

Università degli Studi dell'Aquila

XENON

Recent Results from XENON1T and future perspectives for the direct dark matter search with XENONnT

Carla Macolino (L'Aquila Univ. and INFN) on behalf of the XENON collaboration

> Online talk at Les Rencontres de La Thuile

> > 09.03.2021

The XENON collaboration

XENON

27 institutions, 11 countries, 170 scientists

The XENON collaboration

Main goal: direct detection of dark matter with a dual-phase Xenon TPC

C. Macolino

XENON: direct dark matter search with a dual-phase TPC

- 3D position reconstruction:
 - x and y from S2 pattern on top PMT array
 - z (depth) from drift time
- Electron and nuclear recoil discrimination

(S2/S1)wIMP,n < (S2/S1)_{γ,β}

UNIVERSITÀ

DEGLI STUDI

DELL'AQUILA

XENON

XENON: direct dark matter search with a Engal & University of Engle Control of Control o

The XENON project

The XENON1T experiment @ LNGS (Italy)

Google street view: <u>tinyurl.com/Ingstour</u> TPC inside the Water Tank + Ancillary systems: purification, Krypton distillation, cryogenics, DAQ, slow control, Xenon storage

C. Macolino

C. Macolino

The XENON1T TPC

- 3.2 t LXe in total @180K
- 2 t in the TPC
- 97 cm drift, 96 cm diameter
- Drift field ~100V/cm

EPJC 75 11 (2015)

Highly reflective PTFE walls

248 3-inch PMTs

35% QE @ 178nm
Digitize at 100MHz
SPE acceptance
~94%

The XENON science program

WIMP search

-Spin independent -Spin dependent -Low-E (sub GeV) DM -Dark photons -Axion-like particles

Neutrino properties

-Neutrinoless double-beta decay of ¹³⁶Xe

-Double-electron capture in ¹²⁴Xe -Neutrino magnetic moment

SuperNovae

-Supernova neutrinos -Multi-messenger information for DM experiments

From the Sun

-⁸B solar neutrinos -pp neutrinos

XENON

UNIVERSITÀ

DEGLI STUDI

DELL'AQUILA

SI WIMP search results

- 1 tonne*year exposure
- 4-dimensional profile likelihood
- 3 continuous (cS1, cS2bottom, R) and one discreet (inner, outer)

- XENONIT is 7 times more sensitive compared to previous experiments (LUX, PandaX-II)
- Most stringent 90% confidence level upper limit on WIMP-Nucleon cross section at all masses above 6 GeV
- σ_{SI} below 4.1 10⁻⁴⁷ cm² at 30 GeV/c²

C. Macolino

S2-only and Migdal analyses

UNIVERSITÀ **DEGLI STUDI** DELL'AQUILA

XENON

Different interaction

- Migdal effect
- Bremsstrahlung effect

Lower threshold

Ionization-only (S2) analysis (limit)

 10^{-29}

 10^{-32}

 10^{-35}

 10^{-38}

I. Spin-independent

EDELWEISS (MIGD)

C. Macolino

C. Macolino

Low energy electron recoil

excess

- **Electron Recoil with energy < 30** keV:
- Excess between 1-7 keV
- 285 events observed vs. (232 +/- 15) predicted
- would be a 3.3σ fluctuation
- Lowest background ever achieved in this energy range

Not considered background ? the Tritium hypothesis OR

New Physics?

o Solar axions

Anomalous neutrino magnetic moment

o Bosonic dark matter

many other possible interpretations...

13

XENON

Università **DEGLI STUDI**

DELL'AQUILA

g_{ae}

UNIVERSITÀ **DEGLI STUDI** DELL'AQUILA

ABC

gae

90% C.L. contour

XENON

New physics ? Solar axions Favoured over background at 3.4σ*

* Drop to 2.1 σ if H₀=B₀+³H

ABC avion

ARC avion

ABC axion

⁵⁷Fe axion

Primakoff axion

Hat Ba

 $H_0: B_0$

Hat Ba

 $H_1: B_0 + axion$

140

140

120

100

80

events/(t·y·keV) 60 40 1e-12 20 ABC ABC $\propto g_{ae}^4$ 20 Rate [t⁻¹y⁻¹keV⁻¹] Primakoff $\propto g_{av}^2 g_{ae}^2$ 15 ${}^{57}\text{Fe} \propto (g_{an}^{eff})^2 g_{ae}^2$ 10 5 0.0 2.55.0 7.5 12.5 15.017.520.010.0 **Reconstructed energy** [keV]

Phys. Rev. D 102, 072004 (2020)

- Result in tension with astrophysical constraints (axions cool off stars too much)
- Gao at al. (arXiv:2006.14598), Dent et al. (arXiv: 2006.15118): point out that the tension is relaxed if axions are considered to originate via the Primakoff conversion of photons only

C. Macolino

New physics ? Neutrino magnetic moment

- In many extensions of the Standard Model neutrinos acquire mass and also electromagnetic properties
- Can generate important effects in astrophysical environments
- Majorana neutrinos are predicted to have large magnetic moments ($\mu_v > 10^{-15} \mu_B$)

Source: neutrinos from the Sun (pp-reaction) Detection: elastic scattering off electrons

Phys. Rev. D 102, 072004 (2020)

Would lead to higher cross-section

Favoured over background at 3.2σ*

In tension with astrophysical limits

CEvNS of ⁸B neutrinos

Coherent Elastic Neutrino-Nucleus Scattering for 8B

- No excess observed in a 0.6 tonne*year exposure
- Non detection of solar neutrinos to constrain:
 - light yield and ionization yield
 - light dark matter between 3-11 GeV/c²

C. Macolino

arXiv:2012.02846

Phys.

Rev.

ወ

26, 091301 (2021

XENONnT: the next detector

Università degli Studi dell'Aquila

C. Macolino

XENONnT: the next detector 🐝

Università degli Studi dell'Aquila

Installation finished during the 2020 lockdown

thanks to the dedication and effort of XENON collaborators during the Covid pandemic

C. Macolino

XENONnT: the next detector

UNIVERSITÀ DEGLI STUDI DELL'AQUILA

XENONnT: Status of Cryogenics and Purification

- Cryostat filled with ~8.6 t of LXe
 - 6 wks for cool down and filling through gas purifiers (high temperature getters)
 - Started LXe circulation and electron lifetime measurements with dedicated purity monitor
- Initial purification of LXe volume with GXe purification system @ 60 slpm
- Cryogenic LXe purification
 - Started with a high-efficiency O₂ filter (copper on alumina support)
 - Electron lifetime went from 100 us to 5 ms in 5 days!
 - \circ $\,$ Continuous improvement with decrease in outgassing
 - Reached >10 ms after ~1 month of operation

- Switch to O₂ filter with ultra-low Rn emanation
 - Reached electron lifetime of >7 ms

XENONNT: the next detector V Legil Studi Degil Studi Neutron veto

120 8" PMTs to detect Cerenkov light from n-capture, inside a high reflectivity volume around the cryostat. Under commissioning since the tank has been filled with demi-water in Depender 2020.

XENON

XENONnT: the next detector

Università degli Studi dell'Aquila

XENON

XENONnT radon removal system

Key performance parameter

• Basic concept proven:

EPJ C77 (2017) 358, arXiv:2009.13981

- Flow: 0.4 I/min LXe = 200 SLPM = 70 kg/h
- Radon reduction of factor 2 for type 1

sources for XENONnT (8.5 t LXe)

Cryogenic distillation column

- LXe inlet and outlet
- Cooling concept:

top condenser: LN₂/Xe heat exchanger

- output liquefaction: Xe/Xe heat exchanger in reboiler (heat pump concept)
- Reflux ratio R = 0.5
- 45 m² packing material surface

Radon-free compressor

- 4 cylinder magnetically-coupled piston pumps (EPJ C78 (2018) 604)
- Phase-shifted synchronized movement
- Flow: 200 slpm, ΔP: 2 bar
- Radon emanation: (0.30±0.05) mBq

Status of the system

- Thermodynamic stability successfully tested
- Radon removal ongoing using XENONnT as radon monitor
- Promising preliminary result data coming soon

C. Macolino

XENONnT: the next detector 👹

XENON

Commissioning data from XENONnT

- The cS2_tot xy distribution from Kr83m events with the S2s from 32.1keV and 9.4keV decays merged
- Sum waveform and S2 hitpattern of a krypton calibration event

XENONNT: the next detector

UNIVERSITÀ

DEGLI STUDI

DELL'AQUILA

XENON

Detect this dark matter by 2025!

- XENONnT TPC + neutron veto+Purification and Distillation systems installed and operational
- Commissioning data currently available
- First science run soon!

Backup

Energy calibration

XENON

Energy reconstruction

Background

ER background by isotope

Università degli Studi dell'Aquila

XENON

NR background by material

ER background by material

XENON

The Tritium hypothesis

- Long lived beta emitter (Q-value 18.6 keV, t_{1/2}=12.3 y)
- Cosmogenic activation of Xe or atmospheric abundance

- ³H/Xe concentration: (6.2 +/- 2.0)*10⁻²⁵ mol/mol
- 3 tritium atoms per kg of Xenon

XENON

The Tritium hypothesis

Very unlikely to explain the excess with the tritium hypothesis: predicted rate x100 lower

- Xenon gas stored above ground (32 tritium atoms/(kg day))
 1ppm of water implies formation of HTO
- 2. Xenon gas moved underground and decay
- 3. Xenon into the ReStoX storage vessel: ~x4000 reduction as water condenses and remains on the vessel walls
- 4. Further decay until detector filling
- 5.When filling the detector Xenon is efficiently purified (99.99%) in dedicated hydrogen removal unit

Università degli Studi dell'Aquila

The Tritium hypothesis

HTO:H2O concentration (or HT:H2) = (5-10)*10⁻⁸ mol/mol Required concentration to explain the excess = 60-120 ppb

TRITIATED HYDROGEN (HT)

From the electron lifetime one derives < 1 ppb O₂-equivalent impurities