scheme
even beyond the small coupling regime corresponds to defining a
dynamical mean-field approximation.44

Explicit evaluation of the self-energy diagram leads to
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and the corresponding f /b components of the propagator are

Gf �b(n,m;ω) = ±i�V†
ns(ω − Es ± iε)Vsm ± iΣf �b

nm(ω)�−1, (47)

whereV is the unitarymatrix which diagonalizes the f 0 matrix. Plug-
ging Eq. (47) into the Fourier transform of Eq. (43), we reach the
following expression for the response function in the simplified case
where only diagonal entries of the self-energy Σf �b

nn = Σf �b
n are rele-

vant, i.e., when vibrations only couple to the diagonal elements of
the Frenkel Hamiltonian

R(ω) = −2�
n

(ω − En) + iReΣf
n(ω)

(ω − En)2 − �Σf
n(ω)�2 + 2i(ω − En)ReΣf

n(ω) . (48)

An analytic formula for the absorption coefficient κa(ω) can
be obtained by combining real and imaginary parts, according to
Eqs. (34)–(36). It is instructive to analyze the structure of its imagi-
nary part ImR(ω), which controls the position and the width of the
resonances

ImR(ω) = −�
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2ReΣf
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n(ω)�2�
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(49)

The splitting and shifting of the poles generated by the vibronic
coupling is determined by the self-energy function Σf

n(ω), given in
Eq. (46). For illustration purposes, here we discuss its expression, in
the case of a single normal mode
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This equation shows how the vibronic correction of the response
function scales with the temperature and bath viscosity. Note that
the shifting, splitting, and broadening of the resonances are large
when the difference between ω and the excitonic energies is com-
parable with the frequency of the vibrational normal mode ⌦. We
emphasize that the new resonances correspond to the vibronic
states, i.e., unstable bound-states of excitonic and vibrational
modes.

In Sec. V, we apply this scheme to compute an absorption
spectrum of a relevant macromolecular system.

V. ABSORPTION SPECTRUM OF THE FMO COMPLEX
In this section, we report on an application of MQFT to

computing the absorption spectrum of the FMO complex, which
represents one of the most thoroughly studied photosynthetic
systems.

Structurally, the FMO complex is a trimer, in which each
monomer is composed by a protein scaffold non-covalently bound
to 8 bacteriochlorophylls of type-a (BChla)45 [see Figs. 2(a) and
2(b)].46,47 Exciton propagation is mainly confined within each
monomer and involves only the 7 inner chlorophylls.47

In the following, we adopt a model in which excitonic and con-
formational degrees of freedom are treated at the explicit level and
their dynamics is defined by the Hamiltonian discussed in Sec. II. In
particular, we coarse-grain the electronic dynamics at the level of the
excitonic states created or annihilated at the 7 inner chlorophyll sites
of each monomer, i.e.,

HEx = 21�
n,m=1 f

0
nm â†

nâm. (51)

The matrix elements f 0nm carry the information about the energies
of each site and the transition amplitudes between the chlorophylls.
The diagonal elements have been obtained from density functional
theory (DFT) calculations on each chlorophyll, while off diagonal
matrix elements can be estimated from the dipole-dipole interac-
tions between chlorophyll transition densities (for a detailed dis-
cussion, see Refs. 45, 48, and 49). We neglect all couplings between
chlorophylls belonging to different monomeric units. Consequently,
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Alan Ianeselli,† Simone Orioli,‡,∥ Giovanni Spagnolli,† Pietro Faccioli,*,‡,∥ Lorenzo Cupellini,§

Sandro Jurinovich,§ and Benedetta Mennucci*,§

†Centre for Integrative Biology, Trento University, Via Sommarive 9, 38128 Povo, Trento, Italy
‡Physics Department, Trento University, Via Sommarive 14, 38128 Povo, Trento, Italy
§Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124, Pisa, Italy
∥INFN-TIFPA, Via Sommarive 14, 38128 Povo, Trento, Italy

*S Supporting Information

ABSTRACT: Circular dichroism (CD) is known to be an excellent tool for
the determination of protein secondary structure due to fingerprint signatures
of α and β domains. However, CD spectra are also sensitive to the 3D
arrangement of the chain as a result of the excitonic nature of additional signals
due to the aromatic residues. This double sensitivity, when extended to time-
resolved experiments, should allow protein folding to be monitored with high
spatial resolution. To date, the exploitation of this very appealing idea has been
limited, due to the difficulty in relating the observed spectral evolution to
specific configurations of the chain. Here, we demonstrate that the
combination of atomistic molecular dynamics simulations of the folding
pathways with a quantum chemical evaluation of the excitonic spectra provides
the missing key. This is exemplified for the folding of canine milk lysozyme
protein.

1. INTRODUCTION
More than 50 years after protein folding was proven to be a
spontaneous process,1 a general agreement on the underlying
molecular mechanisms has not been reached yet.2−4 In the
quest to solve this uncertainty and achieve a complete
understanding at the required spatiotemporal resolution, a
central role is played by the combination of atomistic computer
simulations and experimental measurements.5 Unfortunately,
such a combination is still quite challenging, due to both
computational and experimental limitations.
On the one hand, the complexity combined to the large

dimension of proteins hampers the application of accurate
quantum-mechanical approaches to the study of their energy
surfaces and dynamics, forcing the use of classical descriptions
based on molecular mechanics force fields. Moreover, even
adopting such simplified models, computer simulations can
only cover relatively short time intervals, up to milliseconds.6,7

Consequently, additional approximations need to be intro-
duced in order to bridge the gap between the biologically
relevant and the computationally accessible time scales (see refs
8−18 and references therein). All the limitations intrinsic to
these approximated methods have so far prevented any of them
from becoming consensually accepted.
On the other hand, the available experimental techniques

either have a low spatial resolution or can probe with high
resolution only point-to-point distances. For example, hydro-
gen−deuterium exchange detected by mass spectroscopy19

provides information about the solvent accessible regions, while
small-angle scattering combined with the stopped-flow
technique measures the overall degree of compactness of the
polypeptide chain.20 However, these methods lack the
resolution required to thoroughly assess the predictions of
atomistic models. Furthermore, the limited time-resolution
restricts their applicability to relatively slow structural reactions.
A few alternative experimental techniques have been developed
to probe specific distances, with much higher spatial and
temporal resolution. In particular, single-molecule Förster
resonance energy transfer (smFRET) experiments can measure
subnanometric variations of the distance between two
chromophores located at specific positions along the chain,
with a time resolution on the microsecond scale.21,22 Atomic
force microscopy can also measure with subnanometric
resolution the relative distance between two residues, subject
to an externally applied mechanical stress.23,24 In general, the
development of these single-molecule techniques has brought
inestimable new insight into protein folding kinetics and
thermodynamics.25,26 However, they require alteration of the
chemical structure of the polypeptide chain, by implementing
point mutations and attaching fluorescent probes or molecular
“handles”. The question then arises whether such chemical
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We develop a cross-disciplinary approach to analytically compute optical response functions of open macro-
molecular systems, by exploiting the mathematical formalism of quantum field theory (QFT). Indeed, the en-
tries of the density matrix for the electronic excitations interacting with their open dissipative environment
are mapped into vacuum-to-vacuum Green’s functions in a fictitious relativistic closed quantum system. We
show that by re-summing appropriate self-energy diagrams in this dual QFT it is possible to obtain analytic
expressions for the response functions in Mukamel’s theory. This yields physical insight into the structure and
dynamics of vibronic resonances, since their frequency and width is related to fundamental physical constants
and microscopic model parameters. For illustration, we apply this scheme to compute the linear absorption
spectrum of the Fenna-Matthews-Olson (FMO) light harvesting complex, comparing analytic calculations, nu-
merical Monte Carlo simulations and experimental data.

I. INTRODUCTION

The relaxation dynamics of optically induced electronic
excitations in macromolecular systems has been extensively
studied during the last several years, in view of its important
biological and technological implications. For example, the
propagation of excitons in light harvesting complexes pro-
vides an extremely efficient mechanism for transferring en-
ergy over several nanometers, and represents the first step
of photosynthesis [1]. The understanding of this dynam-
ics could also drive the development of nano-devices based
on bio-mimetic organic macromolecules with desired opto-
electronic properties [2, 3].

Exciton dynamics in macromolecular systems can be ex-
perimentally probed using optical spectroscopy. In partic-
ular, linear absorption spectra provide the structure of the
low-lying sector of the energy spectrum and encode infor-
mation about the strength of the vibronic coupling [4]. Non-
linear spectroscopic techniques, such as time-resolved 1-
dimensional pump probe methods [4] and 2D echo spec-
troscopy [5, 6] provide further details about the electronic
couplings and insight into the relaxation dynamics.

A wide range of theoretical models with different levels
of microscopic detail have been proposed in order to inves-
tigate exciton transport in macromolecules and compute the
associated spectroscopic observables. For example, ab-initio
schemes (see e.g. [7–9]), models based on Frenkel-type
exciton Hamiltonians [10–12] and multi-scale QM-MM ap-
proaches [13] involve an explicit treatment of both excitonic
and nuclear degrees of freedom. More coarse-grained ap-
proaches have also been proposed in which the dynamics of
nuclear degrees of freedom is described at the implicit level,
i.e. through a phenomenological spectral function [14–16].

The exciton dynamics in macromolecules must be de-
scribed within the theoretical framework of open quantum

⇤ pietro.faccioli@unitn.it

systems [13, 17–26]. In this context, the Feynman-Vernon
path integral formalism offers several advantages [10, 27–
34]. For example, in makes it straightforward to deal with the
dynamics of atomic nuclei at the classical level, while retain-
ing a full quantum description of the excitons [10, 29–34].
Within these mixed quantum-classical schemes it is possible
to simulate the real-time dynamics for time intervals as long
as picoseconds, using a Quantum Monte Carlo algorithm.

In particular, in the quantum-classical approach intro-
duced in Ref. [32–34] —hereby referred to as Molecular
Quantum Field Theory (MQFT)— the dynamics of the exci-
tons is described using coherent field representation, within
a mathematical framework which closely resembles that of a
fictitious relativistic quantum theory. The main idea behind
this choice is to capitalize on the fact that the field variables
associated to the lower branch of the Keldysh-Schwinger
(KS) contour in the Feynman-Vernon path integral —hereby
denoted with f00

(x, t)—evolve in the opposite time direction
with respect to those propagating in the upper branch of the
same contour —denoted as f0

(x, t)— Based on this fact, f0

and f00 can be formally regarded as “upper and lower" com-
ponents of a single field doublet, which describes the dy-
namics of matter/anti-matter partners propagating forward
in time. Exploiting this formal connection with a relativistic
QFT, the density matrix can be evaluated from vacuum-to-
vacuum Green functions, in which the causal non-relativistic
Feynman propagators are replaced by the time-ordered prop-
agators.

Since quantum excitations in macromolecules propagate
non-relativistically, using a QFT approach is not a manda-
tory choice. It does, however, offer several attractive techni-
cal advantages. For example, in the small time limit or for
weak coupling with structural vibrations, the density matrix
can be analytically computed in perturbation theory, using
Feynman’s diagrams. Furthermore, by applying renormal-
ization group theory it is possible to obtain a simplified ef-
fective description of the relaxation dynamics which holds in
the long-time and large-distance limit [34].
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(a)

(b)

(c)

(d)

FIG. 3. (a) Trimeric form of the FMO complex. Only the protein
scaffold is shown with its C3 symmetry. (b) Monomeric unit of
the FMO with the 7 BChl-a (blue) wrapped in the protein scaffold.
(c) Representation of the ENM corresponding to a single monomer.
The red beads are centered at the CA position of each residue. The
spring-like bonds between beads falling within a radius of 10 Å are
shown in grey. (d) Atomic structure of the BChla (grey) with the 8
beads chosen for its coarse-grained model in the ENM (red). The
beads are centered at the positions of the MG, C2A, C2B, C2C,
C2D atoms for the chlorin ring and at the C2, C10, C18 positions
for the three beads of the phytol tail. The atomic labelling is the
same found in the crystal structure file (PDB:3EOJ).

protein scaffold is represented by a single bead centered at
the position of the corresponding Ca atom. In addition, fol-
lowing Ref. [46], the BChla is modelled by representing the
chlorin ring with 5 beads and the phytol tail with 3 beads –
see Fig. 3 (d) –. While several works emphasized the impor-
tance of accounting for non-linear coupling of the network
node, in this illustrative example we consider the simplest
case of a harmonic network [51–53].

Following Ref. [46] we build our ENM using the holo
form of the trimeric X-ray crystal structure of Prosthecochlo-
ris aestuarii. The classical potential energy is given by

V (Q) = Â
i> j

ci j
k
4

(di j(Q)�Di j)
2 . (49)

Here, di j(Q) = |qqqi � qqq j| is the instantaneous distance be-
tween the i�th and j�th node, while Di j(Q0) is the cor-
responding reference distance in the crystal structure. The
equilibrium configuration Q0 is defined by the condition
di j(Q0) = Di j. The matrix ci j in Eq. (49) defines the sub-
set of nodes interconnected by the harmonic bonds and reads

ci j =

(
1 for Di j < Rc = 10 Å
0 otherwise

Both the strength of the harmonic constant – assumed to be
the same for all the interacting nodes – k = 5 kcal · mol�1 ·
Å�2 and the cutoff distance Rc are fixed so as to reproduce
the global features of the spectrum of low frequency normal
modes of the original system, calculated from a realistic all-
atom force field [54–56]. The number of nodes in the model
is 1242, as in Ref. [46].
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FIG. 4. Comparison between numerical spectrum (red) and the ex-
perimental spectrum (blue) from Ref. [58]. The non-perturbative
prediction has been obtained via the algorithm in the SM. The total
simulation time was of 1 ps with time-steps of 0.05 fs.

Within the MQFT, the conformational dynamics is de-
scribed by the Langevin equation. For sake of simplic-
ity, we assign the same viscosity parameter to all beads,
g = 150ps�1. In principle, viscosity coefficients for each of
the constituents may be evaluated from microscopic molec-
ular dynamics simulations, e.g. by computing appropriate
velocity auto-correlation functions.

The couplings f k
nm between conformational and excitonic

degrees of freedom —defined in Eq. (12)— may be di-
rectly computed by numerically calculating the derivative of
fnm(Q) near the equilibrium configuration Q0, by quantum
chemistry calculations. However, in this first illustrative ap-
plication, we choose to estimate them phenomenologically
from data which is available in the literature. In particular,
in the SM we define a matching procedure which enables us
to extract these couplings from the effective interaction be-
tween excitons and collective environmental degrees of free-
dom, which is defined in a coarse-grained model of the FMO
system, Ref. [49, 57].

As a first step, we assess the accuracy of our model
by computing the absorption spectrum of FMO using the
quantum-classical path integral Monte Carlo algorithm and
numerical procedure described in the SM. This calculation
provides the full non-perturbative result, thus it is equivalent
to re-summing all possible 1PI diagrams, not just the self-
energy one. The Monte Carlo results of the absorption spec-
trum are reported in Fig. 4, where they are compared to the
experimental spectrum from Ref. [58].

These curves show that our microscopic model provides a
reasonably realistic description of the phenomenology. We
emphasize, however, that the main goal of the present pa-
per is not to improve on the theoretical modeling of exciton
driven energy transfer in FMO complexes, but rather on de-
veloping and assessing an analytic method to estimate ab-
sorption spectra, using MQFT.

Using Eq. (43) we obtained an explicit analytic expression

Experimental 
Calculated  

Time resolved near UV CD* Linear absorption spectrum

* with B. Mennucci’s Lab (U. Pisa)
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All-Atom Simulations Reveal How Single-Point
Mutations Promote Serpin Misfolding
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ABSTRACT Proteinmisfolding is implicated inmanydiseases, includingserpinopathies.For thecanonical inhibitoryserpina1-anti-
trypsin, mutations can result in protein deficiencies leading to lung disease, and misfoldedmutants can accumulate in hepatocytes,
leading to liver disease.Using all-atomsimulationsbasedon the recently developedbias functional algorithm,weelucidate howwild-
type a1-antitrypsin folds and how the disease-associated S (Glu264Val) and Z (Glu342Lys) mutations lead to misfolding. The dele-
terious Z mutation disrupts folding at an early stage, whereas the relatively benign S mutant shows late-stage minor misfolding. A
number of suppressor mutations ameliorate the effects of the Z mutation, and simulations on these mutants help to elucidate the
relative roles of steric clashesandelectrostatic interactions inZmisfolding. These results demonstrate a striking correlation between
atomistic events and disease severity and shine light on the mechanisms driving chains away from their correct folding routes.

INTRODUCTION

Understanding how mutations alter protein misfolding pro-
pensities and the physicochemical mechanisms underlying
this shift is key to clarifying the molecular basis of many dis-
eases. One set of relatively common protein-misfolding dis-
eases known as serpinopathies arises when mutations in
inhibitory serpins lead to misfolding, thus reducing the
secreted levels of these important protease inhibitors (1).
Mutations in the canonical secretory serpin a1-antitrypsin
(A1AT) result in the most common serpinopathies: the
A1AT deficiencies. In these deficiencies, low circulating
A1AT levels dysregulate leukocyte serine proteases, result-
ing in lung disease, which can be slowed but not halted
by A1AT augmentation therapy (2). Extremely pathogenic
A1AT mutations such as Z (Glu342Lys) can lead to both
lung disease, because of loss of function, and liver disease,
because of A1ATaccumulation in the endoplasmic reticulum
of hepatocytes, which generatemost of the circulatingA1AT.
With the exception of liver transplants, there are no effective
treatments for A1AT-associated liver disease (3).

In vitro, the pathogenic A1AT Z mutant folds very
slowly, spending hours in at least one partially folded inter-

mediate state (4). Similarly, Z secretion from cells is slow,
and although some Z species are targeted for degradation
(5–7), misfolded Z accumulates in the endoplasmic reticu-
lum, where it can polymerize (8). Despite numerous exper-
imental studies (9–13), little is known about the structure of
misfolded species for any A1AT disease-associated mutant,
hindering efforts to either rescue the folding of these species
or to target them for degradation.

Molecular dynamics (MD) simulations offer an attractive
approach to studying protein folding and misfolding, as
they can in principle reveal folding pathways and intermedi-
ates in atomistic detail. To date, the application of all-atom
MDsimulations to investigate protein folding andmisfolding
has been limited to small, single-domain proteins with rela-
tively short folding times. In particular, recent developments,
such as the Anton special-purpose supercomputer (14) and
the massively distributed folding@home project (15), have
made it possible to generate in silico several reversible
folding/unfolding events for a number of small globular pro-
teins (<100 amino acids) with folding times up to the milli-
second range. These studies have demonstrated that current
all-atom force fields in explicit solvent can lead to the correct
native states of proteins and predict with good accuracy their
folding kinetics. Unfortunately, most biologically relevant
proteins are much larger than 100 amino acids and have
folding times as long as seconds and beyond. In particular,
A1AT and other serpins contain !400 amino acids and fold
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6*

1 Department of Cellular, Computational and Integrative Biology (CIBIO)–University of Trento, Povo TN,
ITALY, 2 Department of Physics, Povo, Trento TN, ITALY, 3 INFN-TIFPA, Povo (Trento), ITALY,
4 Department of Pathology–University of California—San Diego, San Diego, California, United States of
America, 5 Department of Biochemistry and Centre for Prions and Protein Folding Diseases–University of
Alberta, Edmonton (AB), CANADA, 6 CIMUS Biomedical Research Institute & Department of Medical
Sciences, University of Santiago de Compostela-IDIS, Santiago, SPAIN

* giovanni.spagnolli@unitn.it (GS); emiliano.biasini@unitn.it (EB); jesus.requena@usc.es (JRR)

Abstract

Prions are unusual protein assemblies that propagate their conformationally-encoded infor-

mation in absence of nucleic acids. The first prion identified, the scrapie isoform (PrPSc) of

the cellular prion protein (PrPC), caused epidemic and epizootic episodes [1]. Most aggre-

gates of other misfolding-prone proteins are amyloids, often arranged in a Parallel-In-Regis-

ter-β-Sheet (PIRIBS) [2] or β-solenoid conformations [3]. Similar folding models have also

been proposed for PrPSc, although none of these have been confirmed experimentally.

Recent cryo-electron microscopy (cryo-EM) and X-ray fiber-diffraction studies provided evi-

dence that PrPSc is structured as a 4-rung β-solenoid (4RβS) [4, 5]. Here, we combined dif-

ferent experimental data and computational techniques to build the first physically-plausible,

atomic resolution model of mouse PrPSc, based on the 4RβS architecture. The stability of

this new PrPSc model, as assessed by Molecular Dynamics (MD) simulations, was found to

be comparable to that of the prion forming domain of Het-s, a naturally-occurring β-solenoid.

Importantly, the 4RβS arrangement allowed the first simulation of the sequence of events

underlying PrPC conversion into PrPSc. This study provides the most updated, experimen-

tally-driven and physically-coherent model of PrPSc, together with an unprecedented recon-

struction of the mechanism underlying the self-catalytic propagation of prions.

Author summary

Prions are unusual infectious pathogens that do not contain any nucleic acid. They consist
of assemblies of misfolded proteins. The scrapie isoform of the mammalian prion protein,
PrPSc, is the most notorious prion, and is responsible for deadly neurodegenerative dis-
eases affecting humans, like Creutzfeldt-Jakob disease, and animals, such as bovine spon-
giform encephalopathy (“mad cow disease”) and chronic wasting disease affecting elk and
deer in North America and, more recently, Europe). Understanding the structure
(“shape”) of the PrPSc prion is critical to understand how it propagates. We have created a
very detailed model of PrPSc, which includes all its atoms, using computational
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Abstract 
 
Prions are self-replicative protein particles lacking nucleic acids. Originally discovered for causing infectious 
neurodegenerative disorders, they have also been found to play several physiological roles in a variety of 
species. Functional and pathogenic prions share a common mechanism of replication, characterized by the 
ability of an amyloid conformer to propagate by inducing the conversion of its physiological, soluble 
counterpart. In this work, we focus on the propagation of the prion forming domain of HET-s, a physiological 
fungal prion for which high-resolution structural data are available. Since time-resolved biophysical 
experiments cannot yield a full reconstruction of prion replication, we resort to computational methods. To 
overcome the computational limitations of plain Molecular Dynamics (MD) simulations, we adopt a special 
type of biased dynamics called ratchet-and-pawl MD (rMD). The accuracy of this enhanced path sampling 
protocol strongly depends on the choice of the collective variable (CV) used to define the biasing force.  Since 
for prion propagation a reliable reaction coordinate (RC) is not yet available, we resort to the recently 
developed Self-Consistent Path Sampling (SCPS). Indeed, in such an approach the CV where the biasing force 
is applied is not heuristically postulated but is calculated through an iterative refinement procedure. Our 
atomistic reconstruction of the HET-s replication shows remarkable similarities with a previously reported 
mechanism of mammalian PrPSc propagation obtained with a different computational protocol. Together, 
these results indicate that the propagation of prions generated by evolutionary distant proteins shares 
common features. In particular, in both these cases, prions propagate their conformation through a very 
similar templating mechanism.  
 
Introduction 
 

The phenomenon of protein-based inheritance characterizes prions, proteins appearing at various 
levels along the evolutionary scale that are capable of propagating their conformationally encoded 
information in absence of nucleic acids [1]. Despite their original identification as causative agents of 
neurodegenerative conditions in mammals, prions also exert regulatory roles in different biological contexts 
[2, 3]. For example, a mechanism of heterokaryon incompatibility in different fungi is regulated by a prion [3-
5]. This process reflects the inability of vegetative fungal cells from two different strains to undergo fusion, 
depending on specific loci (het) whose alleles must be identical for stable hyphal fusion to occur. Strain 
compatibility ultimately determines whether the heterokaryon develops normally or undergoes controlled 
cell-death. In Podospora anserina, the heterokaryon incompatibility is specified by a het locus appearing as 
two distinct and incompatible alleles (HET-s and HET-S), encoding two corresponding proteins (HET-s and 
HET-S, respectively) [6]. When a HET-s strain fuses with another expressing HET-S, the heterokaryon can 
undergo controlled cell death. However, incompatibility occurs only when the HET-s factor is folded in an 

Teaming up with  
E. Biasini’s lab (DICIBIO)



-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-1.4
-1.2
-1

-0.8
-0.6
-0.4
-0.2
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2.2
2.4
2.6
2.8
3

3.2
3.4
3.6
3.8

Experiment

Theory

PHASE 4: PHARMACOLOGICAL RESEARCH



MOST OF BIOLOGICAL FUNCTIONS IN CELLS ARE CARRIED 
OUT BY PROTEINS 

MOST OF MEDICINAL CHEMISTRY IS BASED ON  
INHIBITING BIOLOGICAL FUNCTIONS OF PROTEINS

! ROLE OF PROTEIN INACTIVATION



DNA mRNA Ribosome
Protein 
folding

Protein 
function

Imparing 
function

Eliminating 
protein from 

genome

Suppressing  
folding

!
PHARMACOLOGICAL PROTEIN INACTIVATION BY 

FOLDING INTERMEDIATE TARGETING 
patent file # 102018000007535 (with E. Biasini)

Suppressing  
transcription

RNA  
silencing



Unfolded 
state

I1 I2 Native state

I3drug

!
PHARMACOLOGICAL PROTEIN INACTIVATION BY 

FOLDING INTERMEDIATE TARGETING 

Unfolded proteins Degradation



  
 

Virtual screening on 
folding Intermediate

Folding pathway 
characterization

Biochemical  
Validation  

P P I - F I T  P I P E L I N E



  
 

Virtual screening on 
folding Intermediate

Folding pathway 
characterization

Biochemical  
Validation  

P P I - F I T  P I P E L I N E

with 
L. Barreca’s Lab



D R U G G I N G  T H E  U N D R U G G A B L E

Vhc 0.1 1 3 10 30
0

50

100

150

***
***

SM875 [µM]

Pr
PC

 E
xp

re
ss

io
n 

(%
 V

hc
)

Vhc 1 3 10 30
0

40

80

120

160

200

SM875 [µM]

N
EG

R
-1

 E
xp

re
ss

io
n 

(%
 V

hc
)

Inactivation of  
Cellular  

Prion protein

(iii)

Vhc 0.01 0.03 0.1 0.3 1 3 10 30 50

37

25

20

PrPC

SM875 [µM]

50 NEGR-1

Vhc 1 3 10 30

SM875 [µM](ii)

ARTICLE

Pharmacological inactivation of the prion protein by
targeting a folding intermediate
Giovanni Spagnolli 1,2,13, Tania Massignan1,2,3,13, Andrea Astolfi4,13, Silvia Biggi1,2, Marta Rigoli 5,
Paolo Brunelli1,2, Michela Libergoli1,2, Alan Ianeselli1,2, Simone Orioli5,6, Alberto Boldrini 1,3, Luca Terruzzi 1,3,
Valerio Bonaldo 1,2, Giulia Maietta1,2, Nuria L. Lorenzo7, Leticia C. Fernandez7, Yaiza B. Codeseira7,
Laura Tosatto8, Luise Linsenmeier9, Beatrice Vignoli5, Gianluca Petris 1, Dino Gasparotto1,2,
Maria Pennuto 10,11, Graziano Guella 5, Marco Canossa1, Hermann C. Altmeppen 9, Graziano Lolli1,

Stefano Biressi 1,2, Manuel M. Pastor12, Jesús R. Requena7, Ines Mancini5, Maria L. Barreca 4✉,
Pietro Faccioli5,6✉ & Emiliano Biasini 1,2✉

Recent computational advancements in the simulation of biochemical processes allow

investigating the mechanisms involved in protein regulation with realistic physics-based

models, at an atomistic level of resolution. These techniques allowed us to design a drug

discovery approach, named Pharmacological Protein Inactivation by Folding Intermediate

Targeting (PPI-FIT), based on the rationale of negatively regulating protein levels by targeting

folding intermediates. Here, PPI-FIT was tested for the first time on the cellular prion protein

(PrP), a cell surface glycoprotein playing a key role in fatal and transmissible neurodegen-

erative pathologies known as prion diseases. We predicted the all-atom structure of an

intermediate appearing along the folding pathway of PrP and identified four different small

molecule ligands for this conformer, all capable of selectively lowering the load of the protein

by promoting its degradation. Our data support the notion that the level of target proteins

could be modulated by acting on their folding pathways, implying a previously unappreciated

role for folding intermediates in the biological regulation of protein expression.

https://doi.org/10.1038/s42003-020-01585-x OPEN
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PPI-FIT ON ACE2

Out of 9000 candidates, we found 35 molecules binding in-silico the 
intermediate. Validation experiments on cellular bio-assays are ongoing.
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DOSE-DEPENDENT RESPONSE

Figure 8: Cell-based validation of candidate hits. Untransfected Vero cells were exposed to different concentrations
of each compound (indicated) or vehicle (DMSO or Milli-Q or Methanol, volume equivalent) for 48 h, lysed and analyzed by
western blotting. Signals were detected by using specific anti-ACE2 primary antibody, relevant HRP-coupled secondary
antibodies, and revealed using a ChemiDoc Touch Imaging System. Western blot images are representative examples
of different experiments (n � 3). The graphs show the densitometric quantification of the levels of ACE2 (A). Each
signal was normalized on the corresponding total protein lane (detected by UV, and allowed by the enhanced tryptophan
fluorescence technology of stain-free gels) and expressed as the percentage of the level in vehicle (Vhc)-treated controls.
B. The intrinsic toxicity of each molecule was assessed by MTT assay. The graphs show cell viability values expressed
as percentage of vehicle (DMSO or MilliQ-water, volume equivalent)-treated cells. Concentration points were chosen
depending on solubility and intrinsic toxicity. None of the compounds show toxicity at the indicated concentration.
Statistically significant differences are indicated by the asterisk (* p < 0.05).

Vero cells incubated with each of the four candidate compounds at different concentrations were trans-
duced with retroviral vectors pseudotyped with the SARS-CoV-2 spike protein, or with control vectors
without it. The effect of each compound on retroviral vector transduction was estimated by quantifying
the relative percentage of cells presenting the GFP fluorescence. We found that all the four compounds
inhibited retroviral transduction in a dose-dependent fashion, at concentrations similar to those at which
the molecules lowered ACE2 expression (Figure 9). Importantly, none of the compounds induced signif-
icant cytotoxicity in this assay, with the exception of Beclabuvir, which showed cytotoxicity but only at
the highest concentrations tested (30 and 100 µM, not shown). Collectively, these results indicate that
the ability of the selected compounds to lower the expression of ACE2 translates in a reduced cellular
entry for a pseudotyped retroviral vector exposing the SARS-CoV-2 spike protein.

9

The least biased trajectories were projected on two graphs plotting the RMSD of each relevant region
(residues 468-498 or C-terminal tail) against the RMSD of the corresponding docking site. These
analyses revealed that the pocket 1 is present in a single trajectory, while the pocket 2 is predicted to
appear in 9 different trajectories.

In Silico Identification of Potential Binders of ACE2 Intermediate

The identification of potential ACE2 folding intermediate ligands was pursued by employing a drug
repositioning strategy. We built a unique collection of 9187 compounds by combining libraries of drugs
approved by the U.S. Food and Drug Administration (FDA) and molecules at different stages of currently
ongoing clinical trials (see Material and Methods). The chemical collection was screened against the
two identified pockets by following a consensus virtual screening workflow (Figure 7). Two different
docking software, Glide22 and LeadIT24, were employed in parallel to predict the binding affinity of each
compound to the ACE2 folding intermediate pockets. Only compounds showing promising predicted
affinity (i.e. Glideds  -6 kcal/mol; LeadIT HYDEaff  50 µM) in both docking protocols were submitted
to a third docking round based on AutoDock25. This process identified two consensus sets (ADLBE  -6
kcal/mol, ADNiC � 25), including 145 compounds for pocket 1 and 238 for pocket 2. The top scoring
compounds from Glide (Glideds  -9 kcal/mol) and LeadIT (HYDEaff  5 µM) were also added to these
sets. Finally, a visual inspection of binding mode and chemical similarity annotation for each ligand
allowed the selection of 14 virtual hits for pocket 1 and additional 21 for pocket 2 (Supp. Table 2).

Figure 7: Virtual Screening. A. Schematic of the virtual screening workflow employed for drug repositioning. Three-
dimensional binding pose (B) and two-dimensional ligand interaction scheme (C) for the interaction of artefenomel with the
pocket 1 of the ACE2 folding intermediate. Purple arrows indicate H-bonds; green lines indicates the ⇡-stacking. Residues
are labeled with different colors, corresponding to negatively charged (red), polar (cyan) and hydrophobic (green).

Collectively, these results predicted 35 potential ligands for the ACE2 folding intermediate (Supp. Ta-
ble 2). Out of these 35 predicted ligand, 8 (ALK-4290, Iferanserin, Lifibrol, LY-2624803, PF-00217830,
Phenindamine, Serdemetan and Vapitadine) were not commercially available. Instead, we tested 8 ad-
ditional analogues of mefloquine (Hydroxychloroquine, Piperaquine, Chloroquine, Primaquine, Amodi-
aquine, Halofantrine, Tafenoquine and Amodiaquine), drug belongs to a class of antimalaria agents
recently described for their potential effect against SARS-CoV-2 26,27. While the precise mechanism
by which chloroquine and its more active derivative hydroxychloroquine inhibit virus replication is not
known, reports suggest that the compounds may act by reducing the glycosylation of ACE228.
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Figure 8: Cell-based validation of candidate hits. Untransfected Vero cells were exposed to different concentrations
of each compound (indicated) or vehicle (DMSO or Milli-Q or Methanol, volume equivalent) for 48 h, lysed and analyzed by
western blotting. Signals were detected by using specific anti-ACE2 primary antibody, relevant HRP-coupled secondary
antibodies, and revealed using a ChemiDoc Touch Imaging System. Western blot images are representative examples
of different experiments (n � 3). The graphs show the densitometric quantification of the levels of ACE2 (A). Each
signal was normalized on the corresponding total protein lane (detected by UV, and allowed by the enhanced tryptophan
fluorescence technology of stain-free gels) and expressed as the percentage of the level in vehicle (Vhc)-treated controls.
B. The intrinsic toxicity of each molecule was assessed by MTT assay. The graphs show cell viability values expressed
as percentage of vehicle (DMSO or MilliQ-water, volume equivalent)-treated cells. Concentration points were chosen
depending on solubility and intrinsic toxicity. None of the compounds show toxicity at the indicated concentration.
Statistically significant differences are indicated by the asterisk (* p < 0.05).

Vero cells incubated with each of the four candidate compounds at different concentrations were trans-
duced with retroviral vectors pseudotyped with the SARS-CoV-2 spike protein, or with control vectors
without it. The effect of each compound on retroviral vector transduction was estimated by quantifying
the relative percentage of cells presenting the GFP fluorescence. We found that all the four compounds
inhibited retroviral transduction in a dose-dependent fashion, at concentrations similar to those at which
the molecules lowered ACE2 expression (Figure 9). Importantly, none of the compounds induced signif-
icant cytotoxicity in this assay, with the exception of Beclabuvir, which showed cytotoxicity but only at
the highest concentrations tested (30 and 100 µM, not shown). Collectively, these results indicate that
the ability of the selected compounds to lower the expression of ACE2 translates in a reduced cellular
entry for a pseudotyped retroviral vector exposing the SARS-CoV-2 spike protein.
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ANTI-VIRAL ACTIVITY AGAINST LIVE SARS-COV2

Figure 9: Effect of ACE2-lowering drugs on the transduction efficiency of a pseudotyped retroviral vector.
Vero cells exposed to each compound at the indicated concentration were transduced with a SARS-CoV-2-Spike protein
pseudotyped retroviral vector functionalized with a GFP reporter gene. Identical retroviral vectors missing the spike
protein were used as controls. The number of transduced cells were quantified by detecting the GFP fluorescence using a
plate reader and analyzed with the ImageJ software (NIH). The number of fluorescent cells was normalized to the amount
of cells within each well, estimated by using the MTT assay, and expressed as the percentage of the vehicle control. For
each condition, mean ± SD were calculated from at least 3 independent replicates. Statistical analyses were performed
using the one-way ANOVA Dunnett’s post-hoc test. Each compound was tested at relevant concentrations excluding those
at which the molecule showed detectable intrinsic fluorescence. Significant changes are indicated by an asterisk (* p <
0.05).

Antiviral activity against live SARS-CoV-2

Sibylla Biotech SRL requested RetroVirox Inc., San Diego, California, to perform full-dose antiviral
testing on the four candidate compounds. Assays against live SARS-CoV-2 were performed against the
MEX-BC2/2020 strain. A cytopathic effect (CPE) based antiviral assay was performed by infecting
Vero E6 cells in the presence or absence of test-items. Infection of cells leads to significant cytopathic
effect and cell death after 4 days of infection. In this assay, reduction of CPE in the presence of inhibitors
was used as a marker to determine the antiviral activity of the tested items (Figure 10).

Figure 10: IC50 values for Inhibition of SARS-CoV-2 CPE by test-items. Values indicate the percentage
inhibition of the CPE induced by live SARS-CoV-2 (MEX-BC2/2020), as compared to samples incubated with no test-
item (vehicle alone). Results show the average of duplicate data points from two separate plates for Ziprasidone, Buclizine
and Beclabuvir, and the average of triplicate data points from two separate plates for Artefenomel. Data was modeled to
a sigmoidal function using GraphPad Prism software fitting a normalized dose-response curve with a variable slope.

Viability assays to determine test-item-induced loss of cell viability was monitored in parallel using
the same readout, but treating uninfected cells with the test-items. Antiviral and cytotoxic effects
(expressed as IC50 and CC50) are summarized in Table 1. Of the four test-items evaluated, Artefenomel
completely prevented the virus-induced CPE in the concentration range 33 µM to 100 µM, resulting
in viability levels similar to those observed in uninfected cells. The antiviral activity of Artefenomel
shows a dose-response curve with an IC50 of 2.9 µM. The cell viability assay further assessed that the
antiviral activity displayed by Artefenomel was not due to cytotoxicicity. None of the concentrations
evaluated of the test-item displayed any cytotoxicity. Buclizine also completely prevented the virus-
induced CPE at a concentration of 11 µM, where the cell viability resulted in 75% of vehicle. The
dynamic range of the antiviral activity displayed by Buclizine was narrow, with an IC50 value between
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5 and 6 µM. Significant inhibition of CPE was only observed between 1 µM and 11 µM, and then
disappeared at higher concentrations (data not shown), likely due to the intrinsic cytotoxicity induced
at such concentrations, as shown in the absence of SARS-CoV-2. A modest antiviral activity was also
observed with Beclabuvir at 1 µM and 10 µM. At a concentration of 30 µM the compound induced
cytotoxicity and lost antiviral activity. In the tested condition, Ziprasidone showed no antiviral activity
in this assay.

Table 1: Summary of antiviral and cytotoxic results. IC50 (antiviral), and CC50 (cytotoxicity) values are shown
for the test-items and GS-441254. Signal-to-background ratios (S/B), and average coefficients of variation (C.V.) are
shown. The average CV was determined for all data points in the case of Artefenomel and for duplicate data-points for
which 50% or greater A540 values were observed, as compared to cells infected in the presence of vehicle alone (CPE
assay), or uninfected cells (viability assay) in the case of Ziprasidone, Buclizine and Beclabuvir. When viral inhibition, or
cell viability (CC50) did not reach 50% at the highest concentration tested, the IC50 or CC50 values are shown as greater
than the highest concentration tested. IC50 values were generated with Graphpad Prism in the case of Artefenomel. IC50

values for Buclizine could not be calculated with Graphpad Prism software due to the loss of antiviral activity observed
at the highest concentrations. The IC50 value shown was manually extrapolated after eliminating the data-points for 33
µM and 100 µM concentrations.

Discussion

Multiple pieces of evidence indicate that downregulating the expression of ACE2 of the SARS-CoV2
infection should effectively inhibit virus replication. However, selectively decreasing the expression of
a host target protein could be a difficult task. RNA silencing or CRISPR-based strategies represent
valid options, but their use could be limited by delivery issues29,30. These problems could be overcome
by emerging pharmacological technologies like the proteolysis targeting chimeras (PROTACs), which
build on the principle of designing bi-functional compounds capable of interacting with the target
protein with one side and engaging the E3 ubiquitin ligase with the other, leading to the degradation of
the polypeptide by the proteasome31. Similarly, the PPI-FIT method capitalizes on the cellular quality
control machinery to promote the degradation of the target polypeptide, although it does not require the
development of bi-functional molecules. PPI-FIT-derived compounds aim at stimulating the removal
of the target protein by directly blocking its folding pathway18. In this manuscript, we described
the application of the PPI-FIT paradigm to ACE2. Our analyses predict the existence of a folding
intermediate showing two unique druggable pockets not present in the native ACE2 conformation. In
order to respond to the urgent need for an effective therapy against SARS-CoV-2, we targeted both
pockets by an in silico virtual screening approach aimed at repurposing drugs currently in clinical
trials or already approved by the FDA. Nine molecules were found to decrease ACE2 expression in
Vero cells. Five of those were discarded as showing toxicity in the same concentration range at which
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SPACE IS THE NEXT FRONTIER!



The least biased trajectories were projected on two graphs plotting the RMSD of each relevant region
(residues 468-498 or C-terminal tail) against the RMSD of the corresponding docking site. These
analyses revealed that the pocket 1 is present in a single trajectory, while the pocket 2 is predicted to
appear in 9 different trajectories.

In Silico Identification of Potential Binders of ACE2 Intermediate

The identification of potential ACE2 folding intermediate ligands was pursued by employing a drug
repositioning strategy. We built a unique collection of 9187 compounds by combining libraries of drugs
approved by the U.S. Food and Drug Administration (FDA) and molecules at different stages of currently
ongoing clinical trials (see Material and Methods). The chemical collection was screened against the
two identified pockets by following a consensus virtual screening workflow (Figure 7). Two different
docking software, Glide22 and LeadIT24, were employed in parallel to predict the binding affinity of each
compound to the ACE2 folding intermediate pockets. Only compounds showing promising predicted
affinity (i.e. Glideds  -6 kcal/mol; LeadIT HYDEaff  50 µM) in both docking protocols were submitted
to a third docking round based on AutoDock25. This process identified two consensus sets (ADLBE  -6
kcal/mol, ADNiC � 25), including 145 compounds for pocket 1 and 238 for pocket 2. The top scoring
compounds from Glide (Glideds  -9 kcal/mol) and LeadIT (HYDEaff  5 µM) were also added to these
sets. Finally, a visual inspection of binding mode and chemical similarity annotation for each ligand
allowed the selection of 14 virtual hits for pocket 1 and additional 21 for pocket 2 (Supp. Table 2).

Figure 7: Virtual Screening. A. Schematic of the virtual screening workflow employed for drug repositioning. Three-
dimensional binding pose (B) and two-dimensional ligand interaction scheme (C) for the interaction of artefenomel with the
pocket 1 of the ACE2 folding intermediate. Purple arrows indicate H-bonds; green lines indicates the ⇡-stacking. Residues
are labeled with different colors, corresponding to negatively charged (red), polar (cyan) and hydrophobic (green).

Collectively, these results predicted 35 potential ligands for the ACE2 folding intermediate (Supp. Ta-
ble 2). Out of these 35 predicted ligand, 8 (ALK-4290, Iferanserin, Lifibrol, LY-2624803, PF-00217830,
Phenindamine, Serdemetan and Vapitadine) were not commercially available. Instead, we tested 8 ad-
ditional analogues of mefloquine (Hydroxychloroquine, Piperaquine, Chloroquine, Primaquine, Amodi-
aquine, Halofantrine, Tafenoquine and Amodiaquine), drug belongs to a class of antimalaria agents
recently described for their potential effect against SARS-CoV-2 26,27. While the precise mechanism
by which chloroquine and its more active derivative hydroxychloroquine inhibit virus replication is not
known, reports suggest that the compounds may act by reducing the glycosylation of ACE228.
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8 Characterizing thermally activated transitions in high-dimensional rugged energy surfaces is a very
9 challenging task for classical computers. Here, we develop a quantum annealing scheme to solve this

10 problem. First, the task of finding the most probable transition paths in configuration space is reduced to a
11 shortest-path problem defined on a suitable weighted graph. Next, this optimization problem is mapped into
12 finding the ground state of a generalized Ising model. A finite-size scaling analysis suggests this task may
13 be solvable efficiently by a quantum annealing machine. Our approach leverages on the quantized nature of
14 qubits to describe transitions between different system’s configurations. Since it does not involve any lattice
15 space discretization, it paves the way towards future biophysical applications of quantum computing based
16 on realistic all-atom models.

DOI:17

18 Molecular dynamics (MD) provides a sound theoretical
19 framework to investigate the structural dynamics of macro-
20 molecular systems. However, this scheme is computation-
21 ally inefficient when applied to thermally activated
22 processes. To overcome this limitation, much effort has
23 been put over the last two decades toward devising
24 enhanced sampling algorithms [1]. In particular, an expo-
25 nential speed-up of the computational efficiency can be
26 obtained by introducing specific biasing forces that pro-
27 mote the escape rate from metastable minima [2–4].
28 However, methods based on this scheme typically require
29 some prior knowledge about the reaction coordinate or the
30 system’s slowest collective variables (CVs). Unfortunately,
31 the identification of these variables is in general a very
32 challenging task, and a suboptimal choice may hamper the
33 convergence or introduce systematic errors. On the other
34 hand, enhanced sampling methods which do not involve
35 biasing forces [5–7] are significantly more computationally
36 expensive.
37 During the last several years, quantum computing
38 machines have grown exponentially both in size and
39 performance, to a point that it is now realistic to foresee
40 the onset of quantum supremacy in key computational
41 problems [8]. It is therefore both important and timely to
42 address the question whether quantum computation can be
43 employed to identify statistically relevant transition path-
44 ways in high-dimensional rugged energy surfaces.
45 While significant progress has been made on designing
46 algorithms for quantum annealers [9–13] that specifically
47 tackle quantum chemistry applications [14–19], only a few
48 applications to classical molecular sampling problems have
49 been reported to date [20,21]. Arguably, the key limiting
50 factor is the fact that quantum machines are best suited to

51tackle discrete problems. For this reason, to the best of
52our knowledge, all the proposed quantum computing
53algorithms for sampling and energy optimization of
54classical molecular structures rely on simplified lattice
55models. While these models have provided valuable insight
56into the general statistical mechanical properties of
57biopolymers [22], the lack of structural and chemical
58detail hampers their applicability to realistic biophysical
59systems.
60In this work, we develop a rigorous approach to finding
61the most statistically relevant transition paths in a thermally
62activated conformational reaction, using a quantum com-
63puting machine. Our method does not require lattice
64discretization. Thus, it is in principle applicable to realistic
65molecular models, with atomic resolution. Although the
66resources available in present-day quantum computers
67limit immediate implementations to rather small bench-
68mark problems, our work points to a paradigmatically new
69way to tackle problems from computational biophysics.
70The basic idea is to first resort to classical computing to
71generate large datasets of molecular conformations, mostly
72concentrated in the transition region. Unlike in Markov
73state models [6] or in the milestoning approach [7], this set
74of molecular configurations does not need to be generated
75with a realistic dynamics, nor to sample a physically
76meaningful distribution. The only request is to explore
77the relevant region of configuration space. For example,
78one could use plain MD at high temperature, machine-
79learning schemes for uncharted manifold learning [23], or
80biased dynamics or combinations of these methods.
81The next step is to assign a posteriori the correct relative
82statistical weight to all the reactive trajectories that can be
83drawn by connecting the configurations in this sparse
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Abstract

We present a comprehensive approach to the dynamics of heavy quarks in a quark–gluon plasma, in-
cluding the possibility of bound state formation and dissociation. In this exploratory paper, we restrict 
ourselves to the case of an Abelian plasma, but the extension of the techniques used to the non-Abelian
case is doable. A chain of well defined approximations leads eventually to a generalized Langevin equa-
tion, where the force and the noise terms are determined from a correlation function of the equilibrium 
plasma, and depend explicitly on the configuration of the heavy quarks. We solve the Langevin equation for 
various initial conditions, numbers of heavy quark–antiquark pairs and temperatures of the plasma. Results 
of simulations illustrate several expected phenomena: dissociation of bound states as a result of combined 
effects of screening of the potential and collisions with the plasma constituent, formation of bound pairs 
(recombination) that occurs when enough heavy quarks are present in the system.
© 2015 Elsevier B.V. All rights reserved.

Keywords: Heavy quarks; Quark–gluon plasma
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Model:  NR relativistic particles coupled to an abelian 
plasma of fermions and gauge fields at finite 
temperature.  After integrating out the gauge fields:
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Fig. 1. The Keldysh contour C, with its different branches.

where in the last step we have duplicated the coordinate qj (t) as discussed above. The last 
expression appears naturally in the action when one multiplies the probability amplitude by its 
complex conjugate in order to build the probability (2.16), with qj,1(t) labeling the path in the 
amplitude and qj,2(t) the path in the complex conjugate amplitude.

It is straightforward to extend the formula (2.16) to include the interactions among the heavy 
particles and with the light plasma constituents. We have (see e.g. [38] or [39])

P(Qf , tf |Qi , ti ) =
ˆ

C

DQ

ˆ

C

D(ψ̄,ψ) ei S[Q,ψ,ψ̄] , (2.19)

where the contour now includes a vertical piece, C3 corresponding to the thermal average of 
the plasma degrees of freedom at the initial time (i.e., the trace over the equilibrium density 
matrix of the plasma). Accordingly, the fermionic fields in Eq. (2.19) obey anti-periodic boundary 
conditions on C3, ψ(0, x) = −ψ(−iβ, x), ψ(0, x) = −ψ(−iβ, x). The action S[Q, ψ, ψ̄] is 
given by

S[Q,ψ, ψ̄] = S0[Q] +
ˆ

C

d4xψ̄(x)( iγ µ∂µ − m)ψ(x)

− 1
2

¨

C

d4x d4y ρtot(x)K(x − y)ρtot(y) , (2.20)

where K(x − y) = δ(tx − ty)K(x − y) represents the (instantaneous) Coulomb interaction, and 
ρtot is the total charge density. It is important to stress that the heavy particles do not take part in 
the thermal average, and consequently they do not propagate along the imaginary time sector of 
the Keldysh contour.3 We may take ρ(t = −iτ, x) = 0, with 0 < τ ≤ β .

The next step consists in eliminating the light fermion field in favor of a Coulomb potential A0. 
To this end, we use the formal identity4:

exp
[
− i

2
ρtot · K · ρtot

]
= N

ˆ

C

DA0 exp
[

i
2

A0 · K−1 · A0 − iA0 · ρtot

]
, (2.21)

3 Note that we use the notation 
´
C to denote either a path integrals where the paths are defined on the contour, as in ´

C DQ, or an ordinary integral, as in ́ C dtC where the time variable tC lives on the contour.
4 We follow closely here the approximation scheme developed in Ref. [28].
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P(Rf , tf |Ri , ti ) =
Rfˆ

Ri

DR

Yf =0ˆ

Yi=0

DY exp

⎡

⎢⎣

tfˆ
ti

dt L(R,Y)

⎤

⎥⎦ , (4.60)

where

L(R,Y) =
(

−i Y ·
(
MR̈ + Mγ (R) · Ṙ − F(R)

)
− 1

2
Y · λ(R) · Y

)
. (4.61)

We have Yi = 0 = Yf because the coordinates qi,1 and qi,2 of the heavy particles coincide at 
the ends of the Schwinger–Keldysh contour.

The 2N -dimensional vector F(R) represents the forces between the heavy particles. It is given 
in terms of the gradient of the potential V (r) as follows

Fi′(R) ≡ −g2
N∑

j=1

(
∇V (ri − rj ) − ∇V (ri − r̄j )

∇V (r̄i − rj ) − ∇V (r̄i − rj )

)
(4.62)

where i = 1, . . . , N , and the primed index i′ runs from 1 to 2N , with i = i′ for i′ ≤ N (first line 
of (4.62)), i = i′ − N for i′ > N (second line of (4.62)). The first line of Eq. (4.62) represents 
the force exerted by all the heavy quarks and antiquarks on the ith heavy quark at position ri , 
whereas the second line is the corresponding force exerted on the ith heavy antiquark at position 
ri .

The (2N ×2N)-dimensional matrix γ (R) represents the friction exerted by the medium on the 
heavy particles. Its expression involves the Hessian matrix H of the function W , the imaginary 
part of the potential, and reads

γ i′j ′(R) ≡ g2

2MT

(
H(ri − rj ) −H(ri − r̄j )

−H(r̄i − rj ) H(r̄i − r̄j )

)
, Hαβ(r) ≡ ∂W(r)

∂rα∂rβ
, (4.63)

where the primed indices i′, j ′ = 1, . . . , 2N are related to the unprimed ones, respectively i and 
j , as indicated above. The Greek indices α, β , γ label the Cartesian coordinates of r. The matrix 
γ is symmetric and real (hence diagonalizable with real eigenvalues7 ). This follows from the fact 
that, for instance, H(ri − r̄j ) = H(r̄j − ri ), and the fact that the 3 × 3 matrix Hαβ(r), being a 
Hessian matrix, is symmetric.

Finally, the matrices γ and λ in Eq. (4.61) obey Einstein’s relation

λ(R) = 2MTγ (R). (4.64)

In the Appendix B we show that the probability (4.60) can be generated by the following 
generalized Langevin equation [44]

M R̈ = −Mγ (R) · Ṙ + F(R) + ξ(R, t) , (4.65)

with a space dependent (also referred to as multiplicative) white noise ξ(R, t):

⟨ ξi′(R, t) ⟩ = 0, ⟨ ξk′(R, t) ξm′(R, t ′) ⟩ = λk′m′(R) δ(t − t ′) . (4.66)

The fact that the friction (and hence the noise) depends explicitly on the configuration of the 
heavy quarks is what makes this Langevin equation distinct from what has been done so far in 

7 We shall see that the eigenvalues are also strictly positive, which is physically expected for a matrix representing a 
friction term.
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FIG. 2. Transition probability density for our two-dimensional toy model, computed with different methods. The background in the upper left panel shows the
contour plot of the energy surface.

reactive pathways. To this goal, we implemented the algo-
rithm described in Appendix B. First, we performed 1000
plain rMD simulations, starting from xR and biased along the
coordinate

z(x) =
q

(x � xP)2 + (y � yP)2, (37)

which measures the instantaneous Euclidean distance to the
product state. The ratchet elastic constant in Eq. (B2) was set
to kR = 50.

With this choice of the collective coordinate and parame-
ters, all the rMD trajectories reached the product basin within
the total simulation time of 4 ⇥ 103 time steps. However,
the results of this rMD simulation is flawed by systematic
errors due to the suboptimal choice of the biasing coordi-
nate. Indeed, the collective coordinate z ignores the existence
of the intermediate state. Moreover, we note that the modu-
lus of the bias force is very large, approximately twice that
of the physical force. Both such choices were made because
we were interested to study to what extent the SCPS iter-
ations can correct for systematic errors on the initial trial
guess.

The results reported in Fig. 2 show that the rMD trajecto-
ries reproduce at the qualitative level some of the main features
of the transition path ensemble, in spite of the fact that they
were performed using a large biasing force, acting along a

rather bad reaction coordinate. By contrast, a plain steered
MD with external force FB = �k2rz(x) of comparable mag-
nitude would yield completely wrong information about the
reaction mechanism. However, several systematic errors can
be noticed in the rMD results: first, the heat map showing the
density of points is clearly not symmetric, and thus, it does
not reflect the structure of the underlying energy landscape;
moreover, the presence of an intermediate energy minimum is
not evident, as the trajectories do not significantly populate the
region around xI ; finally, the average pathway does not cross
the intermediate state xI .

Next, we used the rMD results as the starting point to per-
form three iterations of the SCPS algorithm. At each iteration,
we first computed the average path hx(t)i using the reactive tra-
jectories generated at the previous iteration. Then, we used this
path to define two collective coordinates in Eqs. (B4) and (B5)
with tf = 4 ⇥ 103dt and � = 30. Details about the selection
of the reactive part of the trajectories, the averaging proce-
dure, and the choice of the � parameter are provided in the
supplementary material. At each iteration, we ran 5000 inde-
pendent rMD simulations employing the bias force defined
in Eq. (B7). After 3 iterations, we observed that the aver-
age path does not appreciably change, according to the L2
norm (the results are reported in Fig. 1 of the supplementary
material).

…more slides for 
discussion session…: 
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coordinate
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which measures the instantaneous Euclidean distance to the
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to kR = 50.

With this choice of the collective coordinate and parame-
ters, all the rMD trajectories reached the product basin within
the total simulation time of 4 ⇥ 103 time steps. However,
the results of this rMD simulation is flawed by systematic
errors due to the suboptimal choice of the biasing coordi-
nate. Indeed, the collective coordinate z ignores the existence
of the intermediate state. Moreover, we note that the modu-
lus of the bias force is very large, approximately twice that
of the physical force. Both such choices were made because
we were interested to study to what extent the SCPS iter-
ations can correct for systematic errors on the initial trial
guess.

The results reported in Fig. 2 show that the rMD trajecto-
ries reproduce at the qualitative level some of the main features
of the transition path ensemble, in spite of the fact that they
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moreover, the presence of an intermediate energy minimum is
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region around xI ; finally, the average pathway does not cross
the intermediate state xI .

Next, we used the rMD results as the starting point to per-
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we first computed the average path hx(t)i using the reactive tra-
jectories generated at the previous iteration. Then, we used this
path to define two collective coordinates in Eqs. (B4) and (B5)
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Implementing the two approximations:
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1. The dynamics of the atomic nuclei is classical: 



Implementing the two approximations

2. The heat-bath quickly looses its “memory”   

 Molecular dynamics of atomic nuclei => Langevin dynamics

delta-correlated white noise 
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Ingredients from quantum chemistry calculations
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III. MOLECULAR QUANTUM FIELD THEORY
In this section, we briefly review the MQFT approach to com-

pute the reduced density matrix for excitons. For the formal deriva-
tion of this theory starting from the Hamiltonian (1), we refer the
reader to the original publications.32,34 Here, we limit ourselves to
stressing that it is obtained by assuming (i) the classical limit for
the atomic coordinates, (ii) linearization of the couplings between
nuclear and excitonic degrees of freedom, and (iii) the Ohmic limit
for the spectral density of the Caldeira-Leggett model. For sake of
notational simplicity, throughout the Secs. IV and V, we shall adopt
the Einstein convention; i.e., we implicitly assume the summation
over all repeated indices.

MQFT can be formulated in terms of the following generating
functional:

Z[η, η̄] = � DδQ� Dψ̄Dψ e−βHMM(δQ(0))

× e−SOM[δQ] e i�h (S0[ψ,ψ̄]+Sint[ψ,ψ̄,δQ]+Ss[ψ,ψ̄,η,η̄]). (6)

In this equation, δQ(t) = (δq1(t), . . ., δq3N(t)) defines the displace-
ment of the nuclear coordinates with respect to the configuration
of mechanical equilibrium Q0 = (q01, . . . , q03N). e−βHMM[δQ(0)] is the
Boltzmann distribution of the initial molecular displacements.

The path integral over δQ(t) corresponds to the sum over all
the stochastic trajectories generated by a classical Langevin equa-
tion in which the atomic nuclei are also coupled to the electronic
excitations. SOM[δQ] is the so-called Onsager-Machlup functional
which defines the Langevin dynamics in the absence of electronic
excitations

SOM = β
4Mγ

3N�
i=1 �

t

0
dτ�Mδq̈2i +Mγδq̇i + @iV(Q)�2. (7)

Note that we have assumed for simplicity all molecular degrees of
freedom δqi to have the same mass M and viscosity γ. We further
simplify the description by linearizing the force in the neighborhood
of the mechanical equilibrium point Q0

@iV(Q) �Hij δq j. (8)

ψn(τ) and ψ̄n(τ) entering the generating functional (6) denote
two time-dependent complex field doublets creating and annihilat-
ing quantum excitations at the nth molecular fragment

ψn ≡ ��′n�©
n
�, ψ̄n ≡ ψ†

nγ0, (9)

where γ0 = diag[1,−1]. �′n(t) and �©
n(t) are two coherent fields

which are introduced in the Trotter decomposition of the density
matrix, in order to describe the exciton dynamics in the upper and
lower branch of the KS contour, respectively. However, in MQFT,
the ψ and ψ̄ fields are formally regarded as complex fields associ-
ated with “particles” and “anti-particles,” both propagating forward
in time.

The S0[ψ, ψ̄] and Sint[ψ, ψ̄, δQ] functionals, respectively,
describe the free excitonic propagation and the linear coupling of
excitons and molecular degrees of freedom

S0 = � t

0
dτ ψ̄n(τ)�i�hδnm@τ − f 0nm�ψm(τ), (10)

Sint = −� t

0
dτ f inm δqi(τ) ψ̄n(τ)ψm(τ). (11)

f 0, the so-called Frenkel-exciton Hamiltonian matrix60 and the cou-
pling constants f inm are obtained by linearizing around Q0 the
Hamiltonian matrix elements f nm(Q) defined in Eq. (4)

f nm(Q) � f 0nm + f lnm δql. (12)

Finally, Ss[η, η̄,ψ, ψ̄] describes the coupling of the excitonic fields
to some arbitrary external source fields ηn(τ) and η̄n(τ), i.e., Ss= ∫ t

0 dτ(η̄nψn + ψ̄nηn). We note that the original expression for
the generating functional (6) contains also an additional surface
term eL(0,t), which originates from the over-completeness of the
non-relativistic coherent state basis—see, e.g., the discussion in
Ref. 32. However, this term has been dropped since it does not give
observable contributions to the density matrix.

After carrying out the Gaussian path integral over the fields
ψ and ψ̄, we obtain an equivalent expression for the generating
functional in terms of the nuclear degrees of freedom only

Z[η, η̄] = � DδQ e−�SOM[δQ]+Log DetG−1δQ�

× e i�h ∑mn ∫ t
0 dτ η̄n(τ) GδQ(n,τ�m,τ′) ηm(τ′) e−βHMM(δQ(0)). (13)

In this expression, GδQ(n, τ|m, τ′) is a time-ordered Feynman prop-
agator associated with the field ψ, in the background of the vibration
field δQ, i.e.,

GδQ(n, τ�m, τ′) = ∫ Dψ̄Dψ ψn(τ) ψ̄m(τ′) e i�h (S0[ψ,ψ̄]+Sint[ψ,ψ̄,δQ])
∫ Dψ̄Dψ e

i�h (S0[ψ,ψ̄]+Sint[ψ,ψ̄,δQ])
≡ γ+ Gf

δQ(τ,n�τ′,m) − γ−Gb
δQ(τ,n�τ′,m), (14)

where γ+ = �1 0
0 0� and γ− = �0 0

0 1�. The Gf �b
δQ propagators obey the

forward and backward Schrödinger equations, respectively,

�i�h@τ − f 0nm − f inmδqi(τ)� Gf �b
δQ (τ,n�τ′,m) = ∓ i �h δ(τ − τ′)δnm.

(15)

The Log DetG−1δQ functional in Eq. (13) controls the back-action
exerted by the electronic excitations on the dynamics of the atomic
nuclei. In Ref. 34, this functional was explicitly calculated in a small-
vibration expansion to order δQ2 and was found to be

Sback[δQ] = Tr logG−1δQ
= 1
2�s≠t C

i
stC

j
ts � t

0
dτ� t

0
dτ′δqi(τ) δq j(τ′)

× cos�(τ − τ′) (Es − Et)�h �. (16)

In this expression, Es and Et are the eigenvalues of the Frenkel
Hamiltonian f 0, and Ck

st ≡ 1�hVsm f kmnV†
nt are coefficients which cou-

ple different vibrational coordinates to the excitonic transitions.
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1)  Sample nuclear trajectories by integrating the Langevin equation:

3) Compute Quantum propagator (and then use Wick theorem!) 

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

III. MOLECULAR QUANTUM FIELD THEORY
In this section, we briefly review the MQFT approach to com-

pute the reduced density matrix for excitons. For the formal deriva-
tion of this theory starting from the Hamiltonian (1), we refer the
reader to the original publications.32,34 Here, we limit ourselves to
stressing that it is obtained by assuming (i) the classical limit for
the atomic coordinates, (ii) linearization of the couplings between
nuclear and excitonic degrees of freedom, and (iii) the Ohmic limit
for the spectral density of the Caldeira-Leggett model. For sake of
notational simplicity, throughout the Secs. IV and V, we shall adopt
the Einstein convention; i.e., we implicitly assume the summation
over all repeated indices.

MQFT can be formulated in terms of the following generating
functional:

Z[η, η̄] = � DδQ� Dψ̄Dψ e−βHMM(δQ(0))

× e−SOM[δQ] e i�h (S0[ψ,ψ̄]+Sint[ψ,ψ̄,δQ]+Ss[ψ,ψ̄,η,η̄]). (6)

In this equation, δQ(t) = (δq1(t), . . ., δq3N(t)) defines the displace-
ment of the nuclear coordinates with respect to the configuration
of mechanical equilibrium Q0 = (q01, . . . , q03N). e−βHMM[δQ(0)] is the
Boltzmann distribution of the initial molecular displacements.

The path integral over δQ(t) corresponds to the sum over all
the stochastic trajectories generated by a classical Langevin equa-
tion in which the atomic nuclei are also coupled to the electronic
excitations. SOM[δQ] is the so-called Onsager-Machlup functional
which defines the Langevin dynamics in the absence of electronic
excitations

SOM = β
4Mγ

3N�
i=1 �

t

0
dτ�Mδq̈2i +Mγδq̇i + @iV(Q)�2. (7)

Note that we have assumed for simplicity all molecular degrees of
freedom δqi to have the same mass M and viscosity γ. We further
simplify the description by linearizing the force in the neighborhood
of the mechanical equilibrium point Q0

@iV(Q) �Hij δq j. (8)

ψn(τ) and ψ̄n(τ) entering the generating functional (6) denote
two time-dependent complex field doublets creating and annihilat-
ing quantum excitations at the nth molecular fragment

ψn ≡ ��′n�©
n
�, ψ̄n ≡ ψ†

nγ0, (9)

where γ0 = diag[1,−1]. �′n(t) and �©
n(t) are two coherent fields

which are introduced in the Trotter decomposition of the density
matrix, in order to describe the exciton dynamics in the upper and
lower branch of the KS contour, respectively. However, in MQFT,
the ψ and ψ̄ fields are formally regarded as complex fields associ-
ated with “particles” and “anti-particles,” both propagating forward
in time.

The S0[ψ, ψ̄] and Sint[ψ, ψ̄, δQ] functionals, respectively,
describe the free excitonic propagation and the linear coupling of
excitons and molecular degrees of freedom

S0 = � t

0
dτ ψ̄n(τ)�i�hδnm@τ − f 0nm�ψm(τ), (10)

Sint = −� t

0
dτ f inm δqi(τ) ψ̄n(τ)ψm(τ). (11)

f 0, the so-called Frenkel-exciton Hamiltonian matrix60 and the cou-
pling constants f inm are obtained by linearizing around Q0 the
Hamiltonian matrix elements f nm(Q) defined in Eq. (4)

f nm(Q) � f 0nm + f lnm δql. (12)

Finally, Ss[η, η̄,ψ, ψ̄] describes the coupling of the excitonic fields
to some arbitrary external source fields ηn(τ) and η̄n(τ), i.e., Ss= ∫ t

0 dτ(η̄nψn + ψ̄nηn). We note that the original expression for
the generating functional (6) contains also an additional surface
term eL(0,t), which originates from the over-completeness of the
non-relativistic coherent state basis—see, e.g., the discussion in
Ref. 32. However, this term has been dropped since it does not give
observable contributions to the density matrix.

After carrying out the Gaussian path integral over the fields
ψ and ψ̄, we obtain an equivalent expression for the generating
functional in terms of the nuclear degrees of freedom only

Z[η, η̄] = � DδQ e−�SOM[δQ]+Log DetG−1δQ�

× e i�h ∑mn ∫ t
0 dτ η̄n(τ) GδQ(n,τ�m,τ′) ηm(τ′) e−βHMM(δQ(0)). (13)

In this expression, GδQ(n, τ|m, τ′) is a time-ordered Feynman prop-
agator associated with the field ψ, in the background of the vibration
field δQ, i.e.,

GδQ(n, τ�m, τ′) = ∫ Dψ̄Dψ ψn(τ) ψ̄m(τ′) e i�h (S0[ψ,ψ̄]+Sint[ψ,ψ̄,δQ])
∫ Dψ̄Dψ e

i�h (S0[ψ,ψ̄]+Sint[ψ,ψ̄,δQ])
≡ γ+ Gf

δQ(τ,n�τ′,m) − γ−Gb
δQ(τ,n�τ′,m), (14)

where γ+ = �1 0
0 0� and γ− = �0 0

0 1�. The Gf �b
δQ propagators obey the

forward and backward Schrödinger equations, respectively,

�i�h@τ − f 0nm − f inmδqi(τ)� Gf �b
δQ (τ,n�τ′,m) = ∓ i �h δ(τ − τ′)δnm.

(15)

The Log DetG−1δQ functional in Eq. (13) controls the back-action
exerted by the electronic excitations on the dynamics of the atomic
nuclei. In Ref. 34, this functional was explicitly calculated in a small-
vibration expansion to order δQ2 and was found to be

Sback[δQ] = Tr logG−1δQ
= 1
2�s≠t C

i
stC

j
ts � t

0
dτ� t

0
dτ′δqi(τ) δq j(τ′)

× cos�(τ − τ′) (Es − Et)�h �. (16)

In this expression, Es and Et are the eigenvalues of the Frenkel
Hamiltonian f 0, and Ck

st ≡ 1�hVsm f kmnV†
nt are coefficients which cou-

ple different vibrational coordinates to the excitonic transitions.

J. Chem. Phys. 150, 144103 (2019); doi: 10.1063/1.5084120 150, 144103-3

Published under license by AIP Publishing

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

III. MOLECULAR QUANTUM FIELD THEORY
In this section, we briefly review the MQFT approach to com-

pute the reduced density matrix for excitons. For the formal deriva-
tion of this theory starting from the Hamiltonian (1), we refer the
reader to the original publications.32,34 Here, we limit ourselves to
stressing that it is obtained by assuming (i) the classical limit for
the atomic coordinates, (ii) linearization of the couplings between
nuclear and excitonic degrees of freedom, and (iii) the Ohmic limit
for the spectral density of the Caldeira-Leggett model. For sake of
notational simplicity, throughout the Secs. IV and V, we shall adopt
the Einstein convention; i.e., we implicitly assume the summation
over all repeated indices.

MQFT can be formulated in terms of the following generating
functional:

Z[η, η̄] = � DδQ� Dψ̄Dψ e−βHMM(δQ(0))

× e−SOM[δQ] e i�h (S0[ψ,ψ̄]+Sint[ψ,ψ̄,δQ]+Ss[ψ,ψ̄,η,η̄]). (6)

In this equation, δQ(t) = (δq1(t), . . ., δq3N(t)) defines the displace-
ment of the nuclear coordinates with respect to the configuration
of mechanical equilibrium Q0 = (q01, . . . , q03N). e−βHMM[δQ(0)] is the
Boltzmann distribution of the initial molecular displacements.

The path integral over δQ(t) corresponds to the sum over all
the stochastic trajectories generated by a classical Langevin equa-
tion in which the atomic nuclei are also coupled to the electronic
excitations. SOM[δQ] is the so-called Onsager-Machlup functional
which defines the Langevin dynamics in the absence of electronic
excitations

SOM = β
4Mγ

3N�
i=1 �

t

0
dτ�Mδq̈2i +Mγδq̇i + @iV(Q)�2. (7)

Note that we have assumed for simplicity all molecular degrees of
freedom δqi to have the same mass M and viscosity γ. We further
simplify the description by linearizing the force in the neighborhood
of the mechanical equilibrium point Q0

@iV(Q) �Hij δq j. (8)

ψn(τ) and ψ̄n(τ) entering the generating functional (6) denote
two time-dependent complex field doublets creating and annihilat-
ing quantum excitations at the nth molecular fragment

ψn ≡ ��′n�©
n
�, ψ̄n ≡ ψ†

nγ0, (9)

where γ0 = diag[1,−1]. �′n(t) and �©
n(t) are two coherent fields

which are introduced in the Trotter decomposition of the density
matrix, in order to describe the exciton dynamics in the upper and
lower branch of the KS contour, respectively. However, in MQFT,
the ψ and ψ̄ fields are formally regarded as complex fields associ-
ated with “particles” and “anti-particles,” both propagating forward
in time.

The S0[ψ, ψ̄] and Sint[ψ, ψ̄, δQ] functionals, respectively,
describe the free excitonic propagation and the linear coupling of
excitons and molecular degrees of freedom

S0 = � t

0
dτ ψ̄n(τ)�i�hδnm@τ − f 0nm�ψm(τ), (10)

Sint = −� t

0
dτ f inm δqi(τ) ψ̄n(τ)ψm(τ). (11)

f 0, the so-called Frenkel-exciton Hamiltonian matrix60 and the cou-
pling constants f inm are obtained by linearizing around Q0 the
Hamiltonian matrix elements f nm(Q) defined in Eq. (4)

f nm(Q) � f 0nm + f lnm δql. (12)

Finally, Ss[η, η̄,ψ, ψ̄] describes the coupling of the excitonic fields
to some arbitrary external source fields ηn(τ) and η̄n(τ), i.e., Ss= ∫ t

0 dτ(η̄nψn + ψ̄nηn). We note that the original expression for
the generating functional (6) contains also an additional surface
term eL(0,t), which originates from the over-completeness of the
non-relativistic coherent state basis—see, e.g., the discussion in
Ref. 32. However, this term has been dropped since it does not give
observable contributions to the density matrix.

After carrying out the Gaussian path integral over the fields
ψ and ψ̄, we obtain an equivalent expression for the generating
functional in terms of the nuclear degrees of freedom only

Z[η, η̄] = � DδQ e−�SOM[δQ]+Log DetG−1δQ�

× e i�h ∑mn ∫ t
0 dτ η̄n(τ) GδQ(n,τ�m,τ′) ηm(τ′) e−βHMM(δQ(0)). (13)

In this expression, GδQ(n, τ|m, τ′) is a time-ordered Feynman prop-
agator associated with the field ψ, in the background of the vibration
field δQ, i.e.,

GδQ(n, τ�m, τ′) = ∫ Dψ̄Dψ ψn(τ) ψ̄m(τ′) e i�h (S0[ψ,ψ̄]+Sint[ψ,ψ̄,δQ])
∫ Dψ̄Dψ e

i�h (S0[ψ,ψ̄]+Sint[ψ,ψ̄,δQ])
≡ γ+ Gf

δQ(τ,n�τ′,m) − γ−Gb
δQ(τ,n�τ′,m), (14)

where γ+ = �1 0
0 0� and γ− = �0 0

0 1�. The Gf �b
δQ propagators obey the

forward and backward Schrödinger equations, respectively,

�i�h@τ − f 0nm − f inmδqi(τ)� Gf �b
δQ (τ,n�τ′,m) = ∓ i �h δ(τ − τ′)δnm.

(15)

The Log DetG−1δQ functional in Eq. (13) controls the back-action
exerted by the electronic excitations on the dynamics of the atomic
nuclei. In Ref. 34, this functional was explicitly calculated in a small-
vibration expansion to order δQ2 and was found to be

Sback[δQ] = Tr logG−1δQ
= 1
2�s≠t C

i
stC

j
ts � t

0
dτ� t

0
dτ′δqi(τ) δq j(τ′)

× cos�(τ − τ′) (Es − Et)�h �. (16)

In this expression, Es and Et are the eigenvalues of the Frenkel
Hamiltonian f 0, and Ck

st ≡ 1�hVsm f kmnV†
nt are coefficients which cou-

ple different vibrational coordinates to the excitonic transitions.
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III. MOLECULAR QUANTUM FIELD THEORY
In this section, we briefly review the MQFT approach to com-

pute the reduced density matrix for excitons. For the formal deriva-
tion of this theory starting from the Hamiltonian (1), we refer the
reader to the original publications.32,34 Here, we limit ourselves to
stressing that it is obtained by assuming (i) the classical limit for
the atomic coordinates, (ii) linearization of the couplings between
nuclear and excitonic degrees of freedom, and (iii) the Ohmic limit
for the spectral density of the Caldeira-Leggett model. For sake of
notational simplicity, throughout the Secs. IV and V, we shall adopt
the Einstein convention; i.e., we implicitly assume the summation
over all repeated indices.

MQFT can be formulated in terms of the following generating
functional:

Z[η, η̄] = � DδQ� Dψ̄Dψ e−βHMM(δQ(0))

× e−SOM[δQ] e i�h (S0[ψ,ψ̄]+Sint[ψ,ψ̄,δQ]+Ss[ψ,ψ̄,η,η̄]). (6)

In this equation, δQ(t) = (δq1(t), . . ., δq3N(t)) defines the displace-
ment of the nuclear coordinates with respect to the configuration
of mechanical equilibrium Q0 = (q01, . . . , q03N). e−βHMM[δQ(0)] is the
Boltzmann distribution of the initial molecular displacements.

The path integral over δQ(t) corresponds to the sum over all
the stochastic trajectories generated by a classical Langevin equa-
tion in which the atomic nuclei are also coupled to the electronic
excitations. SOM[δQ] is the so-called Onsager-Machlup functional
which defines the Langevin dynamics in the absence of electronic
excitations

SOM = β
4Mγ

3N�
i=1 �

t

0
dτ�Mδq̈2i +Mγδq̇i + @iV(Q)�2. (7)

Note that we have assumed for simplicity all molecular degrees of
freedom δqi to have the same mass M and viscosity γ. We further
simplify the description by linearizing the force in the neighborhood
of the mechanical equilibrium point Q0

@iV(Q) �Hij δq j. (8)

ψn(τ) and ψ̄n(τ) entering the generating functional (6) denote
two time-dependent complex field doublets creating and annihilat-
ing quantum excitations at the nth molecular fragment

ψn ≡ ��′n�©
n
�, ψ̄n ≡ ψ†

nγ0, (9)

where γ0 = diag[1,−1]. �′n(t) and �©
n(t) are two coherent fields

which are introduced in the Trotter decomposition of the density
matrix, in order to describe the exciton dynamics in the upper and
lower branch of the KS contour, respectively. However, in MQFT,
the ψ and ψ̄ fields are formally regarded as complex fields associ-
ated with “particles” and “anti-particles,” both propagating forward
in time.

The S0[ψ, ψ̄] and Sint[ψ, ψ̄, δQ] functionals, respectively,
describe the free excitonic propagation and the linear coupling of
excitons and molecular degrees of freedom

S0 = � t

0
dτ ψ̄n(τ)�i�hδnm@τ − f 0nm�ψm(τ), (10)

Sint = −� t

0
dτ f inm δqi(τ) ψ̄n(τ)ψm(τ). (11)

f 0, the so-called Frenkel-exciton Hamiltonian matrix60 and the cou-
pling constants f inm are obtained by linearizing around Q0 the
Hamiltonian matrix elements f nm(Q) defined in Eq. (4)

f nm(Q) � f 0nm + f lnm δql. (12)

Finally, Ss[η, η̄,ψ, ψ̄] describes the coupling of the excitonic fields
to some arbitrary external source fields ηn(τ) and η̄n(τ), i.e., Ss= ∫ t

0 dτ(η̄nψn + ψ̄nηn). We note that the original expression for
the generating functional (6) contains also an additional surface
term eL(0,t), which originates from the over-completeness of the
non-relativistic coherent state basis—see, e.g., the discussion in
Ref. 32. However, this term has been dropped since it does not give
observable contributions to the density matrix.

After carrying out the Gaussian path integral over the fields
ψ and ψ̄, we obtain an equivalent expression for the generating
functional in terms of the nuclear degrees of freedom only

Z[η, η̄] = � DδQ e−�SOM[δQ]+Log DetG−1δQ�

× e i�h ∑mn ∫ t
0 dτ η̄n(τ) GδQ(n,τ�m,τ′) ηm(τ′) e−βHMM(δQ(0)). (13)

In this expression, GδQ(n, τ|m, τ′) is a time-ordered Feynman prop-
agator associated with the field ψ, in the background of the vibration
field δQ, i.e.,

GδQ(n, τ�m, τ′) = ∫ Dψ̄Dψ ψn(τ) ψ̄m(τ′) e i�h (S0[ψ,ψ̄]+Sint[ψ,ψ̄,δQ])
∫ Dψ̄Dψ e

i�h (S0[ψ,ψ̄]+Sint[ψ,ψ̄,δQ])
≡ γ+ Gf

δQ(τ,n�τ′,m) − γ−Gb
δQ(τ,n�τ′,m), (14)

where γ+ = �1 0
0 0� and γ− = �0 0

0 1�. The Gf �b
δQ propagators obey the

forward and backward Schrödinger equations, respectively,

�i�h@τ − f 0nm − f inmδqi(τ)� Gf �b
δQ (τ,n�τ′,m) = ∓ i �h δ(τ − τ′)δnm.

(15)

The Log DetG−1δQ functional in Eq. (13) controls the back-action
exerted by the electronic excitations on the dynamics of the atomic
nuclei. In Ref. 34, this functional was explicitly calculated in a small-
vibration expansion to order δQ2 and was found to be

Sback[δQ] = Tr logG−1δQ
= 1
2�s≠t C

i
stC

j
ts � t

0
dτ� t

0
dτ′δqi(τ) δq j(τ′)

× cos�(τ − τ′) (Es − Et)�h �. (16)

In this expression, Es and Et are the eigenvalues of the Frenkel
Hamiltonian f 0, and Ck

st ≡ 1�hVsm f kmnV†
nt are coefficients which cou-

ple different vibrational coordinates to the excitonic transitions.
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FIG. 1. (a) Graphical representation of the Dyson Eq. (44) for the exciton propa-
gator. The line with open white triangle denotes the full (non-perturbative) time-
ordered exciton propagator, while the other continuous line appearing in the
righthand-side represents the free exciton propagator. (b) Example of loop diagram
neglected in the proposed approximation. The dashed line denotes the stochastic
propagator of classical damped Langevin oscillations of the configuration vector
δQ. (c) Estimating the 1PI term by the lowest-order self-energy diagram.

Equation (43) provides the starting point to apply our non-
perturbative approximation scheme. To this end, we consider the
standard Dyson equation, obtained by resumming all 1-particle irre-
ducible (1PI) diagrams for the single-exciton propagator G [see
Fig. 1(a)]. In frequency representation and omitting all indices for
sake of simplicity, the Dyson equation reads

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω), (44)

where Σ(ω) denotes the sum over all 1PI diagrams. Splitting this
equation into its forward and backward components leads to two
decoupled Dyson expressions

Gf �b(ω) = Gf �b
0 (ω)

1 −Gf �b
0 (ω)Σ f �b(ω) . (45)

To evaluate Σf /b(ω), further approximations are required. First
of all, we neglect all diagrams containing exciton loops, such as the
one shown in Fig. 1(b). The reason is that the energy of molecular
vibrations is much lower than that required to lift electronic excita-
tions. Furthermore, we can assume that the couplings f inm entering
Eq. (19) are small and estimate the 1PI in perturbation theory. At the
leading-order, this corresponds to re-summing the self-energy dia-
gram reported in Fig. 1(c). Insisting using this re-summation scheme
even beyond the small coupling regime corresponds to defining a
dynamical mean-field approximation.44

Explicit evaluation of the self-energy diagram leads to

Σ f �b
nm(ω) � f lnm′U

†
lj′V

†
m′s[i(Es − ω) ± γ]Vsn′Uj′hf

h
n′m

βM ⌦2
j′�⌦2

j′ − (Es − ω)(Es ∓ iγ − ω)� , (46)

and the corresponding f /b components of the propagator are

Gf �b(n,m;ω) = ±i�V†
ns(ω − Es ± iε)Vsm ± iΣf �b

nm(ω)�−1, (47)

whereV is the unitarymatrix which diagonalizes the f 0 matrix. Plug-
ging Eq. (47) into the Fourier transform of Eq. (43), we reach the
following expression for the response function in the simplified case
where only diagonal entries of the self-energy Σf �b

nn = Σf �b
n are rele-

vant, i.e., when vibrations only couple to the diagonal elements of
the Frenkel Hamiltonian

R(ω) = −2�
n

(ω − En) + iReΣf
n(ω)

(ω − En)2 − �Σf
n(ω)�2 + 2i(ω − En)ReΣf

n(ω) . (48)

An analytic formula for the absorption coefficient κa(ω) can
be obtained by combining real and imaginary parts, according to
Eqs. (34)–(36). It is instructive to analyze the structure of its imagi-
nary part ImR(ω), which controls the position and the width of the
resonances

ImR(ω) = −�
n

2ReΣf
n(ω)�(ω − En)2 + �Σf

n(ω)�2�
�(ω − En)2 − �Σf

n(ω)�2�2 + 4�(ω − En)ReΣf
n(ω)�2 .

(49)

The splitting and shifting of the poles generated by the vibronic
coupling is determined by the self-energy function Σf

n(ω), given in
Eq. (46). For illustration purposes, here we discuss its expression, in
the case of a single normal mode

Σf
nm(ω) = δnmf 2

βM⌦
γ⌦2 + i(ω − En)�(ω − En)2 −⌦2 + γ2�

�(ω − En)2 −⌦2�2 + γ2(ω − En)2 . (50)

This equation shows how the vibronic correction of the response
function scales with the temperature and bath viscosity. Note that
the shifting, splitting, and broadening of the resonances are large
when the difference between ω and the excitonic energies is com-
parable with the frequency of the vibrational normal mode ⌦. We
emphasize that the new resonances correspond to the vibronic
states, i.e., unstable bound-states of excitonic and vibrational
modes.

In Sec. V, we apply this scheme to compute an absorption
spectrum of a relevant macromolecular system.

V. ABSORPTION SPECTRUM OF THE FMO COMPLEX
In this section, we report on an application of MQFT to

computing the absorption spectrum of the FMO complex, which
represents one of the most thoroughly studied photosynthetic
systems.

Structurally, the FMO complex is a trimer, in which each
monomer is composed by a protein scaffold non-covalently bound
to 8 bacteriochlorophylls of type-a (BChla)45 [see Figs. 2(a) and
2(b)].46,47 Exciton propagation is mainly confined within each
monomer and involves only the 7 inner chlorophylls.47

In the following, we adopt a model in which excitonic and con-
formational degrees of freedom are treated at the explicit level and
their dynamics is defined by the Hamiltonian discussed in Sec. II. In
particular, we coarse-grain the electronic dynamics at the level of the
excitonic states created or annihilated at the 7 inner chlorophyll sites
of each monomer, i.e.,

HEx = 21�
n,m=1 f

0
nm â†

nâm. (51)

The matrix elements f 0nm carry the information about the energies
of each site and the transition amplitudes between the chlorophylls.
The diagonal elements have been obtained from density functional
theory (DFT) calculations on each chlorophyll, while off diagonal
matrix elements can be estimated from the dipole-dipole interac-
tions between chlorophyll transition densities (for a detailed dis-
cussion, see Refs. 45, 48, and 49). We neglect all couplings between
chlorophylls belonging to different monomeric units. Consequently,
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Non-Perturbative Method 3: Effective Field Theory

Use Renormalization Group formalism to perform coarse-graining and 
lower the time & spatial-resolution power. Obtain an effective theory 
which yields the same results in the long-time long-distance limit: 
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Diffusion of a quantum excitation:
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semi-classical approximation [35–38]. Indeed, the EFT
approach is defined in terms of external cut-o↵ scales,
which set the resolution power of the theory and are cho-
sen a priori.

VIII. SOLUTION OF THE PATH INTEGRAL
AND RENORMALIZATION

The e↵ective theory defined in Eq. (62) explicitly de-
pends on the cut-o↵ scales �t and � and needs to be
renormalized. This can be done by introducing appropri-
ate counter-terms into the e↵ective action and matching
the prediction of the e↵ective theory against experiment
or more microscopic calculations, at some time-scale t

⇤.
Through such a renormalization procedure, the power-
law dependence of the e↵ective coe�cients on the cut-o↵s
�t and � is removed and is replaced by a much weaker
dependence on the renormalization scale t

⇤.
To implement this program, let us consider for sake

of simplicity the simple case of isotropic di↵usion (i.e.
g
0
ij
= �ij). The same procedure can be straightforwardly

applied to the general case of anisotropic di↵usion, by
repeating the same analysis component-by-component.

After introducing the renormalizing counter-terms, the
path integral (62) is modified as follows:

P (y, t|x, 0) '

Z y

x
DR e

�Seff [Ṙ]+⇠
2(Q2 Ṙ2+Q4 Ṙ4)

,

(63)

where Q2 and Q4 are insofar unknown coe�cients. To
order ⇠2 the renormalized expression for the e↵ective ac-
tion then reads

S̄eff =

Z
t

0
dT

"
Ṙ2

4Dren

+ CrenṘ
4

#
, (64)

where Dren, and Cren are the renormalized coe�cients.
In the following, we show how they can be determined
up to O

�
⇠
2
�
accuracy.

To this end, we first analytically compute the path in-
tegral given in Eq. (63) to leading-order in a perturbative
expansion in ⇠

2. We obtain
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b
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where

P0(y, t|x, 0;D
b

0) =
e

�x2

4tDb
0

2
p

tD
b

0⇡
(66)

is the unperturbed expression. To implement the renor-
malization, we choose to match the prediction of the two
lowest moments of this distribution, against the results of
experiment or microscopic simulations at some time-scale
t
⇤:

h�R2(t⇤)iexp ⌘ h�R̄2(t⇤)i = 6Drent
⇤
, (67)

h�R4(t⇤)iexp ⌘ h�R̄4(t⇤)i = 60D2
ren

t
⇤2

� Crent
⇤
, (68)

where �R = (y � x) and

Dren = D0

h
1 + 4⇠2D0

⇣
C

b

2 +Q2 (69)
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Cren = 1920⇠2D4
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�
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�
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4
�
, (70)

are the renormalized constants, which are finite combi-
nations of bare e↵ective coe�cients and counter-terms.
Their numerical value is expected to run weakly with the
matching time scale t

⇤.
An important observation to make is that the mean-

square displacement h�R2(t)i retains its linear depen-
dence on time t (Einstein’s law), even when quantum
corrections are taken into account. In contrast, quantum
corrections do a↵ect the time dependence of h�R4(t)i, by
introducing a linear term, which is absent in the classical
di↵usion limit.
Thus, the renormalized probability density including

the leading-order quantum corrections reads:

P̄ (y, t|x, 0) ' P0(y, t|x, 0;Dren)⇥
1� Cren

✓
(y � x)4

t3Dren

� 20
(y � x)2

t2
+

60Dren

t

◆�
.

(71)

We empahsize that the ⇠
2 expansion does not break

down in the long-time limit. This can been seen directly
from the expression (71), which shows that the pertur-
bative corrections decay with time faster than the un-
perturbed term. In particular, the quantum excitation’s
dynamics reduces to the (unperturbed) classical over-
damped di↵usion, in the asymptotic long-time limit, im-
plying that the stochastic collisions contribute to quench
the quantum e↵ects.

IX. HOLE TRANSPORT IN A LONG
HOMO-DNA MOLECULAR WIRE

For illustration purposes, in this section we apply the
e↵ective theory developed above to investigate the dy-
namics of inelastic hole propagation along a long homo-
DNA molecule, which is regarded as an infinite molecular
wire. To this end we first define a microscopic theory and
then match the corresponding e↵ective theory at a given
time scale t

⇤ to define the renormalized parameters and
finally use the e↵ective theory to study the long-time and
large-distance dynamics.

The analytic solution (after renormalization):

diffusion of quantum excitation

quantum correction terms

Renormalized constants, to be determined from experiments or micr. sim.s
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Folding of protein Im7

Figure S5: Density plot for the folding of Im7 projected onto the plane defined by the RMSD

of Helix 1 to the crystal native structure and the fraction of native contacts Q. The high

density region around Q = 0.9 and RMSD = 0.1nm corresponds to the Native configuration,

whereas the region around Q = 0.6 and RMSD = 0.1nm corresponds to the Intermediate.

! Native transition, we report in Figure S6(c) the di↵erence CD spectrum, calculated as Native

minus Intermediate, in analogy to Figure 6(a) in the main text.

Figure S6: (a,b) CD spectra of Im7 calculated as average on the (a) Native, and (b) Interme-

diate structures. Experimental spectra are shown as dash-dotted lines. For the Intermediate,

two spectra corresponding to di↵erent mutants (I54A and L53AI54A) are shown. (c) Di↵er-

ence spectrum (Native�Intermediate) compared with the corresponding experiments.

The di↵erence CD correctly reproduces the experimental di↵erence, especially for the I54A
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FIG. 1. The left panel reports the 8 folding pathways
obtained with the BF approach, projected onto the plane
identified by the RMSD to native of the two hairpins
of FIP35 (crystal structure shown in the right panel).
The heat map in the background is the free energy as
a function of the same collective variables obtained from
a histogram of plain MD simulations performed on the
Anton supercomputer.

and 35. The folding mechanism of much larger polypeptide
chains predicted by BF was validated against experiment in
Refs. 17–19.

We conclude this section by discussing the main draw-
backs of the BF approach. Like any variational approximation,
this method may suffer from systematic errors related to the
choice of the trial space. In particular, low accuracy is gener-
ally expected whenever the quality of the rMD trajectories is
poor. This scenario is realized if the collective variable z given
in Eq. (2) is not a good reaction coordinate. This problem was
solved in a recent work,35 by developing an improved iterative
rMD algorithm which enables to correct the collective coor-
dinate in a self-consistent way. We demonstrated that the trial
paths obtained with this new type of rMD dynamics are biased
along the average unbiased folding trajectory and that the cor-
responding biasing collective coordinate provides a stochastic
estimate of the reaction coordinate.

A second important limitation of the BF approach arises
from the fact that the rMD trajectories do not satisfy the
microscopic reversibility condition. As a consequence, the
corresponding time scales do not have a direct physical inter-
pretation and the BF trajectories cannot be used to extract
in a straightforward way the information about the relevant
metastable states and free energy barriers involved in the fold-
ing transition. In Sec. III, we present an algorithm to tackle
this limitation.

III. COMPUTING FREE ENERGY PROFILES FROM
BF SIMULATIONS

A commonly adopted strategy to gain insight into reaction
mechanisms in complex molecular systems consists in project-
ing the very high dimensional configuration space into a single
collective variable, which is assumed to approximate the reac-
tion coordinate. Using Zwanzig-Mori projection formalism, it
can be shown that this collective variable evolves according to
a generalized Langevin equation.37,38 In addition, if the char-
acteristic relaxation time scales of this collective variable are
much longer than that those of all internal degrees of freedom
in the system, then the generalized Langevin equation can be
replaced by a standard over-damped Langevin equation, which
depends only on the diffusion coefficient and on the PMF of
the collective variable.

In principle, the PMF G(Q) can be estimated from an
ensemble of equilibrium configurations, e.g., sampled from

long MD trajectories. Indeed, if Peq(Q) is the probability of
observing a value Q at equilibrium (which can be estimated
from a frequency histogram), then G(Q) is defined by

G(Q) = �kBT log Peq(Q). (5)

This method is in principle exact, but computationally
extremely expensive. Indeed, it requires simulating the dynam-
ics for a time scale sufficiently long to attain complete thermal
equilibrium. For most polypeptide chains of biophysical or
biological interest, the sampling of the equilibrium distribution
Peq(Q) remains a formidable computational challenge, even
using advanced Monte Carlo algorithms or more sophisticated
methods.23,24

In the following, we devise an alternative scheme which
exploits the results of BF simulations and enables us to com-
pute G(Q) in a very computationally efficient way. For the sake
of simplicity, to illustrate the approach, we shall assume that
the slow dynamics of the collective variable Q can be effec-
tively described by an over-damped Langevin equation with a
uniform diffusion coefficient D0,

Q̇ = � D0

kBT
G
0(Q) + ⌘(t). (6)

The probability distribution generated by integrating
Eq. (6) evolves according to the Fokker–Planck equation,

@

@t
P(Q, t) = F̂P(Q, t), (7)

where

F̂ = D0
d

dQ

 
d

dQ
+

1
kBT

G
0(Q)

!
. (8)

In such a framework, an arbitrary initial probability den-
sity ⇢0(Q) changes in time according to an evolution operator
defined by

P(Q, t) = e
�F̂t ⇢0(Q). (9)

Equivalently, Eq. (9) can be written in terms of the conditional
probability to perform a transition form Q

0 to Q in time t (i.e.,
the propagator),

P(Q, t) =
⌅

dQ
0

P(Q, t |Q0, 0) ⇢0(Q0). (10)

Some general properties of the dynamics defined by
Eq. (7) are in order. Even though the F̂ operator is not Her-
mitian, its left and right eigenfrequencies coincide and are
real,

!
F̂ Rk(Q) = �k Rk(Q), (11)
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FIG. 1. (a) Graphical representation of the Dyson Eq. (44) for the exciton propa-
gator. The line with open white triangle denotes the full (non-perturbative) time-
ordered exciton propagator, while the other continuous line appearing in the
righthand-side represents the free exciton propagator. (b) Example of loop diagram
neglected in the proposed approximation. The dashed line denotes the stochastic
propagator of classical damped Langevin oscillations of the configuration vector
δQ. (c) Estimating the 1PI term by the lowest-order self-energy diagram.

Equation (43) provides the starting point to apply our non-
perturbative approximation scheme. To this end, we consider the
standard Dyson equation, obtained by resumming all 1-particle irre-
ducible (1PI) diagrams for the single-exciton propagator G [see
Fig. 1(a)]. In frequency representation and omitting all indices for
sake of simplicity, the Dyson equation reads

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω), (44)

where Σ(ω) denotes the sum over all 1PI diagrams. Splitting this
equation into its forward and backward components leads to two
decoupled Dyson expressions

Gf �b(ω) = Gf �b
0 (ω)

1 −Gf �b
0 (ω)Σ f �b(ω) . (45)

To evaluate Σf /b(ω), further approximations are required. First
of all, we neglect all diagrams containing exciton loops, such as the
one shown in Fig. 1(b). The reason is that the energy of molecular
vibrations is much lower than that required to lift electronic excita-
tions. Furthermore, we can assume that the couplings f inm entering
Eq. (19) are small and estimate the 1PI in perturbation theory. At the
leading-order, this corresponds to re-summing the self-energy dia-
gram reported in Fig. 1(c). Insisting using this re-summation scheme
even beyond the small coupling regime corresponds to defining a
dynamical mean-field approximation.44

Explicit evaluation of the self-energy diagram leads to

Σ f �b
nm(ω) � f lnm′U

†
lj′V

†
m′s[i(Es − ω) ± γ]Vsn′Uj′hf

h
n′m

βM ⌦2
j′�⌦2

j′ − (Es − ω)(Es ∓ iγ − ω)� , (46)

and the corresponding f /b components of the propagator are

Gf �b(n,m;ω) = ±i�V†
ns(ω − Es ± iε)Vsm ± iΣf �b

nm(ω)�−1, (47)

whereV is the unitarymatrix which diagonalizes the f 0 matrix. Plug-
ging Eq. (47) into the Fourier transform of Eq. (43), we reach the
following expression for the response function in the simplified case
where only diagonal entries of the self-energy Σf �b

nn = Σf �b
n are rele-

vant, i.e., when vibrations only couple to the diagonal elements of
the Frenkel Hamiltonian

R(ω) = −2�
n

(ω − En) + iReΣf
n(ω)

(ω − En)2 − �Σf
n(ω)�2 + 2i(ω − En)ReΣf

n(ω) . (48)

An analytic formula for the absorption coefficient κa(ω) can
be obtained by combining real and imaginary parts, according to
Eqs. (34)–(36). It is instructive to analyze the structure of its imagi-
nary part ImR(ω), which controls the position and the width of the
resonances

ImR(ω) = −�
n

2ReΣf
n(ω)�(ω − En)2 + �Σf

n(ω)�2�
�(ω − En)2 − �Σf

n(ω)�2�2 + 4�(ω − En)ReΣf
n(ω)�2 .

(49)

The splitting and shifting of the poles generated by the vibronic
coupling is determined by the self-energy function Σf

n(ω), given in
Eq. (46). For illustration purposes, here we discuss its expression, in
the case of a single normal mode

Σf
nm(ω) = δnmf 2

βM⌦
γ⌦2 + i(ω − En)�(ω − En)2 −⌦2 + γ2�

�(ω − En)2 −⌦2�2 + γ2(ω − En)2 . (50)

This equation shows how the vibronic correction of the response
function scales with the temperature and bath viscosity. Note that
the shifting, splitting, and broadening of the resonances are large
when the difference between ω and the excitonic energies is com-
parable with the frequency of the vibrational normal mode ⌦. We
emphasize that the new resonances correspond to the vibronic
states, i.e., unstable bound-states of excitonic and vibrational
modes.

In Sec. V, we apply this scheme to compute an absorption
spectrum of a relevant macromolecular system.

V. ABSORPTION SPECTRUM OF THE FMO COMPLEX
In this section, we report on an application of MQFT to

computing the absorption spectrum of the FMO complex, which
represents one of the most thoroughly studied photosynthetic
systems.

Structurally, the FMO complex is a trimer, in which each
monomer is composed by a protein scaffold non-covalently bound
to 8 bacteriochlorophylls of type-a (BChla)45 [see Figs. 2(a) and
2(b)].46,47 Exciton propagation is mainly confined within each
monomer and involves only the 7 inner chlorophylls.47

In the following, we adopt a model in which excitonic and con-
formational degrees of freedom are treated at the explicit level and
their dynamics is defined by the Hamiltonian discussed in Sec. II. In
particular, we coarse-grain the electronic dynamics at the level of the
excitonic states created or annihilated at the 7 inner chlorophyll sites
of each monomer, i.e.,

HEx = 21�
n,m=1 f

0
nm â†

nâm. (51)

The matrix elements f 0nm carry the information about the energies
of each site and the transition amplitudes between the chlorophylls.
The diagonal elements have been obtained from density functional
theory (DFT) calculations on each chlorophyll, while off diagonal
matrix elements can be estimated from the dipole-dipole interac-
tions between chlorophyll transition densities (for a detailed dis-
cussion, see Refs. 45, 48, and 49). We neglect all couplings between
chlorophylls belonging to different monomeric units. Consequently,
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In this approximation GGG is given by the following

GGG =G0

∞

�

k=0
(SG0)

k

GGG =G0+G0 SG0

∞

�

k=0
(SG0)

k (33)

GGG =G0+G0 SGGG

Solving for GGG

GGG =
G0

1−G0S
(34)

The first terms of the series in the first line of eq. (33) are
pictorially represented in Fig. IV.

S is a correction representing the emission and the reabsorp-
tion at a later time of a vibron during the propagation of the
exciton. In frequency space the full, or “dressed”, propaga-
tors take the following form

GGG f
(n,m;w) = i�V †

ns(w−Es+ ie)Vsm+ iS f
nm(w)�

−1
(35)

GGGb
(n,m;w) = −i�V †

ns(w−Es− ie)Vsm− iSb
nm(w)�

−1
(36)

where the explicit calculation of the self-energy diagram
gives for the S-correction

S f
nm(w) =

f l
nm′U†

l j′V †
m′s [i(Es−w)+g]Vsn′Uj′h f h

n′m
bM W2

j′ �W2
j′ −(Es−w)(Es− ig−w)�

(37)

Sb
nm(w) =

f l
nm′U†

l j′V †
m′s [i(Es−w)−g]Vsn′Uj′h f h

n′m
bM W2

j′ �W2
j′ −(Es−w)(Es+ ig−w)�

(38)

In the previous expressions we have used the unitary matrix
Vns that we recall diagonalizes f 0

nm, Ul j′ the unitary transfor-
mation to the normal mode basis of H in Eq. (13), the vis-
cosity g from Eq. (15) and W j′ the normal mode frequencies
of the Hessian Uj′lHlkU†

ki′ = di′ j′MW2
j′ .

These corrections are complex functions. The imaginary
part modifies the structure of the peaks in the spectrum by
splitting and shifting them while the real part is responsible
for the broadening. In the next section we will present the
results of this theoretical evaluation of the spectrum along
with the results of the numerical simulation.

V. LINEAR ABSORPTION OF THE FMO
COMPLEX

In this section, we illustrate and validate our theoretical
approach to compute linear absorption spectra, by applying
it to the FMO complex, which represents one of the most
thoroughly studied photosynthetic systems. Results of lin-
ear absorption experiments on these systems are reported in
Ref.43, while theoretical calculations are discussed in37–39.

Structurally, the FMO complex is a trimer, in which each
monomer is composed by a protein scaffold non-covalently
bound to 8 Bacterio Chlorophylls of type-a (BChla)44 (see
Figs. 1a&1b ) 45,46. Exciton propagation is mainly confined
within each monomer and involves only the 7 inner chloro-
phylls46.

In the following, we adopt a model in which excitonic and
conformational degrees of freedom are treated at the explicit
level and their dynamics is defined by the Hamiltonian dis-
cussed in Section II. In particular, we coarse-grain the elec-
tronic dynamics at the level of the excitonic states created or
annihilated at the 7 inner chlorophyll sites of each monomer,
i.e.

HEx =
21
�

n,m=1
f 0
nm â†

nâm (39)

The matrix f 0
nm carries the information about the energies of

each site and the transition amplitudes between the chloro-
phylls. The diagonal elements are derived from DFT calcu-
lations on each chlorophyll, while off diagonal matrix ele-
ments are calculated by evaluating dipole-dipole interactions
between chlorophyll charge densities (see44,47,48 for further
details). We neglect all couplings between chlorophylls be-
longing to different monomeric units. Consequently, the f 0

nm
matrix has a block-diagonal structure. The numerical val-
ues of the entries in each block as computed in Ref.48 are
reported in Table II.

Also the vibrational dynamics of the complex is described
at the coarse-grained level. In particular, each amino-acid in
the protein scaffold is represented by a single bead centered
at the position of the corresponding Ca atom. In addition,
following Ref.45, the BChla is modelled by representing the
chlorin ring with 5 beads and the phytol tail with 3 beads –
see Fig. 1d –.

Within our framework, the conformational dynamics is de-
scribed by the Langevin equation – see Eq. (15) – . For sake
of simplicity, we assign the same viscosity parameter to all
beads, g = 150ps−1. In principle, viscosity coefficients for
each of the constituents may be evaluated from microscopic
molecular dynamics simulations, e.g. by computing appro-
priate velocity auto-correlation functions.

The vibrational dynamics of our model is described within
the framework of an Elastic Network Model (ENM). In par-
ticular, we follow the approach introduced in Ref.49 and later
applied to the FMO complex in Ref.45. These works empha-
sized the importance of accounting for non-linear coupling
of the network nodes. However, in this illustrative example
we consider the simpler case of a harmonic network50–52.

Following Ref.45 we build our ENM using the holo form

5
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ABSTRACT
We develop a cross-disciplinary approach to analytically compute optical response functions of open macromolecular systems by exploiting
the mathematical formalism of quantum field theory (QFT). Indeed, the entries of the density matrix for the electronic excitations interacting
with their open dissipative environment are mapped into vacuum-to-vacuum Green’s functions in a fictitious relativistic closed quantum
system. We show that by re-summing appropriate self-energy diagrams in this dual QFT, it is possible to obtain analytic expressions for
the response functions in Mukamel’s theory. This yields physical insight into the structure and dynamics of vibronic resonances, since their
frequency and width is related to fundamental physical constants andmicroscopic model parameters. For illustration, we apply this scheme to
compute the linear absorption spectrum of the Fenna-Matthews-Olson light harvesting complex, comparing analytic calculations, numerical
Monte Carlo simulations, and experimental data.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5084120

I. INTRODUCTION

The relaxation dynamics of optically induced electronic exci-
tations in macromolecular systems have been extensively studied
during the last several years, in view of its important biological and
technological implications. For example, the propagation of exci-
tons in light harvesting complexes provides an extremely efficient
mechanism for transferring energy over several nanometers and rep-
resents the first step of photosynthesis.1 The understanding of this
dynamic could also drive the development of nano-devices based on
bio-mimetic organic macromolecules with desired opto-electronic
properties.2,3

Exciton dynamics in macromolecular systems can be exper-
imentally probed using optical spectroscopy. In particular, linear
absorption spectra provide the structure of the low-lying sector of
the energy spectrum and encode information about the strength of
the vibronic coupling.4 Nonlinear spectroscopic techniques, such as
time-resolved 1-dimensional pump probemethods4 and 2D photon-
echo spectroscopy,5,6 provide further details about the electronic
couplings and insight into the relaxation dynamics.

A wide range of theoretical models with different levels of
microscopic detail have been proposed in order to investigate
exciton transport in macromolecules and compute the associated
spectroscopic observables. For example, ab initio schemes (see,
e.g., Refs. 7–9), models based on Frenkel-type exciton Hamil-
tonians,10–12 and multi-scale QM-MM approaches13 involve an
explicit treatment of both excitonic and nuclear degrees of free-
dom. More coarse-grained approaches have also been proposed in
which the dynamics of nuclear degrees of freedom are described
at the implicit level, i.e., through a phenomenological spectral
function.14–16

The exciton dynamics in macromolecules must be described
within the theoretical framework of open quantum systems.13,17–26
In this context, the Feynman-Vernon path integral formalism offers
several advantages.10,27–34 For example, it makes it straightforward
to deal with the dynamics of atomic nuclei at the classical level while
retaining a full quantum description of the excitons.10,29–34 Within
these mixed quantum-classical schemes, it is possible to simulate the
real-time dynamics for time intervals as long as picoseconds using a
quantumMonte Carlo algorithm.

J. Chem. Phys. 150, 144103 (2019); doi: 10.1063/1.5084120 150, 144103-1

Published under license by AIP Publishing

Linear Absorption of  
Fenna Matthews Olson 

complex

Linear Response theory: 

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

further assume that the matrix elements of the dipole operator do
not depend on the nuclear degrees of freedom (Condon approxima-
tion), i.e.,

µ̂ = ���
0 µeg 0
µge 0 µeα
0 µαe 0

���. (29)

In dipole approximation, the central observable in the analysis
of the optical response is the average polarization vector

P(t) = Tr[µ̂ ρ̂(t)], (30)

where the time evolution of the density matrix ρ(t) is influenced also
by the dipole Hamiltonian Ĥrad. Assuming that the sample is homo-
geneous and isotropic, the resulting polarization will be aligned with
the external electric field. In the following, we consider only its
modulus, P(t).

Expanding to nth order in the coupling with the weak external
field, we obtain that the modulus of the polarization is written as
P(t) =∑nP(n)(t), where

P(n)(t) = � ∞
0

dtn . . .� ∞
0

dt1 R(n)(tn, tn−1, . . . , t1)
×E(t − tn) . . . E(t1) (31)

and R(n) is the so-called nth order response function. By exploiting
the isotropy of the sample, it is written as

R(n) = � i�h�
n
Tr[µ̂ G(tn)V G(tn−1) . . .V G1(t1)Vρ̂0], (32)

µ̂ = ���
0 µeg 0
µge 0 µeα
0 µαe 0

���. (33)

G and V are two super-operators: V is defined by the commuta-
tor with µ̂, i.e., V Ô ≡ [µ̂, Ô], while G(t) is the Liouvillian super-
operator. Equation (32) assumes that the system is initially in the
electronic ground state. Exploiting the assumption of isotropy, the
random molecular orientations relative to that of the incoming the
electric field can be trivially averaged out (see the discussion in
Ref. 4).

The response functions can be experimentally probed by multi-
photon spectroscopy. In this paper, we focus on linear response,
which contains information about the Fourier transform of the first
order function R(1)(ω). The intensity of an electromagnetic wave of
frequency ω decreases exponentially with the distance z travelled
through the medium

I(z,ω) = I0 exp(−κa(ω)z), (34)

where κa(ω) is the absorption coefficient. Applying Mukamel’s the-
ory,4 this coefficient is expressed as

κa(ω) = 4πω
n(ω) Im[R(1)(ω)], (35)

where n(ω) is the refractive index, given by

n(ω) =�1 + Re�R(1)(ω)�. (36)

Therefore, theoretical calculations of R(1)(ω) can be used to obtain
the absorption coefficient and then be directly compared to experi-
mental data.

B. Linear response theory in MQFT
All response functions R(n) can be computed in MQFT by eval-

uating appropriate combinations of Green’s function in the form
of Eq. (21). In particular, here we focus on the first-order response
function R(1)(t)

R(1)(t) = i�hTr[µ̂ G(t) V ρ̂(0)]. (37)

To identify the corresponding combination of Green’s functions, it
is useful to explicitly write out the action of the Liouvillian operator

R(1)(t) = i�hTr[µ̂ e− i�h Ĥtot( V ρ̂(0))e i�h Ĥtot ]. (38)

Next, we express the µ̂ and V ρ̂(0) = [µ̂, ρ0] operators using the
second quantization formalism

µ̂ =�
n
�µ∗ng ân + µng â†

n�, (39)

V ρ̂0 =�
n
�−µng ân + µ∗ng â†

n� × e−β(ĤBO+Ĥbath), (40)

where µng = �Φn� µ̂ �g�.
Finally, we apply the Trotter decomposition to the two evolu-

tion operators and obtain a Feynman-Vernon mixed particle-field
path integral representation of R(1). Following the same procedure
described in Refs. 32 and 34, we find

R(1)(t) = i�h
N�
n=1
�µng �2
Z(t) � DδQ e−SOM[δQ]−Sback[δQ]−βHQ(0)

× �Gf
δQ(n, t�n, 0) −Gb

δQ(n, 0�n, t)�. (41)

We note that the linear response is written as a sum of independent
contributions in which the excitons are excited and relaxed within
the same molecular fragment.

A more compact expression for R(1)(t) can be achieved
by introducing the dressed exciton propagator, defined as the
result of averaging over all possible nuclear stochastic trajectories
δQ(τ), i.e.,

Gf �b = ∫ DδQ Gf �b
δQ e−SOM[δQ] e−βHMM(δQ(0))

∫ DδQ e−SOM[δQ] e−βHMM(δQ(0)) , (42)

where Gf �b
δQ are defined in Eq. (14). The linear response then reads

R(1)(t) = i�h
N�
n=1 �µng �

2 �Gf (n, t�n, 0) −Gb(n, 0�n, t)�
= i�h

N�
n=1 �µng �

2 Tr[γ+G(n, t�n, 0) − γ−G(n, 0�n, t)], (43)

where, in the second line, we have restored the full time-ordered
propagator of MQFT, G = γ+Gf − γ−Gb. We note that this equa-
tion mirrors the structure of the retarded propagator, as is expected
in linear response theory.
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further assume that the matrix elements of the dipole operator do
not depend on the nuclear degrees of freedom (Condon approxima-
tion), i.e.,

µ̂ = ���
0 µeg 0
µge 0 µeα
0 µαe 0

���. (29)

In dipole approximation, the central observable in the analysis
of the optical response is the average polarization vector

P(t) = Tr[µ̂ ρ̂(t)], (30)

where the time evolution of the density matrix ρ(t) is influenced also
by the dipole Hamiltonian Ĥrad. Assuming that the sample is homo-
geneous and isotropic, the resulting polarization will be aligned with
the external electric field. In the following, we consider only its
modulus, P(t).

Expanding to nth order in the coupling with the weak external
field, we obtain that the modulus of the polarization is written as
P(t) =∑nP(n)(t), where

P(n)(t) = � ∞
0

dtn . . .� ∞
0

dt1 R(n)(tn, tn−1, . . . , t1)
×E(t − tn) . . . E(t1) (31)

and R(n) is the so-called nth order response function. By exploiting
the isotropy of the sample, it is written as

R(n) = � i�h�
n
Tr[µ̂ G(tn)V G(tn−1) . . .V G1(t1)Vρ̂0], (32)

µ̂ = ���
0 µeg 0
µge 0 µeα
0 µαe 0

���. (33)

G and V are two super-operators: V is defined by the commuta-
tor with µ̂, i.e., V Ô ≡ [µ̂, Ô], while G(t) is the Liouvillian super-
operator. Equation (32) assumes that the system is initially in the
electronic ground state. Exploiting the assumption of isotropy, the
random molecular orientations relative to that of the incoming the
electric field can be trivially averaged out (see the discussion in
Ref. 4).

The response functions can be experimentally probed by multi-
photon spectroscopy. In this paper, we focus on linear response,
which contains information about the Fourier transform of the first
order function R(1)(ω). The intensity of an electromagnetic wave of
frequency ω decreases exponentially with the distance z travelled
through the medium

I(z,ω) = I0 exp(−κa(ω)z), (34)

where κa(ω) is the absorption coefficient. Applying Mukamel’s the-
ory,4 this coefficient is expressed as

κa(ω) = 4πω
n(ω) Im[R(1)(ω)], (35)

where n(ω) is the refractive index, given by

n(ω) =�1 + Re�R(1)(ω)�. (36)

Therefore, theoretical calculations of R(1)(ω) can be used to obtain
the absorption coefficient and then be directly compared to experi-
mental data.

B. Linear response theory in MQFT
All response functions R(n) can be computed in MQFT by eval-

uating appropriate combinations of Green’s function in the form
of Eq. (21). In particular, here we focus on the first-order response
function R(1)(t)

R(1)(t) = i�hTr[µ̂ G(t) V ρ̂(0)]. (37)

To identify the corresponding combination of Green’s functions, it
is useful to explicitly write out the action of the Liouvillian operator

R(1)(t) = i�hTr[µ̂ e− i�h Ĥtot( V ρ̂(0))e i�h Ĥtot ]. (38)

Next, we express the µ̂ and V ρ̂(0) = [µ̂, ρ0] operators using the
second quantization formalism

µ̂ =�
n
�µ∗ng ân + µng â†

n�, (39)

V ρ̂0 =�
n
�−µng ân + µ∗ng â†

n� × e−β(ĤBO+Ĥbath), (40)

where µng = �Φn� µ̂ �g�.
Finally, we apply the Trotter decomposition to the two evolu-

tion operators and obtain a Feynman-Vernon mixed particle-field
path integral representation of R(1). Following the same procedure
described in Refs. 32 and 34, we find

R(1)(t) = i�h
N�
n=1
�µng �2
Z(t) � DδQ e−SOM[δQ]−Sback[δQ]−βHQ(0)

× �Gf
δQ(n, t�n, 0) −Gb

δQ(n, 0�n, t)�. (41)

We note that the linear response is written as a sum of independent
contributions in which the excitons are excited and relaxed within
the same molecular fragment.

A more compact expression for R(1)(t) can be achieved
by introducing the dressed exciton propagator, defined as the
result of averaging over all possible nuclear stochastic trajectories
δQ(τ), i.e.,

Gf �b = ∫ DδQ Gf �b
δQ e−SOM[δQ] e−βHMM(δQ(0))

∫ DδQ e−SOM[δQ] e−βHMM(δQ(0)) , (42)

where Gf �b
δQ are defined in Eq. (14). The linear response then reads

R(1)(t) = i�h
N�
n=1 �µng �

2 �Gf (n, t�n, 0) −Gb(n, 0�n, t)�
= i�h

N�
n=1 �µng �

2 Tr[γ+G(n, t�n, 0) − γ−G(n, 0�n, t)], (43)

where, in the second line, we have restored the full time-ordered
propagator of MQFT, G = γ+Gf − γ−Gb. We note that this equa-
tion mirrors the structure of the retarded propagator, as is expected
in linear response theory.
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further assume that the matrix elements of the dipole operator do
not depend on the nuclear degrees of freedom (Condon approxima-
tion), i.e.,

µ̂ = ���
0 µeg 0
µge 0 µeα
0 µαe 0

���. (29)

In dipole approximation, the central observable in the analysis
of the optical response is the average polarization vector

P(t) = Tr[µ̂ ρ̂(t)], (30)

where the time evolution of the density matrix ρ(t) is influenced also
by the dipole Hamiltonian Ĥrad. Assuming that the sample is homo-
geneous and isotropic, the resulting polarization will be aligned with
the external electric field. In the following, we consider only its
modulus, P(t).

Expanding to nth order in the coupling with the weak external
field, we obtain that the modulus of the polarization is written as
P(t) =∑nP(n)(t), where

P(n)(t) = � ∞
0

dtn . . .� ∞
0

dt1 R(n)(tn, tn−1, . . . , t1)
×E(t − tn) . . . E(t1) (31)

and R(n) is the so-called nth order response function. By exploiting
the isotropy of the sample, it is written as

R(n) = � i�h�
n
Tr[µ̂ G(tn)V G(tn−1) . . .V G1(t1)Vρ̂0], (32)

µ̂ = ���
0 µeg 0
µge 0 µeα
0 µαe 0

���. (33)

G and V are two super-operators: V is defined by the commuta-
tor with µ̂, i.e., V Ô ≡ [µ̂, Ô], while G(t) is the Liouvillian super-
operator. Equation (32) assumes that the system is initially in the
electronic ground state. Exploiting the assumption of isotropy, the
random molecular orientations relative to that of the incoming the
electric field can be trivially averaged out (see the discussion in
Ref. 4).

The response functions can be experimentally probed by multi-
photon spectroscopy. In this paper, we focus on linear response,
which contains information about the Fourier transform of the first
order function R(1)(ω). The intensity of an electromagnetic wave of
frequency ω decreases exponentially with the distance z travelled
through the medium

I(z,ω) = I0 exp(−κa(ω)z), (34)

where κa(ω) is the absorption coefficient. Applying Mukamel’s the-
ory,4 this coefficient is expressed as

κa(ω) = 4πω
n(ω) Im[R(1)(ω)], (35)

where n(ω) is the refractive index, given by

n(ω) =�1 + Re�R(1)(ω)�. (36)

Therefore, theoretical calculations of R(1)(ω) can be used to obtain
the absorption coefficient and then be directly compared to experi-
mental data.

B. Linear response theory in MQFT
All response functions R(n) can be computed in MQFT by eval-

uating appropriate combinations of Green’s function in the form
of Eq. (21). In particular, here we focus on the first-order response
function R(1)(t)

R(1)(t) = i�hTr[µ̂ G(t) V ρ̂(0)]. (37)

To identify the corresponding combination of Green’s functions, it
is useful to explicitly write out the action of the Liouvillian operator

R(1)(t) = i�hTr[µ̂ e− i�h Ĥtot( V ρ̂(0))e i�h Ĥtot ]. (38)

Next, we express the µ̂ and V ρ̂(0) = [µ̂, ρ0] operators using the
second quantization formalism

µ̂ =�
n
�µ∗ng ân + µng â†

n�, (39)

V ρ̂0 =�
n
�−µng ân + µ∗ng â†

n� × e−β(ĤBO+Ĥbath), (40)

where µng = �Φn� µ̂ �g�.
Finally, we apply the Trotter decomposition to the two evolu-

tion operators and obtain a Feynman-Vernon mixed particle-field
path integral representation of R(1). Following the same procedure
described in Refs. 32 and 34, we find

R(1)(t) = i�h
N�
n=1
�µng �2
Z(t) � DδQ e−SOM[δQ]−Sback[δQ]−βHQ(0)

× �Gf
δQ(n, t�n, 0) −Gb

δQ(n, 0�n, t)�. (41)

We note that the linear response is written as a sum of independent
contributions in which the excitons are excited and relaxed within
the same molecular fragment.

A more compact expression for R(1)(t) can be achieved
by introducing the dressed exciton propagator, defined as the
result of averaging over all possible nuclear stochastic trajectories
δQ(τ), i.e.,

Gf �b = ∫ DδQ Gf �b
δQ e−SOM[δQ] e−βHMM(δQ(0))

∫ DδQ e−SOM[δQ] e−βHMM(δQ(0)) , (42)

where Gf �b
δQ are defined in Eq. (14). The linear response then reads

R(1)(t) = i�h
N�
n=1 �µng �

2 �Gf (n, t�n, 0) −Gb(n, 0�n, t)�
= i�h

N�
n=1 �µng �

2 Tr[γ+G(n, t�n, 0) − γ−G(n, 0�n, t)], (43)

where, in the second line, we have restored the full time-ordered
propagator of MQFT, G = γ+Gf − γ−Gb. We note that this equa-
tion mirrors the structure of the retarded propagator, as is expected
in linear response theory.
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FIG. 1. (a) Graphical representation of the Dyson Eq. (44) for the exciton propa-
gator. The line with open white triangle denotes the full (non-perturbative) time-
ordered exciton propagator, while the other continuous line appearing in the
righthand-side represents the free exciton propagator. (b) Example of loop diagram
neglected in the proposed approximation. The dashed line denotes the stochastic
propagator of classical damped Langevin oscillations of the configuration vector
δQ. (c) Estimating the 1PI term by the lowest-order self-energy diagram.

Equation (43) provides the starting point to apply our non-
perturbative approximation scheme. To this end, we consider the
standard Dyson equation, obtained by resumming all 1-particle irre-
ducible (1PI) diagrams for the single-exciton propagator G [see
Fig. 1(a)]. In frequency representation and omitting all indices for
sake of simplicity, the Dyson equation reads

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω), (44)

where Σ(ω) denotes the sum over all 1PI diagrams. Splitting this
equation into its forward and backward components leads to two
decoupled Dyson expressions

Gf �b(ω) = Gf �b
0 (ω)

1 −Gf �b
0 (ω)Σ f �b(ω) . (45)

To evaluate Σf /b(ω), further approximations are required. First
of all, we neglect all diagrams containing exciton loops, such as the
one shown in Fig. 1(b). The reason is that the energy of molecular
vibrations is much lower than that required to lift electronic excita-
tions. Furthermore, we can assume that the couplings f inm entering
Eq. (19) are small and estimate the 1PI in perturbation theory. At the
leading-order, this corresponds to re-summing the self-energy dia-
gram reported in Fig. 1(c). Insisting using this re-summation scheme
even beyond the small coupling regime corresponds to defining a
dynamical mean-field approximation.44

Explicit evaluation of the self-energy diagram leads to

Σ f �b
nm(ω) � f lnm′U

†
lj′V

†
m′s[i(Es − ω) ± γ]Vsn′Uj′hf

h
n′m

βM ⌦2
j′�⌦2

j′ − (Es − ω)(Es ∓ iγ − ω)� , (46)

and the corresponding f /b components of the propagator are

Gf �b(n,m;ω) = ±i�V†
ns(ω − Es ± iε)Vsm ± iΣf �b

nm(ω)�−1, (47)

whereV is the unitarymatrix which diagonalizes the f 0 matrix. Plug-
ging Eq. (47) into the Fourier transform of Eq. (43), we reach the
following expression for the response function in the simplified case
where only diagonal entries of the self-energy Σf �b

nn = Σf �b
n are rele-

vant, i.e., when vibrations only couple to the diagonal elements of
the Frenkel Hamiltonian

R(ω) = −2�
n

(ω − En) + iReΣf
n(ω)

(ω − En)2 − �Σf
n(ω)�2 + 2i(ω − En)ReΣf

n(ω) . (48)

An analytic formula for the absorption coefficient κa(ω) can
be obtained by combining real and imaginary parts, according to
Eqs. (34)–(36). It is instructive to analyze the structure of its imagi-
nary part ImR(ω), which controls the position and the width of the
resonances

ImR(ω) = −�
n

2ReΣf
n(ω)�(ω − En)2 + �Σf

n(ω)�2�
�(ω − En)2 − �Σf

n(ω)�2�2 + 4�(ω − En)ReΣf
n(ω)�2 .

(49)

The splitting and shifting of the poles generated by the vibronic
coupling is determined by the self-energy function Σf

n(ω), given in
Eq. (46). For illustration purposes, here we discuss its expression, in
the case of a single normal mode

Σf
nm(ω) = δnmf 2

βM⌦
γ⌦2 + i(ω − En)�(ω − En)2 −⌦2 + γ2�

�(ω − En)2 −⌦2�2 + γ2(ω − En)2 . (50)

This equation shows how the vibronic correction of the response
function scales with the temperature and bath viscosity. Note that
the shifting, splitting, and broadening of the resonances are large
when the difference between ω and the excitonic energies is com-
parable with the frequency of the vibrational normal mode ⌦. We
emphasize that the new resonances correspond to the vibronic
states, i.e., unstable bound-states of excitonic and vibrational
modes.

In Sec. V, we apply this scheme to compute an absorption
spectrum of a relevant macromolecular system.

V. ABSORPTION SPECTRUM OF THE FMO COMPLEX
In this section, we report on an application of MQFT to

computing the absorption spectrum of the FMO complex, which
represents one of the most thoroughly studied photosynthetic
systems.

Structurally, the FMO complex is a trimer, in which each
monomer is composed by a protein scaffold non-covalently bound
to 8 bacteriochlorophylls of type-a (BChla)45 [see Figs. 2(a) and
2(b)].46,47 Exciton propagation is mainly confined within each
monomer and involves only the 7 inner chlorophylls.47

In the following, we adopt a model in which excitonic and con-
formational degrees of freedom are treated at the explicit level and
their dynamics is defined by the Hamiltonian discussed in Sec. II. In
particular, we coarse-grain the electronic dynamics at the level of the
excitonic states created or annihilated at the 7 inner chlorophyll sites
of each monomer, i.e.,

HEx = 21�
n,m=1 f

0
nm â†

nâm. (51)

The matrix elements f 0nm carry the information about the energies
of each site and the transition amplitudes between the chlorophylls.
The diagonal elements have been obtained from density functional
theory (DFT) calculations on each chlorophyll, while off diagonal
matrix elements can be estimated from the dipole-dipole interac-
tions between chlorophyll transition densities (for a detailed dis-
cussion, see Refs. 45, 48, and 49). We neglect all couplings between
chlorophylls belonging to different monomeric units. Consequently,
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FIG. 1. (a) Graphical representation of the Dyson Eq. (44) for the exciton propa-
gator. The line with open white triangle denotes the full (non-perturbative) time-
ordered exciton propagator, while the other continuous line appearing in the
righthand-side represents the free exciton propagator. (b) Example of loop diagram
neglected in the proposed approximation. The dashed line denotes the stochastic
propagator of classical damped Langevin oscillations of the configuration vector
δQ. (c) Estimating the 1PI term by the lowest-order self-energy diagram.

Equation (43) provides the starting point to apply our non-
perturbative approximation scheme. To this end, we consider the
standard Dyson equation, obtained by resumming all 1-particle irre-
ducible (1PI) diagrams for the single-exciton propagator G [see
Fig. 1(a)]. In frequency representation and omitting all indices for
sake of simplicity, the Dyson equation reads

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω), (44)

where Σ(ω) denotes the sum over all 1PI diagrams. Splitting this
equation into its forward and backward components leads to two
decoupled Dyson expressions

Gf �b(ω) = Gf �b
0 (ω)

1 −Gf �b
0 (ω)Σ f �b(ω) . (45)

To evaluate Σf /b(ω), further approximations are required. First
of all, we neglect all diagrams containing exciton loops, such as the
one shown in Fig. 1(b). The reason is that the energy of molecular
vibrations is much lower than that required to lift electronic excita-
tions. Furthermore, we can assume that the couplings f inm entering
Eq. (19) are small and estimate the 1PI in perturbation theory. At the
leading-order, this corresponds to re-summing the self-energy dia-
gram reported in Fig. 1(c). Insisting using this re-summation scheme
even beyond the small coupling regime corresponds to defining a
dynamical mean-field approximation.44

Explicit evaluation of the self-energy diagram leads to

Σ f �b
nm(ω) � f lnm′U

†
lj′V

†
m′s[i(Es − ω) ± γ]Vsn′Uj′hf

h
n′m

βM ⌦2
j′�⌦2

j′ − (Es − ω)(Es ∓ iγ − ω)� , (46)

and the corresponding f /b components of the propagator are

Gf �b(n,m;ω) = ±i�V†
ns(ω − Es ± iε)Vsm ± iΣf �b

nm(ω)�−1, (47)

whereV is the unitarymatrix which diagonalizes the f 0 matrix. Plug-
ging Eq. (47) into the Fourier transform of Eq. (43), we reach the
following expression for the response function in the simplified case
where only diagonal entries of the self-energy Σf �b

nn = Σf �b
n are rele-

vant, i.e., when vibrations only couple to the diagonal elements of
the Frenkel Hamiltonian

R(ω) = −2�
n

(ω − En) + iReΣf
n(ω)

(ω − En)2 − �Σf
n(ω)�2 + 2i(ω − En)ReΣf

n(ω) . (48)

An analytic formula for the absorption coefficient κa(ω) can
be obtained by combining real and imaginary parts, according to
Eqs. (34)–(36). It is instructive to analyze the structure of its imagi-
nary part ImR(ω), which controls the position and the width of the
resonances

ImR(ω) = −�
n

2ReΣf
n(ω)�(ω − En)2 + �Σf

n(ω)�2�
�(ω − En)2 − �Σf

n(ω)�2�2 + 4�(ω − En)ReΣf
n(ω)�2 .

(49)

The splitting and shifting of the poles generated by the vibronic
coupling is determined by the self-energy function Σf

n(ω), given in
Eq. (46). For illustration purposes, here we discuss its expression, in
the case of a single normal mode

Σf
nm(ω) = δnmf 2

βM⌦
γ⌦2 + i(ω − En)�(ω − En)2 −⌦2 + γ2�

�(ω − En)2 −⌦2�2 + γ2(ω − En)2 . (50)

This equation shows how the vibronic correction of the response
function scales with the temperature and bath viscosity. Note that
the shifting, splitting, and broadening of the resonances are large
when the difference between ω and the excitonic energies is com-
parable with the frequency of the vibrational normal mode ⌦. We
emphasize that the new resonances correspond to the vibronic
states, i.e., unstable bound-states of excitonic and vibrational
modes.

In Sec. V, we apply this scheme to compute an absorption
spectrum of a relevant macromolecular system.

V. ABSORPTION SPECTRUM OF THE FMO COMPLEX
In this section, we report on an application of MQFT to

computing the absorption spectrum of the FMO complex, which
represents one of the most thoroughly studied photosynthetic
systems.

Structurally, the FMO complex is a trimer, in which each
monomer is composed by a protein scaffold non-covalently bound
to 8 bacteriochlorophylls of type-a (BChla)45 [see Figs. 2(a) and
2(b)].46,47 Exciton propagation is mainly confined within each
monomer and involves only the 7 inner chlorophylls.47

In the following, we adopt a model in which excitonic and con-
formational degrees of freedom are treated at the explicit level and
their dynamics is defined by the Hamiltonian discussed in Sec. II. In
particular, we coarse-grain the electronic dynamics at the level of the
excitonic states created or annihilated at the 7 inner chlorophyll sites
of each monomer, i.e.,

HEx = 21�
n,m=1 f

0
nm â†

nâm. (51)

The matrix elements f 0nm carry the information about the energies
of each site and the transition amplitudes between the chlorophylls.
The diagonal elements have been obtained from density functional
theory (DFT) calculations on each chlorophyll, while off diagonal
matrix elements can be estimated from the dipole-dipole interac-
tions between chlorophyll transition densities (for a detailed dis-
cussion, see Refs. 45, 48, and 49). We neglect all couplings between
chlorophylls belonging to different monomeric units. Consequently,
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FIG. 1. (a) Graphical representation of the Dyson Eq. (44) for the exciton propa-
gator. The line with open white triangle denotes the full (non-perturbative) time-
ordered exciton propagator, while the other continuous line appearing in the
righthand-side represents the free exciton propagator. (b) Example of loop diagram
neglected in the proposed approximation. The dashed line denotes the stochastic
propagator of classical damped Langevin oscillations of the configuration vector
δQ. (c) Estimating the 1PI term by the lowest-order self-energy diagram.

Equation (43) provides the starting point to apply our non-
perturbative approximation scheme. To this end, we consider the
standard Dyson equation, obtained by resumming all 1-particle irre-
ducible (1PI) diagrams for the single-exciton propagator G [see
Fig. 1(a)]. In frequency representation and omitting all indices for
sake of simplicity, the Dyson equation reads

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω), (44)

where Σ(ω) denotes the sum over all 1PI diagrams. Splitting this
equation into its forward and backward components leads to two
decoupled Dyson expressions

Gf �b(ω) = Gf �b
0 (ω)

1 −Gf �b
0 (ω)Σ f �b(ω) . (45)

To evaluate Σf /b(ω), further approximations are required. First
of all, we neglect all diagrams containing exciton loops, such as the
one shown in Fig. 1(b). The reason is that the energy of molecular
vibrations is much lower than that required to lift electronic excita-
tions. Furthermore, we can assume that the couplings f inm entering
Eq. (19) are small and estimate the 1PI in perturbation theory. At the
leading-order, this corresponds to re-summing the self-energy dia-
gram reported in Fig. 1(c). Insisting using this re-summation scheme
even beyond the small coupling regime corresponds to defining a
dynamical mean-field approximation.44

Explicit evaluation of the self-energy diagram leads to

Σ f �b
nm(ω) � f lnm′U

†
lj′V

†
m′s[i(Es − ω) ± γ]Vsn′Uj′hf

h
n′m

βM ⌦2
j′�⌦2

j′ − (Es − ω)(Es ∓ iγ − ω)� , (46)

and the corresponding f /b components of the propagator are

Gf �b(n,m;ω) = ±i�V†
ns(ω − Es ± iε)Vsm ± iΣf �b

nm(ω)�−1, (47)

whereV is the unitarymatrix which diagonalizes the f 0 matrix. Plug-
ging Eq. (47) into the Fourier transform of Eq. (43), we reach the
following expression for the response function in the simplified case
where only diagonal entries of the self-energy Σf �b

nn = Σf �b
n are rele-

vant, i.e., when vibrations only couple to the diagonal elements of
the Frenkel Hamiltonian

R(ω) = −2�
n

(ω − En) + iReΣf
n(ω)

(ω − En)2 − �Σf
n(ω)�2 + 2i(ω − En)ReΣf

n(ω) . (48)

An analytic formula for the absorption coefficient κa(ω) can
be obtained by combining real and imaginary parts, according to
Eqs. (34)–(36). It is instructive to analyze the structure of its imagi-
nary part ImR(ω), which controls the position and the width of the
resonances

ImR(ω) = −�
n

2ReΣf
n(ω)�(ω − En)2 + �Σf

n(ω)�2�
�(ω − En)2 − �Σf

n(ω)�2�2 + 4�(ω − En)ReΣf
n(ω)�2 .

(49)

The splitting and shifting of the poles generated by the vibronic
coupling is determined by the self-energy function Σf

n(ω), given in
Eq. (46). For illustration purposes, here we discuss its expression, in
the case of a single normal mode

Σf
nm(ω) = δnmf 2

βM⌦
γ⌦2 + i(ω − En)�(ω − En)2 −⌦2 + γ2�

�(ω − En)2 −⌦2�2 + γ2(ω − En)2 . (50)

This equation shows how the vibronic correction of the response
function scales with the temperature and bath viscosity. Note that
the shifting, splitting, and broadening of the resonances are large
when the difference between ω and the excitonic energies is com-
parable with the frequency of the vibrational normal mode ⌦. We
emphasize that the new resonances correspond to the vibronic
states, i.e., unstable bound-states of excitonic and vibrational
modes.

In Sec. V, we apply this scheme to compute an absorption
spectrum of a relevant macromolecular system.

V. ABSORPTION SPECTRUM OF THE FMO COMPLEX
In this section, we report on an application of MQFT to

computing the absorption spectrum of the FMO complex, which
represents one of the most thoroughly studied photosynthetic
systems.

Structurally, the FMO complex is a trimer, in which each
monomer is composed by a protein scaffold non-covalently bound
to 8 bacteriochlorophylls of type-a (BChla)45 [see Figs. 2(a) and
2(b)].46,47 Exciton propagation is mainly confined within each
monomer and involves only the 7 inner chlorophylls.47

In the following, we adopt a model in which excitonic and con-
formational degrees of freedom are treated at the explicit level and
their dynamics is defined by the Hamiltonian discussed in Sec. II. In
particular, we coarse-grain the electronic dynamics at the level of the
excitonic states created or annihilated at the 7 inner chlorophyll sites
of each monomer, i.e.,

HEx = 21�
n,m=1 f

0
nm â†

nâm. (51)

The matrix elements f 0nm carry the information about the energies
of each site and the transition amplitudes between the chlorophylls.
The diagonal elements have been obtained from density functional
theory (DFT) calculations on each chlorophyll, while off diagonal
matrix elements can be estimated from the dipole-dipole interac-
tions between chlorophyll transition densities (for a detailed dis-
cussion, see Refs. 45, 48, and 49). We neglect all couplings between
chlorophylls belonging to different monomeric units. Consequently,
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In this approximation GGG is given by the following

GGG =G0

∞

�

k=0
(SG0)

k

GGG =G0+G0 SG0

∞

�

k=0
(SG0)

k (33)

GGG =G0+G0 SGGG

Solving for GGG

GGG =
G0

1−G0S
(34)

The first terms of the series in the first line of eq. (33) are
pictorially represented in Fig. IV.

S is a correction representing the emission and the reabsorp-
tion at a later time of a vibron during the propagation of the
exciton. In frequency space the full, or “dressed”, propaga-
tors take the following form

GGG f
(n,m;w) = i�V †

ns(w−Es+ ie)Vsm+ iS f
nm(w)�

−1
(35)

GGGb
(n,m;w) = −i�V †

ns(w−Es− ie)Vsm− iSb
nm(w)�

−1
(36)

where the explicit calculation of the self-energy diagram
gives for the S-correction

S f
nm(w) =

f l
nm′U†

l j′V †
m′s [i(Es−w)+g]Vsn′Uj′h f h

n′m
bM W2

j′ �W2
j′ −(Es−w)(Es− ig−w)�

(37)

Sb
nm(w) =

f l
nm′U†

l j′V †
m′s [i(Es−w)−g]Vsn′Uj′h f h

n′m
bM W2

j′ �W2
j′ −(Es−w)(Es+ ig−w)�

(38)

In the previous expressions we have used the unitary matrix
Vns that we recall diagonalizes f 0

nm, Ul j′ the unitary transfor-
mation to the normal mode basis of H in Eq. (13), the vis-
cosity g from Eq. (15) and W j′ the normal mode frequencies
of the Hessian Uj′lHlkU†

ki′ = di′ j′MW2
j′ .

These corrections are complex functions. The imaginary
part modifies the structure of the peaks in the spectrum by
splitting and shifting them while the real part is responsible
for the broadening. In the next section we will present the
results of this theoretical evaluation of the spectrum along
with the results of the numerical simulation.

V. LINEAR ABSORPTION OF THE FMO
COMPLEX

In this section, we illustrate and validate our theoretical
approach to compute linear absorption spectra, by applying
it to the FMO complex, which represents one of the most
thoroughly studied photosynthetic systems. Results of lin-
ear absorption experiments on these systems are reported in
Ref.43, while theoretical calculations are discussed in37–39.

Structurally, the FMO complex is a trimer, in which each
monomer is composed by a protein scaffold non-covalently
bound to 8 Bacterio Chlorophylls of type-a (BChla)44 (see
Figs. 1a&1b ) 45,46. Exciton propagation is mainly confined
within each monomer and involves only the 7 inner chloro-
phylls46.

In the following, we adopt a model in which excitonic and
conformational degrees of freedom are treated at the explicit
level and their dynamics is defined by the Hamiltonian dis-
cussed in Section II. In particular, we coarse-grain the elec-
tronic dynamics at the level of the excitonic states created or
annihilated at the 7 inner chlorophyll sites of each monomer,
i.e.

HEx =
21
�

n,m=1
f 0
nm â†

nâm (39)

The matrix f 0
nm carries the information about the energies of

each site and the transition amplitudes between the chloro-
phylls. The diagonal elements are derived from DFT calcu-
lations on each chlorophyll, while off diagonal matrix ele-
ments are calculated by evaluating dipole-dipole interactions
between chlorophyll charge densities (see44,47,48 for further
details). We neglect all couplings between chlorophylls be-
longing to different monomeric units. Consequently, the f 0

nm
matrix has a block-diagonal structure. The numerical val-
ues of the entries in each block as computed in Ref.48 are
reported in Table II.

Also the vibrational dynamics of the complex is described
at the coarse-grained level. In particular, each amino-acid in
the protein scaffold is represented by a single bead centered
at the position of the corresponding Ca atom. In addition,
following Ref.45, the BChla is modelled by representing the
chlorin ring with 5 beads and the phytol tail with 3 beads –
see Fig. 1d –.

Within our framework, the conformational dynamics is de-
scribed by the Langevin equation – see Eq. (15) – . For sake
of simplicity, we assign the same viscosity parameter to all
beads, g = 150ps−1. In principle, viscosity coefficients for
each of the constituents may be evaluated from microscopic
molecular dynamics simulations, e.g. by computing appro-
priate velocity auto-correlation functions.

The vibrational dynamics of our model is described within
the framework of an Elastic Network Model (ENM). In par-
ticular, we follow the approach introduced in Ref.49 and later
applied to the FMO complex in Ref.45. These works empha-
sized the importance of accounting for non-linear coupling
of the network nodes. However, in this illustrative example
we consider the simpler case of a harmonic network50–52.

Following Ref.45 we build our ENM using the holo form

5
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FIG. 1. The left panel reports the 8 folding pathways
obtained with the BF approach, projected onto the plane
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of FIP35 (crystal structure shown in the right panel).
The heat map in the background is the free energy as
a function of the same collective variables obtained from
a histogram of plain MD simulations performed on the
Anton supercomputer.

and 35. The folding mechanism of much larger polypeptide
chains predicted by BF was validated against experiment in
Refs. 17–19.

We conclude this section by discussing the main draw-
backs of the BF approach. Like any variational approximation,
this method may suffer from systematic errors related to the
choice of the trial space. In particular, low accuracy is gener-
ally expected whenever the quality of the rMD trajectories is
poor. This scenario is realized if the collective variable z given
in Eq. (2) is not a good reaction coordinate. This problem was
solved in a recent work,35 by developing an improved iterative
rMD algorithm which enables to correct the collective coor-
dinate in a self-consistent way. We demonstrated that the trial
paths obtained with this new type of rMD dynamics are biased
along the average unbiased folding trajectory and that the cor-
responding biasing collective coordinate provides a stochastic
estimate of the reaction coordinate.

A second important limitation of the BF approach arises
from the fact that the rMD trajectories do not satisfy the
microscopic reversibility condition. As a consequence, the
corresponding time scales do not have a direct physical inter-
pretation and the BF trajectories cannot be used to extract
in a straightforward way the information about the relevant
metastable states and free energy barriers involved in the fold-
ing transition. In Sec. III, we present an algorithm to tackle
this limitation.

III. COMPUTING FREE ENERGY PROFILES FROM
BF SIMULATIONS

A commonly adopted strategy to gain insight into reaction
mechanisms in complex molecular systems consists in project-
ing the very high dimensional configuration space into a single
collective variable, which is assumed to approximate the reac-
tion coordinate. Using Zwanzig-Mori projection formalism, it
can be shown that this collective variable evolves according to
a generalized Langevin equation.37,38 In addition, if the char-
acteristic relaxation time scales of this collective variable are
much longer than that those of all internal degrees of freedom
in the system, then the generalized Langevin equation can be
replaced by a standard over-damped Langevin equation, which
depends only on the diffusion coefficient and on the PMF of
the collective variable.

In principle, the PMF G(Q) can be estimated from an
ensemble of equilibrium configurations, e.g., sampled from

long MD trajectories. Indeed, if Peq(Q) is the probability of
observing a value Q at equilibrium (which can be estimated
from a frequency histogram), then G(Q) is defined by

G(Q) = �kBT log Peq(Q). (5)

This method is in principle exact, but computationally
extremely expensive. Indeed, it requires simulating the dynam-
ics for a time scale sufficiently long to attain complete thermal
equilibrium. For most polypeptide chains of biophysical or
biological interest, the sampling of the equilibrium distribution
Peq(Q) remains a formidable computational challenge, even
using advanced Monte Carlo algorithms or more sophisticated
methods.23,24

In the following, we devise an alternative scheme which
exploits the results of BF simulations and enables us to com-
pute G(Q) in a very computationally efficient way. For the sake
of simplicity, to illustrate the approach, we shall assume that
the slow dynamics of the collective variable Q can be effec-
tively described by an over-damped Langevin equation with a
uniform diffusion coefficient D0,

Q̇ = � D0

kBT
G
0(Q) + ⌘(t). (6)

The probability distribution generated by integrating
Eq. (6) evolves according to the Fokker–Planck equation,

@

@t
P(Q, t) = F̂P(Q, t), (7)

where

F̂ = D0
d

dQ

 
d

dQ
+

1
kBT

G
0(Q)

!
. (8)

In such a framework, an arbitrary initial probability den-
sity ⇢0(Q) changes in time according to an evolution operator
defined by

P(Q, t) = e
�F̂t ⇢0(Q). (9)

Equivalently, Eq. (9) can be written in terms of the conditional
probability to perform a transition form Q

0 to Q in time t (i.e.,
the propagator),

P(Q, t) =
⌅

dQ
0

P(Q, t |Q0, 0) ⇢0(Q0). (10)

Some general properties of the dynamics defined by
Eq. (7) are in order. Even though the F̂ operator is not Her-
mitian, its left and right eigenfrequencies coincide and are
real,

!
F̂ Rk(Q) = �k Rk(Q), (11)
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We introduce an iterative algorithm to efficiently simulate protein folding and other conformational
transitions, using state-of-the-art all-atom force fields. Starting from the Langevin equation, we obtain
a self-consistent stochastic equation of motion, which directly yields the reaction pathways. From the
solution of this set of equations we derive a stochastic estimate of the reaction coordinate. We validate
this approach against the results of plain MD simulations of the folding of a small protein, which were
performed on the Anton supercomputer. In order to explore the computational efficiency of this algo-
rithm, we apply it to generate a folding pathway of a protein that consists of 130 amino acids and has
a folding rate of the order of s 1. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4997197]

I. INTRODUCTION

The protein folding pathway problem consists in clarify-
ing the pattern of structural changes through which a given
denaturated protein reaches its native structure.1,2 Its solution
would shine light on the main forces guiding the folding reac-
tion and provide valuable insight into the origin of possible
pathogenic misfolding events.

Even using the most powerful special-purpose supercom-
puter, plain Molecular Dynamics (MD) simulations of protein
folding are feasible only for small chains (consisting of up
to ⇠100 amino acids), with folding time within the ms time
scale.3 On the other hand, most proteins involved in biologi-
cally relevant folding or misfolding reactions contain several
hundreds of amino acids and have folding time that can be as
long as seconds or even minutes.

To overcome the computational limitations of plain MD
simulations, more advanced algorithms have been proposed in
the literature, see, e.g., Refs. 4–11. These techniques have been
successfully applied to investigate the kinetics or thermody-
namics of structural reactions involving polypeptide chains,
including the protein-ligand binding or the folding of small
protein fragments.

However, to date, only a relatively small number of appli-
cations of these methods to study the folding of large and
topologically complex proteins have been reported in the lit-
erature (see, e.g., Refs. 12–15). In particular, the so-called
Bias Functional (BF) approach11 has been used to provide a
variational approximation to the reaction pathways in several
protein folding and conformational transitions. In Ref. 14 it
was used to explain the puzzle of different folding kinetics of
two structurally homologous proteins, while in Ref. 15 it was
applied to explore the folding mechanism of a protein with a
knotted native state. In Ref. 16 a preliminary version of this
algorithm17 was employed to simulate a large conformational
transition that occurs with an inverse rate longer than 1 h. The

a)pietro.faccioli@unitn.it

BF method was also recently applied to investigate folding
and misfolding of several variants of the ↵1 anti-trypsin ser-
pin protein, which is made of nearly 400 amino acids and has
a folding time as long as tens of minutes. It was shown that
not only the BF method agrees with all existing experimental
information on the folding mechanism but also correctly pre-
dicts the effect of point mutations on the protein misfolding
propensity.18

The BF method exploits a rigorous variational princi-
ple to select the most reliable folding trajectory within a set
of trial pathways, previously generated by means of a spe-
cific type of biased dynamics, called ratchet-and-pawl MD
(rMD).19,20 In a rMD simulation, no bias is applied to the
protein, as long as it spontaneously progresses towards the
native state. A harmonic history-dependent force is introduced
only to discourage spontaneous backtracking towards the
reactant.

Clearly, if this biasing force was defined in terms of a good
reaction coordinate—for example, the direction orthogonal
to the iso-commitor hyper-surfaces in the protein configura-
tion space—then the rMD scheme would provide the correct
description of the folding mechanism. In practice, however,
rMD simulations of protein folding are biased along the direc-
tion set by a specific collective coordinate20 closely related
to the instantaneous fraction of native contacts, which is not
necessarily an optimal choice. Even though the BF varia-
tional condition is expected to improve on the results of plain
rMD simulations, a sub-optimal choice of biasing coordinate
may give rise to systematic errors that are hard to estimate
a priori.

In this work, we introduce a reaction path sampling
algorithm that enables generating protein-folding trajecto-
ries without relying on any model-dependent choice of bias-
ing coordinate. Instead, the reaction coordinate is derived
self-consistently and represents an output of the calculation,
providing insight into the folding mechanism.

This new scheme is not heuristically postulated, but rather
it follows directly from the Langevin dynamics, with no addi-
tional approximation other than a mean-field estimate of some

0021-9606/2017/147(6)/064108/12/$30.00 147, 064108-1 Published by AIP Publishing.
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Transition path theory from biased simulations
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Transition Path Theory (TPT) provides a rigorous framework to investigate the dynamics of rare
thermally activated transitions. In this theory, a central role is played by the forward committor
function q+(x), which provides the ideal reaction coordinate. Furthermore, the reactive dynamics and
kinetics are fully characterized in terms of two time-independent scalar and vector distributions. In
this work, we develop a scheme which enables all these ingredients of TPT to be efficiently computed
using the short non-equilibrium trajectories generated by means of a specific combination of enhanced
path sampling techniques. In particular, first we further extend the recently introduced self-consistent
path sampling algorithm in order to compute the committor q+(x). Next, we show how this result can
be exploited in order to define efficient algorithms which enable us to directly sample the transition
path ensemble. Published by AIP Publishing. https://doi.org/10.1063/1.5027253

I. INTRODUCTION

Biomolecules undergo thermally activated conforma-
tional transitions in order to reach their biologically active state
or to perform functions.1 Understanding the physico-chemical
mechanisms which control the kinetics of these processes
is a central problem in the fields at the interface between
physics, chemistry, and molecular biology. For most reac-
tions of biophysical or biological interest, however, identifying
the reaction mechanism and estimating the reaction rate is a
challenging task, both from the experimental2 and the compu-
tational3,4 standpoint. The main reason is that barrier-crossing
processes are extremely fast and rare events. For example, in
protein folding the average time it takes to complete a reactive
event is of the order of a few microseconds,2 while the folding
time can range from fractions of milliseconds to minutes or
beyond.

Because of the high computational cost of performing
plain Molecular Dynamics (MD) simulations,3 alternative the-
oretical and computational frameworks are continuously being
developed to efficiently characterize conformational reactions
in complex and rugged energy landscapes (for a recent review
see, e.g., Ref. 5). An incomplete list of these techniques
which are specific for reaction kinetics includes Markov state
models,6 milestoning,7 transition path sampling,8 transition
interface sampling,9 and forward flux sampling,10 along with
different methods based on biasing the dynamics to promote
reactive events.11–16

In parallel with the advance of computational methods,
theoretical frameworks need to be developed in order to reduce
the resulting data, provide insight into the reaction mechanism,
and produce predictions for kinetic observables. In this con-
text, Transition Path Theory (TPT),17–19 briefly reviewed in
Appendix A, displays several attractive features. For example,
in this theory, time averages are replaced with phase-space
averages defined over two stationary scalar and vector dis-
tributions: the transition path density distribution mT (x) and

the transition current Ji
T (x). At the same time, TPT also rig-

orously extends and exploits some of the key concepts of
transition state theory,20,21 providing a rigorous definition of
the transition state which can be applied to rugged energy
landscapes.

A pivotal concept in TPT is the so-called forward commit-
tor function q+(x); this collective variable provides the ideal
reaction coordinate and expresses the probability that a tra-
jectory initiated at the point x reaches the product state before
returning to the reactant. It can be shown that both the transition
path density distribution mT (x) and the transition current Ji

T (x)
can be formally expressed in terms of the forward committor
function q+(x) and Gibbs distribution, exp[��U(x)]. There-
fore, the practical usefulness of TPT depends on the feasibility
of accurately estimating the forward committor.

The Finite Temperature String Method (FTSM) devel-
oped in Refs. 22–24 provides a framework to compute q+(x)
by focusing on the so-called principal curves. These one-
dimensional manifolds identify the regions of configuration
space which are explored by the transition pathways. In
particular, for diffusion in smooth energy landscapes, the
principal curves reduce to the minimum-free-energy paths
(MFEPs).23,24 In the vicinity of these curves, the iso-committor
hyper-surfaces are identified with the 3N � 1 dimensional
hyper-planes locally orthogonal to the nearby MFEP. The
FTSM sets the stage for performing practical calculations,
and it is very valuable to investigate transitions occurring in
molecular systems. On the other hand, for conformational
transitions as complex as protein folding, the application of
the FTSM may be problematic, as the final results might
retain a dependency on the choice of the initial guess for the
principal curve. This problem is also shared by other path
sampling methods based on the numerical optimization or
sampling of some functional of the path (see, e.g., Refs. 8, 14,
and 25–32).

In this work, we develop several theoretical and compu-
tational schemes to overcome some of these limitations, based

0021-9606/2018/149(7)/072336/14/$30.00 149, 072336-1 Published by AIP Publishing.

• Self-consistent calculations of tube variables are explored also by  
Ensing et al. within meta-dynamics


• SCPS may be viewed as a dynamical variant of the string method, which 
can be applied to reactions as complex as protein folding

Connections with other approaches

Theoretical foundation
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In particular, in the quantum-classical approach introduced in
Refs. 32–34—hereby referred to as Molecular Quantum Field The-
ory (MQFT)—the dynamics of the excitons is described using coher-
ent field representation within a mathematical framework which
closely resembles that of a fictitious relativistic quantum theory.
The main idea behind this choice is to capitalize on the fact that
the field variables associated with the lower branch of the Keldysh-
Schwinger (KS) contour in the Feynman-Vernon path integral—
hereby denoted with �©(x, t)—evolve in the opposite time direction
with respect to those propagating in the upper branch of the same
contour—denoted as �′(x, t). Based on this fact, �′ and �© can
be formally regarded as “upper and lower” components of a single
field doublet, which describes the dynamics of matter/anti-matter
partners propagating forward in time. Exploiting this formal con-
nection with a relativistic QFT, the density matrix can be evaluated
from vacuum-to-vacuum Green functions in which the causal non-
relativistic Feynman propagators are replaced by the time-ordered
propagators.

Since quantum excitations in macromolecules propagate non-
relativistically, using a QFT approach is not a mandatory choice.
It does, however, offer several attractive technical advantages. For
example, in the small time limit or for weak coupling with struc-
tural vibrations, the density matrix can be analytically computed
in perturbation theory using Feynman’s diagrams. Furthermore, by
applying renormalization group theory, it is possible to obtain a sim-
plified effective description of the relaxation dynamics which holds
in the long-time and large-distance limit.34

In the present work, we take an important step forward in the
development of MQFT, showing how it can be used to perform non-
perturbative calculations of spectroscopic observables through a dia-
grammatic approach based on a Dyson equation. The fully analytic
insight provided by this scheme is particularly useful in the physical
interpretation of experimental data. Indeed, the frequency, strength,
and width of the observed resonances can be directly expressed in
terms of fundamental physical constants and microscopic model
parameters.

We illustrate this method by computing the absorption spec-
trum of the Fenna-Matthews-Olson (FMO) light harvesting com-
plex. This system has attracted great interest since the experimental
observation of long-lived electronic coherences.35 It has then been
studied extensively both experimentally36–38 and theoretically.39–42

First, we validate the microscopic model adopted by comparing
the results of numerical Monte Carlo simulations in MQFT against
the experimental data. Next, we assess the reliability of our Dyson
series approach by comparing against the results of Monte Carlo
simulations. We find that the analytic results can very accurately
reproduce the location and strength of all the resonances in the
spectrum. On the other hand, we note that widths generated by the
vibronic coupling is underestimated, and further investigations are
needed to understand the origin of this feature.

The paper is organized as follows. In Sec. II, we define the gen-
eral structure of the adopted microscopic model and discuss how
the parameters can be obtained from two quantum chemical cal-
culations. In Sec. III, we briefly review the MQFT formalism and
the evaluation of the density matrix in the absence of an exter-
nal electromagnetic field. In Sec. IV, we briefly review Mukamel’s
response theory and show how the response functions are rep-
resented in MQFT. In Sec. V, we present our application to the

FMO complex. The main results and conclusions are outlined in
Sec. VI.

II. MICROSCOPIC MODEL FOR EXCITONIC
AND VIBRONIC DYNAMICS

Let us begin by defining the model Hamiltonian adopted in our
calculation

Ĥtot = ĤBO + Ĥexciton + Ĥbath. (1)

ĤBO describes the dynamics of the atomic nuclei on the lowest Born-
Oppenheimer (BO) energy surface and reads

ĤBO ≡ 3N�
i=1

p̂2i
2Mi

+ V̂(Q), (2)

where Q ≡ (q1, . . ., q3N) denotes the collection of nuclear coordi-
nates or, possibly, a set of collective generalized coordinates. In the
classical limit, −∇iV(Q) reduces to the force field used in all-atom
Molecular Mechanics (MM) simulations.

Hexciton in Eq. (1) controls the dynamics of the electronic excita-
tions and their coupling with the nuclear degrees of freedom. In the
case relevant for electronic excitation transfer (EET), the so-called
intermediate coupling regime,61 exciton densities are lumped in spe-
cific sites of the macromolecular system (e.g., chromophores or pig-
ments). This condition allows a description, commonly adopted in
the literature, in terms of a tight-binding Hamiltonian over the basis
of molecular site excitations {�Φn�}n

Ĥexciton =�
m,n

fnm(Q) â†
nâm. (3)

In this equation, â†
n lifts an exciton state localized at the n–th molec-

ular site, i.e., â†
n�g� = �Φn�, where |g� is the electronic ground-state.

fnm(Q) are the corresponding Hamiltonian matrix elements

�Φn�Ĥel�Φm� ≡ fnm(Q), (4)

where Ĥel is the Coulomb Hamiltonian. Note that Eq. (3) holds in
the adiabatic approximation, where the entries of fnm(Q) depend
parametrically on the nuclear coordinates Q.

Finally, the Hbath Hamiltonian describes the coupling of the
atomic nuclei with heat bath degrees of freedom surrounding the
molecule. This bath is effectively modeled as a collection of har-
monic oscillators linearly coupled to the nuclear degrees of freedom
(Caldeira-Leggett model)

Ĥbath = 3N�
i=1
∞�
α=1�

π̂2α
2µα

+
1
2
µαω2

α x̂
2
α − cα x̂α q̂i + c2α

2µαω2
α
q̂2α�. (5)

In the classical limit for the nuclear coordinates and in the so-called
Ohmic limit for the spectral density of the harmonic oscillators, the
Hamiltonian Hmol + Hbath gives rise to a reduced density matrix for
the nuclear coordinates Q which obeys a Fokker-Planck Equation—
for an explicit derivation of this result, see, e.g., Ref. 34. This means
that, in the classical limit, our theory gives rise to a MM in which the
atomic nuclei obey the Langevin equation.
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Adiabatic dynamicsĤBO =
X

i

p̂2
i

2mi

+ UBO(q1, . . . ,qN )
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Ĥex.
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HMC =
X

s

X

mn

fmn[Q] â
†
m,sân,s

fmn[Q] = h�m|Ĥel|�ni,

Non-adiabatic dynamics

Ĥtot = ĤBO + Ĥbath + Ĥex.
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DYNAMICS IN OPEN SYSTEMS

Problems to address Bridging the gap with experiments

Calculating linear and non-linear optical spectra

Problems to address:

• field-matter interaction

• define n-exciton states
(stop at biexcitons)

• evolution of density matrix

• numerical implementation
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Classical structural dynamics: Quantum electro-dynamics:

⇢̂(t) =
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Calculating linear and non-linear optical spectra
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STRUCTURAL DYNAMICS IN PATH INTEGRAL FORM

P (x, t|xi) =

Z
DR e�

�
4m�

R t
0 d⌧(mR̈+m�Ṙ+rU)2P (Rf , t|Ri, 0)
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Langevin dynamics:



DENSITY MATRIX IN MQFT

Problems to address Bridging the gap with experiments

Calculating linear and non-linear optical spectra
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• numerical implementation
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Extracting detailed structural kinetic information from 
near UV CD spectra (with B. Mennucci’s team)

Trp63

Trp64

Trp108

Trp111

Trp28

�
-d
o
m
ai
n

β
-d
o
m
ai
n

La

Lb

Ba

Bb

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
M

SD
 (n

m
)

Fraction of native contacts Q

10 100 1000

Unfolded I-Burst

I-Second

Native

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

200 230 260 290

(a) Crystal

��domain

�⇥
(M

−
1 cm

−
1 )

⇥�domain
Coupled �⇥

Sum �+⇥
−0.1

−0.05

0.0

0.05

0.1

250 270 290 310

(b)

Exp.
CRY

−0.4

−0.2

0.0

0.2

0.4

200 230 260 290
Wavelength (nm)

(c) Native

�⇥
(M

−
1 cm

−
1 )

−0.4

−0.2

0.0

0.2

0.4

200 230 260 290
Wavelength (nm)

(d) I-Second

−0.4

−0.2

 0

 0.2

 0.4

200 230 260 290

∆
(∆

ε)
 M

−
1
cm

−
1

Wavelength (nm)

Exp.
Calc.

TIME RESOLVED NEAR UV CIRCULAR DICHROISM

Far UV regime:

240 260 280 300 220 200 
�[nm]

Near UV regime: 




I-second NativeUnfolded

secondary 

structures

key tertiary 

contacts

I-burst

EXISTING EXPERIMENTSExtracting detailed structural kinetic information from 
near UV CD spectra (with B. Mennucci’s team)

Trp63

Trp64

Trp108

Trp111

Trp28

�
-d
o
m
ai
n

β
-d
o
m
ai
n

La

Lb

Ba

Bb

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
M

SD
 (n

m
)

Fraction of native contacts Q

10 100 1000

Unfolded I-Burst

I-Second

Native

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

200 230 260 290

(a) Crystal

��domain

�⇥
(M

−
1 cm

−
1 )

⇥�domain
Coupled �⇥

Sum �+⇥
−0.1

−0.05

0.0

0.05

0.1

250 270 290 310

(b)

Exp.
CRY

−0.4

−0.2

0.0

0.2

0.4

200 230 260 290
Wavelength (nm)

(c) Native

�⇥
(M

−
1 cm

−
1 )

−0.4

−0.2

0.0

0.2

0.4

200 230 260 290
Wavelength (nm)

(d) I-Second

−0.4

−0.2

 0

 0.2

 0.4

200 230 260 290

∆
(∆

ε)
 M

−
1
cm

−
1

Wavelength (nm)

Exp.
Calc.



MICROSCOPIC CALCULATION: STRUCTURAL DYNAMICS

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
M

SD
 (n

m
)

Fraction of native contacts Q

10 100 1000

Unfolded

I-Burst

I-Second

Native

I-second

native
I-burst

Unfolded

Problems to address Bridging the gap with experiments

Calculating linear and non-linear optical spectra
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• field-matter interaction
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in the I-Second state, 50 I-Burst and 49 unfolded configurations; in the case where disulfide bonds

were removed, the same algorithm return 50 Native, 48 I-Second, 55 I-Burst and 48 unfolded

configurations.

S2 Quantum Calculation of CD spectra

Exciton model

The CD spectra of the interacting aromatic residues were simulated using the exciton model in

the matrix method formulation.
2–4

The exciton Hamiltonian Ĥex of N interacting chromophores

is constructed on the n excitation energies Ea
i of each non-interacting chromophore (site energies),

and on the electronic coupling V
ab
ij between two transitions of di↵erent residues:

Ĥex =

NX

i

nX

a

Ea
i |iai hia|+

NX

ij

nX

ab

V
ab
ij |iai hjb| (S6)

In this equation, |iai represents the electronic state in which chromophore i is in its a-th excited

state, whereas all the other chromophores are in their ground state. Diagonalization of the Hamil-

tonian matrix in Eq. (S6) yields the energy levels of the exciton states, EK . The corresponding

eigenvectors provide the expansion coe�cients C
K
ia of the exciton wavefunction on the excited states

of the residues.

For the transition between ground state 0 and the excited state K, the rotatory strenght R0K

is given by the Rosenfeld equation
2,5

:

R0K = = h0 |µ̂|Ki · hK |m̂| 0i , (S7)

where = denotes the imaginary part, and the µ̂ and m̂ are the operators of electric and magnetic

moment vectors respectively. In the excitonic formulation, the Rosenfeld equation is approximated

on the basis of the electric transition dipole moments µi0a of the transition 0 ! a of the i-th

S5

Rotatory strength

(vertex)

Electric moment

Magnetic moment 
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FIG. 1. (a) Graphical representation of the Dyson Eq. (44) for the exciton propa-
gator. The line with open white triangle denotes the full (non-perturbative) time-
ordered exciton propagator, while the other continuous line appearing in the
righthand-side represents the free exciton propagator. (b) Example of loop diagram
neglected in the proposed approximation. The dashed line denotes the stochastic
propagator of classical damped Langevin oscillations of the configuration vector
δQ. (c) Estimating the 1PI term by the lowest-order self-energy diagram.

Equation (43) provides the starting point to apply our non-
perturbative approximation scheme. To this end, we consider the
standard Dyson equation, obtained by resumming all 1-particle irre-
ducible (1PI) diagrams for the single-exciton propagator G [see
Fig. 1(a)]. In frequency representation and omitting all indices for
sake of simplicity, the Dyson equation reads

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω), (44)

where Σ(ω) denotes the sum over all 1PI diagrams. Splitting this
equation into its forward and backward components leads to two
decoupled Dyson expressions

Gf �b(ω) = Gf �b
0 (ω)

1 −Gf �b
0 (ω)Σ f �b(ω) . (45)

To evaluate Σf /b(ω), further approximations are required. First
of all, we neglect all diagrams containing exciton loops, such as the
one shown in Fig. 1(b). The reason is that the energy of molecular
vibrations is much lower than that required to lift electronic excita-
tions. Furthermore, we can assume that the couplings f inm entering
Eq. (19) are small and estimate the 1PI in perturbation theory. At the
leading-order, this corresponds to re-summing the self-energy dia-
gram reported in Fig. 1(c). Insisting using this re-summation scheme
even beyond the small coupling regime corresponds to defining a
dynamical mean-field approximation.44

Explicit evaluation of the self-energy diagram leads to

Σ f �b
nm(ω) � f lnm′U

†
lj′V

†
m′s[i(Es − ω) ± γ]Vsn′Uj′hf

h
n′m

βM ⌦2
j′�⌦2

j′ − (Es − ω)(Es ∓ iγ − ω)� , (46)

and the corresponding f /b components of the propagator are

Gf �b(n,m;ω) = ±i�V†
ns(ω − Es ± iε)Vsm ± iΣf �b

nm(ω)�−1, (47)

whereV is the unitarymatrix which diagonalizes the f 0 matrix. Plug-
ging Eq. (47) into the Fourier transform of Eq. (43), we reach the
following expression for the response function in the simplified case
where only diagonal entries of the self-energy Σf �b

nn = Σf �b
n are rele-

vant, i.e., when vibrations only couple to the diagonal elements of
the Frenkel Hamiltonian

R(ω) = −2�
n

(ω − En) + iReΣf
n(ω)

(ω − En)2 − �Σf
n(ω)�2 + 2i(ω − En)ReΣf

n(ω) . (48)

An analytic formula for the absorption coefficient κa(ω) can
be obtained by combining real and imaginary parts, according to
Eqs. (34)–(36). It is instructive to analyze the structure of its imagi-
nary part ImR(ω), which controls the position and the width of the
resonances

ImR(ω) = −�
n

2ReΣf
n(ω)�(ω − En)2 + �Σf

n(ω)�2�
�(ω − En)2 − �Σf

n(ω)�2�2 + 4�(ω − En)ReΣf
n(ω)�2 .

(49)

The splitting and shifting of the poles generated by the vibronic
coupling is determined by the self-energy function Σf

n(ω), given in
Eq. (46). For illustration purposes, here we discuss its expression, in
the case of a single normal mode

Σf
nm(ω) = δnmf 2

βM⌦
γ⌦2 + i(ω − En)�(ω − En)2 −⌦2 + γ2�

�(ω − En)2 −⌦2�2 + γ2(ω − En)2 . (50)

This equation shows how the vibronic correction of the response
function scales with the temperature and bath viscosity. Note that
the shifting, splitting, and broadening of the resonances are large
when the difference between ω and the excitonic energies is com-
parable with the frequency of the vibrational normal mode ⌦. We
emphasize that the new resonances correspond to the vibronic
states, i.e., unstable bound-states of excitonic and vibrational
modes.

In Sec. V, we apply this scheme to compute an absorption
spectrum of a relevant macromolecular system.

V. ABSORPTION SPECTRUM OF THE FMO COMPLEX
In this section, we report on an application of MQFT to

computing the absorption spectrum of the FMO complex, which
represents one of the most thoroughly studied photosynthetic
systems.

Structurally, the FMO complex is a trimer, in which each
monomer is composed by a protein scaffold non-covalently bound
to 8 bacteriochlorophylls of type-a (BChla)45 [see Figs. 2(a) and
2(b)].46,47 Exciton propagation is mainly confined within each
monomer and involves only the 7 inner chlorophylls.47

In the following, we adopt a model in which excitonic and con-
formational degrees of freedom are treated at the explicit level and
their dynamics is defined by the Hamiltonian discussed in Sec. II. In
particular, we coarse-grain the electronic dynamics at the level of the
excitonic states created or annihilated at the 7 inner chlorophyll sites
of each monomer, i.e.,

HEx = 21�
n,m=1 f

0
nm â†

nâm. (51)

The matrix elements f 0nm carry the information about the energies
of each site and the transition amplitudes between the chlorophylls.
The diagonal elements have been obtained from density functional
theory (DFT) calculations on each chlorophyll, while off diagonal
matrix elements can be estimated from the dipole-dipole interac-
tions between chlorophyll transition densities (for a detailed dis-
cussion, see Refs. 45, 48, and 49). We neglect all couplings between
chlorophylls belonging to different monomeric units. Consequently,
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FIG. 2. Transition probability density for our two-dimensional toy model, computed with different methods. The background in the upper left panel shows the
contour plot of the energy surface.

reactive pathways. To this goal, we implemented the algo-
rithm described in Appendix B. First, we performed 1000
plain rMD simulations, starting from xR and biased along the
coordinate

z(x) =
q

(x � xP)2 + (y � yP)2, (37)

which measures the instantaneous Euclidean distance to the
product state. The ratchet elastic constant in Eq. (B2) was set
to kR = 50.

With this choice of the collective coordinate and parame-
ters, all the rMD trajectories reached the product basin within
the total simulation time of 4 ⇥ 103 time steps. However,
the results of this rMD simulation is flawed by systematic
errors due to the suboptimal choice of the biasing coordi-
nate. Indeed, the collective coordinate z ignores the existence
of the intermediate state. Moreover, we note that the modu-
lus of the bias force is very large, approximately twice that
of the physical force. Both such choices were made because
we were interested to study to what extent the SCPS iter-
ations can correct for systematic errors on the initial trial
guess.

The results reported in Fig. 2 show that the rMD trajecto-
ries reproduce at the qualitative level some of the main features
of the transition path ensemble, in spite of the fact that they
were performed using a large biasing force, acting along a

rather bad reaction coordinate. By contrast, a plain steered
MD with external force FB = �k2rz(x) of comparable mag-
nitude would yield completely wrong information about the
reaction mechanism. However, several systematic errors can
be noticed in the rMD results: first, the heat map showing the
density of points is clearly not symmetric, and thus, it does
not reflect the structure of the underlying energy landscape;
moreover, the presence of an intermediate energy minimum is
not evident, as the trajectories do not significantly populate the
region around xI ; finally, the average pathway does not cross
the intermediate state xI .

Next, we used the rMD results as the starting point to per-
form three iterations of the SCPS algorithm. At each iteration,
we first computed the average path hx(t)i using the reactive tra-
jectories generated at the previous iteration. Then, we used this
path to define two collective coordinates in Eqs. (B4) and (B5)
with tf = 4 ⇥ 103dt and � = 30. Details about the selection
of the reactive part of the trajectories, the averaging proce-
dure, and the choice of the � parameter are provided in the
supplementary material. At each iteration, we ran 5000 inde-
pendent rMD simulations employing the bias force defined
in Eq. (B7). After 3 iterations, we observed that the aver-
age path does not appreciably change, according to the L2
norm (the results are reported in Fig. 1 of the supplementary
material).
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(a) Representation of the networks, the nodes are rep-

resented by the center of the clusters, the configuration

coloured, surrounded by few neighbours.
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(b) Schematic representation with the corresponding number

of the clusters and the number of transitions between them.

Figure 8.6: Representation of the network built by counting the transitions between the clus-

ters. In the picture connections are represented just if the number of transitions between two

cluster is greater than ten.

We see two branches opening at the foliation Q > 0.55. These two reaction channels are

clearly distinct, even in this case the network suggests us the presence of two pathway of

folding. By looking at the two branches we see similarities with the MD case, the two are

characterized by di↵erent grade of formation of the two terminal ↵�helices. By inspecting

the histogram of the two RMSD restricted to the helices we see a very similar result to the
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MOLECULAR DYNAMICS

Electronic clouds obey 
quantum mechanics

The motion of atomic 
nuclei obey  

classical mechanics
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Multi-scale approach
(2013 Nobel prize for chemistry)
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ACTION ON A PSEUDOVIRAL VECTOR

Figure 9: Effect of ACE2-lowering drugs on the transduction efficiency of a pseudotyped retroviral vector.
Vero cells exposed to each compound at the indicated concentration were transduced with a SARS-CoV-2-Spike protein
pseudotyped retroviral vector functionalized with a GFP reporter gene. Identical retroviral vectors missing the spike
protein were used as controls. The number of transduced cells were quantified by detecting the GFP fluorescence using a
plate reader and analyzed with the ImageJ software (NIH). The number of fluorescent cells was normalized to the amount
of cells within each well, estimated by using the MTT assay, and expressed as the percentage of the vehicle control. For
each condition, mean ± SD were calculated from at least 3 independent replicates. Statistical analyses were performed
using the one-way ANOVA Dunnett’s post-hoc test. Each compound was tested at relevant concentrations excluding those
at which the molecule showed detectable intrinsic fluorescence. Significant changes are indicated by an asterisk (* p <
0.05).

Antiviral activity against live SARS-CoV-2

Sibylla Biotech SRL requested RetroVirox Inc., San Diego, California, to perform full-dose antiviral
testing on the four candidate compounds. Assays against live SARS-CoV-2 were performed against the
MEX-BC2/2020 strain. A cytopathic effect (CPE) based antiviral assay was performed by infecting
Vero E6 cells in the presence or absence of test-items. Infection of cells leads to significant cytopathic
effect and cell death after 4 days of infection. In this assay, reduction of CPE in the presence of inhibitors
was used as a marker to determine the antiviral activity of the tested items (Figure 10).

Figure 10: IC50 values for Inhibition of SARS-CoV-2 CPE by test-items. Values indicate the percentage
inhibition of the CPE induced by live SARS-CoV-2 (MEX-BC2/2020), as compared to samples incubated with no test-
item (vehicle alone). Results show the average of duplicate data points from two separate plates for Ziprasidone, Buclizine
and Beclabuvir, and the average of triplicate data points from two separate plates for Artefenomel. Data was modeled to
a sigmoidal function using GraphPad Prism software fitting a normalized dose-response curve with a variable slope.

Viability assays to determine test-item-induced loss of cell viability was monitored in parallel using
the same readout, but treating uninfected cells with the test-items. Antiviral and cytotoxic effects
(expressed as IC50 and CC50) are summarized in Table 1. Of the four test-items evaluated, Artefenomel
completely prevented the virus-induced CPE in the concentration range 33 µM to 100 µM, resulting
in viability levels similar to those observed in uninfected cells. The antiviral activity of Artefenomel
shows a dose-response curve with an IC50 of 2.9 µM. The cell viability assay further assessed that the
antiviral activity displayed by Artefenomel was not due to cytotoxicicity. None of the concentrations
evaluated of the test-item displayed any cytotoxicity. Buclizine also completely prevented the virus-
induced CPE at a concentration of 11 µM, where the cell viability resulted in 75% of vehicle. The
dynamic range of the antiviral activity displayed by Buclizine was narrow, with an IC50 value between
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Figure 8: Cell-based validation of candidate hits. Untransfected Vero cells were exposed to different concentrations
of each compound (indicated) or vehicle (DMSO or Milli-Q or Methanol, volume equivalent) for 48 h, lysed and analyzed by
western blotting. Signals were detected by using specific anti-ACE2 primary antibody, relevant HRP-coupled secondary
antibodies, and revealed using a ChemiDoc Touch Imaging System. Western blot images are representative examples
of different experiments (n � 3). The graphs show the densitometric quantification of the levels of ACE2 (A). Each
signal was normalized on the corresponding total protein lane (detected by UV, and allowed by the enhanced tryptophan
fluorescence technology of stain-free gels) and expressed as the percentage of the level in vehicle (Vhc)-treated controls.
B. The intrinsic toxicity of each molecule was assessed by MTT assay. The graphs show cell viability values expressed
as percentage of vehicle (DMSO or MilliQ-water, volume equivalent)-treated cells. Concentration points were chosen
depending on solubility and intrinsic toxicity. None of the compounds show toxicity at the indicated concentration.
Statistically significant differences are indicated by the asterisk (* p < 0.05).

Vero cells incubated with each of the four candidate compounds at different concentrations were trans-
duced with retroviral vectors pseudotyped with the SARS-CoV-2 spike protein, or with control vectors
without it. The effect of each compound on retroviral vector transduction was estimated by quantifying
the relative percentage of cells presenting the GFP fluorescence. We found that all the four compounds
inhibited retroviral transduction in a dose-dependent fashion, at concentrations similar to those at which
the molecules lowered ACE2 expression (Figure 9). Importantly, none of the compounds induced signif-
icant cytotoxicity in this assay, with the exception of Beclabuvir, which showed cytotoxicity but only at
the highest concentrations tested (30 and 100 µM, not shown). Collectively, these results indicate that
the ability of the selected compounds to lower the expression of ACE2 translates in a reduced cellular
entry for a pseudotyped retroviral vector exposing the SARS-CoV-2 spike protein.
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Figure 9: Effect of ACE2-lowering drugs on the transduction efficiency of a pseudotyped retroviral vector.
Vero cells exposed to each compound at the indicated concentration were transduced with a SARS-CoV-2-Spike protein
pseudotyped retroviral vector functionalized with a GFP reporter gene. Identical retroviral vectors missing the spike
protein were used as controls. The number of transduced cells were quantified by detecting the GFP fluorescence using a
plate reader and analyzed with the ImageJ software (NIH). The number of fluorescent cells was normalized to the amount
of cells within each well, estimated by using the MTT assay, and expressed as the percentage of the vehicle control. For
each condition, mean ± SD were calculated from at least 3 independent replicates. Statistical analyses were performed
using the one-way ANOVA Dunnett’s post-hoc test. Each compound was tested at relevant concentrations excluding those
at which the molecule showed detectable intrinsic fluorescence. Significant changes are indicated by an asterisk (* p <
0.05).

Antiviral activity against live SARS-CoV-2

Sibylla Biotech SRL requested RetroVirox Inc., San Diego, California, to perform full-dose antiviral
testing on the four candidate compounds. Assays against live SARS-CoV-2 were performed against the
MEX-BC2/2020 strain. A cytopathic effect (CPE) based antiviral assay was performed by infecting
Vero E6 cells in the presence or absence of test-items. Infection of cells leads to significant cytopathic
effect and cell death after 4 days of infection. In this assay, reduction of CPE in the presence of inhibitors
was used as a marker to determine the antiviral activity of the tested items (Figure 10).

Figure 10: IC50 values for Inhibition of SARS-CoV-2 CPE by test-items. Values indicate the percentage
inhibition of the CPE induced by live SARS-CoV-2 (MEX-BC2/2020), as compared to samples incubated with no test-
item (vehicle alone). Results show the average of duplicate data points from two separate plates for Ziprasidone, Buclizine
and Beclabuvir, and the average of triplicate data points from two separate plates for Artefenomel. Data was modeled to
a sigmoidal function using GraphPad Prism software fitting a normalized dose-response curve with a variable slope.

Viability assays to determine test-item-induced loss of cell viability was monitored in parallel using
the same readout, but treating uninfected cells with the test-items. Antiviral and cytotoxic effects
(expressed as IC50 and CC50) are summarized in Table 1. Of the four test-items evaluated, Artefenomel
completely prevented the virus-induced CPE in the concentration range 33 µM to 100 µM, resulting
in viability levels similar to those observed in uninfected cells. The antiviral activity of Artefenomel
shows a dose-response curve with an IC50 of 2.9 µM. The cell viability assay further assessed that the
antiviral activity displayed by Artefenomel was not due to cytotoxicicity. None of the concentrations
evaluated of the test-item displayed any cytotoxicity. Buclizine also completely prevented the virus-
induced CPE at a concentration of 11 µM, where the cell viability resulted in 75% of vehicle. The
dynamic range of the antiviral activity displayed by Buclizine was narrow, with an IC50 value between
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Results on ACE2

30.000 cores in 8 different data centers were supplied by INFN  
to perform ACE2 folding simulation in 2 weeks. 
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