FIVE YEARS OF GRAVITATIONAL WAVE OBSERVATIONS: WHERE WE STAND.

G. Cella – INFN Pisa LIGO-Virgo-KAGRA collaboration

La Thuile 2021 – Les Rencontres de Physique de la Vallée d'Aoste. March 9, 2021-March 11,2021

Gravitational wave observations

Several kind of searches, roughly classified in 4 groups:

- Burst: search for transients with minimal assumptions about signal's shape
- CBC: signals from compact binary coalescences, searched with specific, theoretically motivated (GR or alternative models) waveforms.
- CW: continuous signals: rotating neutron stars,

Stochastic: *stochastic signals, astrophysical or cosmological origin.*

Direct information about mass-energy distribution, unique or complementary observative channel.

Core collapse massive stars, cosmic strings, ...

...

Coalescing binaries: BH-BH, NS-NS, BH-NS

Spinning NS (Isolated or not), Instabilities,

Inflation, phase transitions, cosmic strings, astrophysical backgrounds,...

GW150914: the first direct GW observation

Primary black hole mass	$36^{+5}_{-4}{\rm M}_{\odot}$
Secondary black hole mass	$29^{+4}_{-4}{\rm M}_{\odot}$
Final black hole mass	$62^{+4}_{-4}{\rm M}_{\odot}$
Final black hole spin	$0.67\substack{+0.05\\-0.07}$
Luminosity distance	$410^{+160}_{-180}{\rm Mpc}$
Source redshift, z	$0.09\substack{+0.03\\-0.04}$

- $P_{FA} = 1/203000 \text{ yr}^{-1}$
- Significativity > 5.3σ

Interpretation: BBH coalescence Similar events followed:

- GW150914 (September 14th 2015)
- GW151226 (December 26th 2015)
- GW170104 (January 4th 2016)

GW170817: a BNS coalescence

- Seen in GW data
- Cohincident (in 2s) with a short GRB detected by Fermi/GBM & INTEGRAL (not so energetic, probably off axis)
- Well localized (31 deg² \rightarrow 16 deg²)
- Optical counterpart found in host galaxy NGC 4993
- Kilonova
- Afterglow observations

	Low-spin priors $(\chi \le 0.05)$	High-spin priors $(\chi \le 0.89)$
Primary mass m_1	$1.36-1.60 M_{\odot}$	$1.36-2.26~M_{\odot}$
Secondary mass m_2	$1.17 - 1.36 M_{\odot}$	0.86–1.36 M _☉
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002}M_{\odot}$	$1.188^{+0.004}_{-0.002}M_{\odot}$
Mass ratio m_2/m_1	0.7-1.0	0.4–1.0
Total mass m _{tot}	$2.74^{+0.04}_{-0.01}M_{\odot}$	$2.82^{+0.47}_{-0.09} M_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot} c^2$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm L}$	40^{+8}_{-14} Mpc	40^{+8}_{-14} Mpc
Viewing angle Θ	$\leq 55^{\circ}$	$\leq 56^{\circ}$
Using NGC 4993 location	$\leq 28^{\circ}$	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800	≤ 700
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800	≤ 1 400

Counterparts

Observatories are still looking at this today.

Nuclear matter EOS

Kilonova

Siegel & Metzger 2017b, arXiv:1711.00868 Siegel & Metzger 2017a, PRL, arXiv:1705.05473

E Pian et al. Nature **551,** 67–70 (2017) doi:10.1038/nature24298 Matter ejected in the post-merger phase undergoes r-process

The last scientific run

Effective BNS VT [Mpc³ kyr]

A bird eye view of O3a events https://arxiv.org/abs/2010.14527v2

- O3a catalog paper: Characterization of the O3a CBC events. Basic reference for GW physics.
- Available events (both exceptional and non exceptional) start shaping our understanding of populations
- Statistical recovery of key information (H_0 , lensing, spin distribution, higher order corrections, eccentricity, ...) is becoming possible: \rightarrow O4 \rightarrow O5

O3a CBC Testing GR <u>https://arxiv.org/abs/2010.14529</u>

Event	Inct			Properties	8		SNP			Г	'ests p	erform	ned		
Event Ilist.	DL	(1+z)M	(1+z)M	$(1+z)M_{\rm f}$	Хf	SINK	RT	IMR	PAR	SIM	MDR	RD	ECH	PO	
		[Gpc]	$[M_{\odot}]$	$[M_{\odot}]$	$[M_{\odot}]$										
GW190408_181802	HLV	$1.58^{+0.40}_{-0.59}$	55.6 ^{+3.4} -3.8	$23.8^{+1.4}_{-1.7}$	$53.1^{+3.2}_{-3.4}$	$0.67^{+0.06}_{-0.07}$	$15.3^{+0.2}_{-0.3}$	1	1	1	1	1	1	1	1
GW190412	HLV	$0.74^{+0.14}_{-0.17}$	$44.2^{+4.4}_{-4.6}$	$15.2^{+0.2}_{-0.2}$	$42.9^{+4.5}_{-4.7}$	$0.67^{+0.05}_{-0.06}$	$18.9^{+0.2}_{-0.3}$	1	-	1	1	1	-	1	1
GW190421_213856	HL	$3.15^{+1.37}_{-1.42}$	$109.7^{+16.}_{-12.}$	47.0+6.8	104.8+14	$\frac{7}{5}$ 0.68 ^{+0.10} _{-0.11}	$10.7^{+0.2}_{-0.4}$	1	1	1	-	1	1	1	-
GW190503_185404	HLV	$1.52^{+0.71}_{-0.66}$	91.9+11.6	$38.8^{+5.5}_{-5.9}$	$88.0^{+10.5}_{-10.7}$	$0.67^{+0.09}_{-0.12}$	$12.4^{+0.2}_{-0.3}$	1	1	1	-	1	1	1	1
GW190512_180714	HLV	1.49+0.53	45.3+3.9	$18.6^{+0.9}_{-0.8}$	$43.4_{-2.8}^{+4.1}$	$0.65^{+0.07}_{-0.07}$	$12.2^{+0.2}_{-0.4}$	1	-	1	1	1	1	1	1
GW190513_205428	HLV	2.16+0.94	73.9+13.6	$29.7^{+6.1}_{-2.6}$	70.8+12.2	$0.69^{+0.14}_{-0.12}$	$12.9^{+0.3}_{-0.4}$	1	1	1	-	1	1	1	1
GW190517_055101	HLV	$2.11^{+1.79}_{-1.00}$	85.8+9.7	36.1+4.0	80.0+8.9	$0.87^{+0.05}_{-0.07}$	$10.7^{+0.4}_{-0.6}$	1	-	1	-	1	_	1	1
GW190519_153544	HLV	2.85+2.02	156.8+16.	65.9+7.5	148.2^{+14}_{-15}	⁵ 0.80 ^{+0.07}	$15.6^{+0.2}_{-0.3}$	1	1	1	-	1	1	1	1
GW190521	HLV	4.53+2.30	272.6+40.0	116.3+14.9	259.2+36.	$^{6}_{0}0.73^{+0.11}_{-0.14}$	$14.2^{+0.3}_{-0.3}$	1	-	1	-	-	1	1	~
GW190521_074359	HL	1.28+0.38	92.7+4.8	39.9+2.2	88.1+4.3	0.72+0.05	25.8+0.1	1	1	1	1	1	1	1	_
GW190602_175927	HLV	2.99+2.02	173.9+23.0	74.0+10.5	165.6+20.	$50.71^{+0.10}_{-0.13}$	$12.8^{+0.2}_{-0.3}$	1	-	1	-	1	1	1	1
GW190630_185205	LV	0.93+0.56	69.7+4.2	$29.5^{+1.6}_{-1.6}$	66.4+4.2	0.70+0.06	$15.6^{+0.2}_{-0.3}$	1	1	1	1	1	-	1	_
GW190706_222641	HLV	5.07+2.57	183.7+21.4	$77.0^{+10.0}_{-16.9}$	173.6+18.	$^{8}_{9} 0.80^{+0.08}_{-0.17}$	$12.6^{+0.2}_{-0.4}$	1	1	1	_	1	1	1	~
GW190707_093326	HL	0.80+0.37	23.1+1.7	9.89+0.1	22.1+1.8	0.66+0.03	$13.3^{+0.2}_{-0.4}$	1	-	1	1	1	-	1	-
GW190708_232457	LV	0.90+0.33	$36.1^{+2.6}_{-0.8}$	$15.5^{+0.3}_{-0.2}$	$34.4^{+2.7}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$13.1^{+0.2}_{-0.3}$	1	_	1	1	1	1	1	_
GW190720_000836	HLV	0.81+0.71	24.9+4.9	$10.4^{+0.2}_{-0.1}$	23.7+5.1	0.72+0.06	11.0+0.3	1	-	1	1	1	-	1	1
GW190727_060333	HLV	3.60+1.56	105.2+11.9	45.1+5.3	100.0+10	5 0.73 ^{+0.10}	11.9+0.3	1	1	1	_	1	1	1	~
GW190728_064510	HLV	0.89+0.25	23.9+5.3	10.1+0.09	22.7+5.5	0.71+0.04	13.0+0.2	1	-	1	1	1	-	1	1
GW190814	LV ^a	0.24+0.04	27.1+1.1	6.41+0.02	26.9+1.1	0.28+0.02	24.9+0.1	1	1	1	_	1	_	_	_
GW190828_063405	HLV	2.22+0.63	80.1+6.8	34.6+2.9	75.9+6.0	0.76+0.06	$16.2^{+0.2}_{-0.2}$	1	1	1	1	1	1	1	1
GW190828_065509	HLV	1.66+0.63	44.3+6.6	17.4+0.6	42.7+6.8	0.65+0.09	10.0+0.3	1	_	1	1	1	_	1	
GW190910_112807	LV	1.57+1.07	102.1+10.	⁵ 44.0 ^{+4.7}	97.3+9.4	0.70+0.08	$14.1^{+0.2}_{-0.3}$	1	1	1	_	1	1	1	_
GW190915_235702	HLV	1.70+0.71	78.5+8.3	33.3+3.3	75.0+7.7	0.71+0.09	13.6+0.2	1	_	1	_	1	1	1	1
GW190924_021846	HLV	0.57+0.22	15.5+5.7	6.44+0.04	14.8+5.9	0.67+0.05	11.5+0.3	1	_	1	1	1	_	1	1

- Improved constraints on Lorentz violation
- Graviton mass $m_g \leq 1.76 \times 10^{-23} \text{ eV}/c^2$
- Constraints on post-Newtonian parameters improved by a factor 2

- RT Residual test
- IMR Inspiral Merger Ringdown consistency test
- PAR parameterized test of GW generation
- SIM Spin Induced Moments: $Q = -\kappa \chi^2 m^3$
- MDR Modified Dispersion Relations: $E^{2} = p^{2}c^{2} + A_{\alpha}p^{\alpha}c^{\alpha}$
- RD Ringdown
- ECH Echoes
- POL Polarization content

O3a astrophysical distribution https://arxiv.org/abs/2010.14533

- Estimates for merger rates:

 *R*_{BBH} = 23.9^{+14.9}_{-8.6} Gpc⁻³ yr⁻¹

 - $\mathcal{R}_{BNS} = 320^{+490}_{-240} \,\mathrm{Gpc}^{-3} \,\mathrm{yr}^{-1}$
- Mass distribution of BBH information
 - $(GW190814 \ q = 0.112^{+0.008}_{-0.009} \ GW190412 \ 0.28^{+0.13}_{-0.09})$ •
- Does the merger rate evolve with redshift?
 - Fast evolution scenarios ruled out
- Evidence of spin induced precession effects
 - Not an outlier effect
- What is the minimum black hole mass?
 - Cut off below at about $5.7 10 M_{\odot}$? ٠
 - Extends below $5M_{\odot}$ if we trust GW190814 as • a BBH

Figure 3. Astrophysical primary black hole mass distribution for the TRUNCATED, BROKEN POWER LAW, POWER LAW + PEAK and MULTI PEAK models. The solid curve is the posterior population distribution (averaging over model uncertainty) while the shaded region shows the 90% credible interval. Note that while the median rate is always inside the credible region, the solid curve represents the mean, which can be outside the credible region. Top (navy) is the TRUNCATED model, second from the top (green) is the BROKEN POWER LAW model, third from the top (blue) is for the POWER LAW + PEAK model, and bottom (red) is for the MULTI PEAK model. The TRUNCATED model is disfavored compared to the three latter models that predict a feature at ~ 40 M_{\odot} : a break in the mass spectrum in the BROKEN POWER LAW model or additional Gaussian peaks in the POWER LAW + PEAK and MULTI PEAK models. The vertical grey bands show 90% credible bounds on the locations of these additional features.

GW190425: Observation of a Compact Binary Coalescence with total mass $\sim 3.4 M_{\odot}$ AJL 892 (2020) L3

Figure 5. Total system masses for GW190425 under different spin priors, and those for the 10 Galactic BNSs from Farrow et al. (2019) that are expected to merge within a Hubble time. The distribution of the total masses of the latter is shown and fit using a normal distribution shown by the dashed black curve. The green curves are for individual Galactic BNS total mass distributions rescaled to the same ordinate axis height of 1.

- Most likely BNS system: another BNS detection but...
- ...no solid electromagnetic counterpart
- Total mass $3.4^{+0.3}_{-0.1}M_{\odot}$ $D_L = 159^{+69}_{-71}Mpc$
- Significantly different from the known population of Galactic BNS systems
- Cannot rule out BBH or BHNS

GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric masses Phys. Rev. D 102, 043015 (2020)

- Evidence for (3,3) multipole: f_α(t) = αf₂₂(t)
 Tighter bounds on intrinsic
- source parameters
- Bounds on abundances
- Consistency with GR

GW190814: Gravitational Waves from the Coalescence of a 23 M_o Compact Object Abbott et al 2020 ApJL 896 L44

 $m_1[M_{\odot}]$

1.5

 α

2.0

2.5

1.0

0.5

No GR violation evidence

•

٠

•

Challenge for formation models

GW190521: A Binary Black Hole Merger with a Total Mass of 150 $\rm M_{\odot}$

• Short signal, difficult to analyze

Phys. Rev. Lett. 125, 101102 (2020) Astrophys. J. Lett. 900, L13 (2020)

- Network SNR about 14-15
- BBH z=0.8 with unusually high component masses
- Mild evidence for spin-induced orbital precession
- Primary in mass gap for pair-instability SN theory
- Final: IMBH
- Formation channels?
 - Multiple stellar coalescence
 - Hierarchical merger of lower-mass black holes

Multimessenger

No solid electromagnetic counterparts found in O3 Several attempts, not confirmed We are looking far, and GW are not beamed. What we could do better? GW side → improve localization em side → improve sensitivity

Independent method for Hubble parameter determination: GW are a new cosmic distance marker Abbott et al. 2017, Nature, 551, 85A

- Most direct way: when we have an optical counterpart
- Alternatively: by localizing the host galaxy
- And/or: statistically, on a large sample of events

Search on O3a data set, using detection from Fermi & Swift satellites.

- No significant evidence for gravitational-wave signals associated with the followed-up GRB
- Lower bounds on the rate of short gamma-ray bursts as a function of redshift for $z \le 1$

04: what we expect

		01	O2	O3	O4	05
BNS Range (Mpc)	aLIGO AdV	80 -	100 30	110-130 50	160 - 190 90 - 120 25 - 120	330 150 – 260
$1.4M_{\odot} + 30M_{\odot}$	KAGKA	-	-	8-25	25-130	130+
BBH Range (Mpc)	aLIGO AdV	740 -	910 270	990–1200 500	1400 - 1600 860 - 1100	2500 1300-2100
$30M_{\odot} + 30M_{\odot}$	KAGRA	-	-	80-260	260 - 1200	1200+
NSBH Range (Mpc)	aLIGO AdV	140	180 50	190 - 240	300 - 330 170 - 220	590 270 - 480
$1.4M_{\odot} + 10M_{\odot}$	KAGRA	-	-	15-45	45-290	290+
Burst Range (Mpc)	aLIGO	50	60	80-90	110-120	210
$[E_{\rm GW} = 10^{-2} M_{\odot} c^2]$	AdV	-	25	35	65-80	100 - 155
	KAGRA	-	-	5 - 25	25-95	95+
Burst Range (kpc)	aLIGO	15	20	25 - 30	35 - 40	70
$[E_{\rm GW} = 10^{-9} M_{\odot} c^2]$	AdV	-	10	10	20 - 25	35 - 50
	KAGRA	-	-	0 - 10	10 - 30	30+

SNR = 8 on each detector

Stochastic background searches

CW searches

- Weak and persistent signal.
 - Targeted (particular source)
 - All sky (unknown sources)
- Not really monocromatic
 - Modulations
 - Spin down, environment effects, glitches

All-sky search Abbott et al. arXiv:2012.12926

J0537-6910

Abbott et al. arXiv:2012.12926

Beating spindown limit Abbott et al. ApJL 902 L21 Ellipticity 10^{-9} $\propto p(Q_{22}|\mathbf{d})$ J0437 - 4715 $\stackrel{0.6}{Q_{22}}$ $\stackrel{0.8}{(10^{30} \text{ kg m}^2)}$ 0.2 0.4 1.2 0.0 1.0 1.4 10^{-9} $Q_{22}^{95\%}$ Bayesian Q₂₂^{95%} *F*-statistic — Q^{95%} 5n-vector $\propto p(Q_{22}|\mathbf{d})$ Spin-down limit J0711-6830 $Q_{22} \stackrel{0.6}{(10^{30} \text{ kg m}^2)} \stackrel{0.8}{}$ 0.0 0.4 0.2 1.0 1.2 10^{-1} $\propto p(Q_{22}|\mathbf{d})$ J0737-3039A 0.0 0.2 0.4 0.6 $\begin{array}{cccc} 0.6 & 0.8 & 1.0 \\ Q_{22} & (10^{32} \text{ kg m}^2) \end{array}$ 1.0 1.2 1.4 1.6

Summary

- LIGO-Virgo and future GW detectors opening new windows for study of extreme astrophysical systems
- O3 provides new constraints on BBH population models, deviations from general relativity, masses of BHs, formation channels of massive BHs, and more
- Starting to explore
 - Neutron star astrophysics (structure? EOS? Vortex dynamics?)
 - Merger physics
 - Cosmology
 - Lensing
 - Multi-messenger astronomy (GRB, kilonova)
 - Connections with fundamental theories (dark matter, dark energy, graviton mass, Lorentz invariance bounds, speed of light, speed of GW, test of Equivalence principle)
 - Beyond GR (polarization of gravitational waves, testing GR in dynamic strong field regime)
 - Structure of BH (no hair theorem, exotic objects, QNM, echos, parity violation, axions)

A lot of work to do, and (hopefully) a lot of new scientific discoveries ahead.

Thank you for your attention.