Final results of GERDA on the search for $0\nu\beta\beta$

Natalia Di Marco – Gran Sasso Science Institute & INFN

on behalf of the GERDA Collaboration

La Thuile 2021 Les Rencontres de Physique de la Vallée d'Aoste

Searching for $0\nu\beta\beta$

2νββ (A,Z) → (A,Z+ 2)+ 2 e^- + 2 $\bar{\nu_e}$ Maria Goeppert-Mayer (1935) $T_{1/2}$ ~ **10**²¹ yr (observed)

0νββ (*A*,*Z*) → (*A*,*Z* + 2) + 2 e^{-} Wendell H. Furry (1939) $T_{1/2}$ > **10**²⁶ yr

Searching for $0\nu\beta\beta$

0ν $\beta\beta$ process:

- > $\Delta L = 2 \rightarrow$ beyond Standard Model physics
- determines the nature of neutrinos:
 Majorana particle $v = \bar{v}$;
- > gives information on the ν mass via $m_{\beta\beta}$ (light neutrino exchange scenario)

$0\nu\beta\beta$ signature:

point-like energy deposition in detector bulk volume

 \succ sharp energy peak at $Q_{\beta\beta}$

Searching for $0\nu\beta\beta$ of ^{76}Ge

E DI MULANO RICOV

N. Di Marco

La Thuile 2021

6

aboratori Nazionali del Gran Sa

Discriminate **point like** (single site) **ββ** topology from:

ß

Discriminate **point like** (single site) **ββ** topology from:

> multi-detector interactions

Pulse Shape Discrimination

BEGe and IC detectors:

- Mono-parametric cut based on current pulse amplitude A and total energy E (A/E)
 [J. Instrum. 4, P10007 (2009)]
- > normalized to single-site events
- cut value determined from calibration data

Pulse Shape Discrimination

Coaxial detectors

> Artificial neural network (ANN) trained on ²⁰⁸TI DEP (signal) and ²¹²Bi SEP (background) to discriminate SSE/MSE

> additional cut on signal rise time to reject events on the p+ electrode

[Science 365, 1445 (2019), Phys. J. C 73, 2583 (2013)]

Liquid Argon VETO

[GERDA, European Phys J C 78 (2018), 388]

• 16 PMTs

- ~ 1.5 km light guiding fibers + SiPM readout
- At least 1 p.e. within 6 μs of Ge detector trigger

 $0\nu\beta\beta$ acceptance BEGe (98.2±0.1)% Dead Time 1.8%

[PRL 125 252502 (2020)]

Active background suppression – LAr&PSD

Statistical analysis

[GERDA, Phys Rev Lett 125 (2020), 252502]

La Thuile 2021

Statistical analysis

[GERDA, Phys Rev Lett 125 (2020), 252502]

ROI: [1930,2190] keV, excl. ±5 keV around ²⁰⁸Tl (SEP), ²¹⁴Bi (FEP) Bl: 5. $2^{+1.6}_{-1.3} \times 10^{-4}$ cts/(keV·kg·yr)

Phase II (103.7 kg yr):

 $T_{1/2}^{0_{v_{1/2}}} > 1.5 \cdot 10^{26} \text{ yr } @ 90\% \text{ C.L.}$ (Frequentist)

Statistical analysis

[GERDA, Phys Rev Lett 125 (2020), 252502]

ROI: [1930,2190] keV, excl. ±5 keV around ²⁰⁸Tl (SEP), ²¹⁴Bi (FEP) Bl: 5. $2^{+1.6}_{-1.3} \times 10^{-4}$ cts/(keV·kg·yr)

Phase II (103.7 kg yr):

 $T^{0v}_{1/2} > 1.5 \cdot 10^{26}$ yr @ 90% C.L. (Frequentist)

Phase I + Phase II (127.2 kg yr):

*T*⁰^v_{1/2} > 1.8·10²⁶ yr @ 90% C.L. (Frequentist)

The limit coincides with the sensitivity, defined as the median expectation under the no signal hypothesis

 $T^{0v}_{1/2}$ > 1.4·10²⁶ yr @ 90% C.L. (Bayesian)

Conclusions

✓ All design goals surpassed!

- ✓ GERDA ran in background-free regime for the entire duration of its data taking
- ✓ GERDA provides the most stringent constraints on the half-life of $0\nu\beta\beta$ decay

	EXPERIMENT	lsotope	Exposure [kg yr]	T ⁰ⁿ _{1/2} [10 ²⁵ yr]	<mbb> [MeV]</mbb>
hase II	GERDA	⁷⁶ Ge	127.2 *	18	79-180
	MAJORANA	⁷⁶ Ge	26	2.7	200-433
	KamLAND-zen	¹³⁶ Xe	594	10.7	61-165
	EXO	¹³⁶ Xe	234.1	3.5	93-286
	CUORE	¹³⁰ Te	115.9	1.5	110-520

Phasell		Goal				Achievements					
Exposure 2		>	> 100 kg yr			103.7 kg yr					
BI		10^{-3} cts/(keV·kg·yr)				r) 5.	$5.2^{+1.6}_{-1.3} \times 10^{-4}$ cts/(keV·kg·yr				
T ^{0v} 1/2		T ⁰ v _{1/2} > 10 ²⁶ yr			Т	$T^{0v}_{1/2}$ > 1.8·10 ²⁶ yr @ 90% C.L					
				$\overline{\mathbf{x}}$							_
				\sim expected for no signal \sim expected for no signal \sim observed \sim 2018					2020		
/2 yr]	<mbb> [MeV]</mbb>			$T_{1/2}$ lo	2013	2017 O		2019			
	79-18	30			Ø						
,	200-4	33			20	40	60	80	100 Expo	120 sure (kg y	vr
7	61-16	55							2po		, . ,

From 10²⁶ yr and beyond ...

*Phase I + P

First phase:

(up to) 200 kg in upgrade of existing infrastructure at LNGS
BG goal: <0.6 c /(FWMH t y)
Discovery sensitivity at a half-life of 10²⁷ years
Data start end of 2021

Subsequent stages:

- •1000 kg, staged via individual payloads
- •Background goal <0.03 cts/(FWHM t yr)
- Discovery sensitivity at a half-life of 10²⁸ years
- •Location to be selected

Data taking

Energy resolution

- ➢ Weekly calibrations with ²²⁸Th sources
- Optimized ZAC filter (Eur. Phys. J. C 75 (2015) 255)
- Stability monitored online with Test Pulses, injected every 20 s
- Energy resolution stable within <0.1 keV</p>
- \blacktriangleright Resolution at Q_{bb} ~0.1%

Background model

[GERDA, J High Energy Phys, 2020 (2020), no. 3, 139]

Full GERDA setup is reproduced in GEANT4

Bayesian fit of multiple datasets (BEGe, coaxial, multiplicity=2, ⁴⁰K/⁴²K tracking) with Monte Carlo PDFs, **screening measurements** as priors

```
Background@Q<sub>ββ</sub>:

α from <sup>210</sup>Po/(<sup>222</sup>Ra)

β from <sup>42</sup>K

γ from <sup>208</sup>Tl/<sup>214</sup>Bi
```


GERDA

LAr veto Low-A shield, no Pb

Both

- Clean fabrication techniques
- Control of surface exposure
- Development of large point-contact detectors
- Lowest background and best resolution $0\nu\beta\beta$ experiments

MAJORANA

- Radiopurity of nearby parts (FETs, cables, Cu mounts, etc.)
- Low noise electronics improves PSD
- Low energy threshold (helps reject cosmogenic background)

- 70 inverted coax detectors (1.5-2 kg), about 140 kg
- 28 BEGe's (0.7 kg) about 20 kg
- 5 ICPC's (2.0 kg) about 10 kg
- 33 PPC's (0.8 kg) about 28 kg
- Semi-Coax detectors (either use as is, or recycle) about 15 kg

Total ~200 kg

N. Di Marco

