

Federal Ministry of Education and Research

Search for the Standard Model Higgs boson produced in association with top quarks and decaying into a pair of **b-quarks with the ATLAS detector**

Manuel Guth on behalf of the ATLAS collaboration

11.03.2021 - La Thuile 21 - Les Rencontres de Physique de la Vallée d'Aoste

Deutsche DFG Forschungsgemeinschaft

Motivation for
$$t\bar{t}H(H \rightarrow b\bar{b})$$
 Measur

- Small cross section compared to other Higgs production (~ 1% total XS modes) but ~ 7 times larger cross section than tH
- Top-Yukawa coupling is strongest fermion-Higgs coupling in SM

$$y_f = \frac{m_f \cdot \sqrt{2}}{\text{vev}} \approx 1$$

- Can give hints to the stability of the electroweak vacuum
- Most favourable production mode for direct measurement of Yukawa coupling to top quark
- Branching fraction of Higgs decaying to 2 *b*-quarks ~ 58%

rement

Signature of $t\bar{t}H(H \rightarrow bb)$ Process

- ATLAS @ $\sqrt{s} = 13$ TeV (<u>ATLAS-CONF-2020-058</u>)
- (STXS) measurement in bins of p_T^H

Reconstruction BDT: Matching jets to partons emitted from top-quark and Higgs decay

ATLAS-CONF-2020-058

New Deep Neural Network trained to classify reclustered jets as Higgs, Top or QCD

ATLAS-CONF-2020-058

Manuel Guth (Uni Freiburg, CEA Saclay)

ATLAS-CONF-2020-058

SR: signal region, CR: control region (for background handling)

ATLAS-CONF-2020-058

Results - Signal Strength

Tot. (Stat. Syst.) $\begin{array}{c} \textbf{+0.59} \\ \textbf{-0.55} \end{array} \begin{pmatrix} \textbf{+0.45} & \textbf{+0.38} \\ \textbf{-0.42} & \textbf{-0.35} \end{pmatrix}$ $\begin{array}{c} +0.92 \\ -0.83 \end{array} \begin{pmatrix} +0.40 & +0.83 \\ -0.39 & -0.73 \end{pmatrix}$ **+0.36** $\begin{pmatrix} +0.20 & +0.30 \\ -0.19 & -0.27 \end{pmatrix}$ 8 10

• Observed (expected) significance of 1.3 (3.0) standard deviations

$$\mu = 0.43^{+0.20}_{-0.19}(stat.)^{+0.30}_{-0.27}(syst.) = 0.43^{+0.36}_{-0.33}$$

• Measured $t\bar{t} + \geq 1b$ normalisation

$$k(t\bar{t} + \ge 1b) = 1.26 \pm 0.09$$

• Uncertainty improved by almost a factor 2 compared to previous ($36fb^{-1}$) analysis (<u>Phys.</u> <u>Rev. D 97, 072016</u>)

Results - Systematic Uncertainties

Uncertainty source	$\Delta \mu$		
$t\bar{t} + \ge 1b$ modelling	+0.25	-0.24	
<i>ttH</i> modelling	+0.14	-0.06	
<i>tW</i> modelling	+0.08	-0.08	
<i>b</i> -tagging efficiency and mis-tag rates	+0.05	-0.05	
Background-model statistical uncertainty	+0.05	-0.05	
Jet energy scale and resolution	+0.03	-0.03	
$t\bar{t} + \ge 1c$ modelling	+0.03	-0.03	
$t\bar{t}$ + light modelling	+0.02	-0.02	
Luminosity	+0.01	-0.00	
Other sources	+0.03	-0.03	
Total systematic uncertainty	+0.30	-0.27	
$t\bar{t} + \ge 1b$ normalisation	+0.03	-0.05	
Total statistical uncertainty	+0.20	-0.19	
Total uncertainty	+0.36	-0.33	

- $t\bar{t} + \ge 1b$ and $t\bar{t}H$ modelling systematics have the largest impact on μ
- Experimental uncertainty with largest impact is related to b-tagging

Measurement dominated by signal and background modelling uncertainties

- Modelling of $t\bar{t} + \geq 1b$ with 4 flavour scheme (no b-quarks in proton PDFs)
- Systematic uncertainties to cover missing higher order terms, initial and final state radiation effects, parton shower & hadronisation etc.
- Additional uncertainty derived to cover the Higgs candidate p_T mis-modelling, assigned entirely to $t\bar{t} + \geq 1b$ background
 - Only shape effect considered (normalisation effects removed)

Results - Pulls and Ranking

- Second largest pull is on Higgs p_T shape systematics, as expected from pre-fit modelling
- Largest observed pull on $t\bar{t} + \geq 1b$ ISR systematic (~1.4σ)
 - Corrects N_{jets} distribution
- $t\bar{t} + \geq 1b$ NLO matching has highest impact on μ

Results - Signal Strength

Summary

- corresponding to an integrated luminosity of $139 fb^{-1}$
- Event selection targets lepton+jets and dilepton channel
- Dominant background is ttbar production with additional heavy-flavour jets
- Measured signal strength: $0.43^{+0.36}_{-0.33}$
- Systematics dominated measurement, particularly modelling of $t\bar{t} + \geq 1b$ background
- First signal strength measurement performed in Higgs p_T bins in STXS framework
 - Observed results are in agreement with SM within large uncertainties

• Measurements of $t\bar{t}H$ production with $H \rightarrow b\bar{b}$ are performed using the full Run-2 dataset of pp collision collected at \sqrt{s} = 13 TeV and

• An excess of events over the expected SM background is found with an observed (expected) significance of 1.3 (3.0) standard deviations

Latest Results with 36 fb⁻¹

- Latest ATLAS publication (<u>Phys. Rev. D 97 (2018) 072016</u>)
- 1.4 (1.6) σ excess above the expected background is observed (expected)
- Obtained signal strength $\mu = 0.84^{+0.64}_{-0.61}$
- Analysis mainly dominated by systematic uncertainties
 - Especially modelling of $t\bar{t} + \geq 1b$ background is a big issue
 - Group is working at that also in cooperation with CMS and HiggsXsecWG

Uncertainty source	$\Delta \mu$
$t\bar{t} + \geq 1b$ modeling	+0.46
Background-model statistical uncertainty	+0.29
b-tagging efficiency and mis-tag rates	+0.16

• $t\bar{t}H$ production discovered in the combination with other channels (6.3 σ)

Higgs nth & tH production cross sections

ttH and tH production

* tŧH

√s (TeV)	σ	+δ(scale)	-δ(scale)	Δ_{α_s}	Δ_{PDF}	$\Delta_{PDF+\alpha_s}$
14	612.8 fb	6.0%	9.2%	±1.9%	±2.9%	±3.5%
27	2860 fb	7.8%	9.0%	±1.8%	±2.1%	±2.8%

* tH+ tH

√s (TeV)	σ	+δ(scale)	-δ(scale)	Δ_{α_s}	Δ_{PDF}	$\Delta_{PDF+\alpha_s}$
14	90.12 fb	6.4%	14.7%	±1.2%	±3.4%	±3.6%
27	417.9 fb	5.0%	12.5%	±1.3%	±2.6%	±2.9%

• Cross sections for ttH are calculated at NLO QCD and NLO EW while for tH they are at NLO QCD

LHC Higgs Cross Section Working Group

Yukawa Coupling Top

FIG. 2. A very small change in the top Yukawa coupling y_t (taken at scale $\mu = 173.2$ GeV) converts the monotonic behaviour of the effective potential for the Higgs field to that with an extra minimum at large values of the Higgs field.

https://cds.cern.ch/record/1968356/files/arXiv:1411.1923.pdf

```
Manuel Guth (Uni Freiburg, CEA Saclay)
```


Theory Motivation Simplified Template Cross Sections (STXS)

- Probing CP structure of Higgs-top coupling
 - Strong dependency on Higgs p_T
- Measuring Higgs pT in STXS bins can exclude CP-odd hypothesis

Simplified Cross Section (STXS) Strategy

- Differential measurement in bins of Higgs p_T
- Analysis regions were optimised for STXS
- The Higgs p_T binning was optimised and also discussed with CMS and theorists to facilitate future combinations
- Sensitive to CP-structure of Higgs and anomalous Higgs self-coupling

Sconaria	Higgs p _T / GeV							
Scenario	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5			
Dilepton	0-120	120-200	200-300	300 - ∞	_			
Single lepton	0-120	120-200	200-300	300-450	450 - ∞			

Theory Motivation Simplified Template Cross Sections (STXS)

• Potential of Higgs scalar field

$$V(H) = \frac{1}{2}m_H^2 + \lambda_3 v H^3 + \frac{1}{4}\lambda_4 H^4 + \mathcal{O}(H^5), \text{ with } \lambda_3^{SM} =$$

• Introducing anomalous coupling $\lambda_3 = \kappa_3 \lambda_3^{SM}$

$$d\sigma(\kappa_3) = \sigma_{LO} \frac{1}{1 - (\kappa_3 - 1)\delta Z_H} (1 + \kappa_3 C_1 + \delta Z_H + \delta_{EW}|_{\lambda_3 = 0}), \quad \delta Z_H \approx$$

- δZ_H Higgs wave function correction -> universal but small
- C_1 process and kinematic dependent
 - If κ_3 small -> C_1 dominant sensitivity

Channels	ggF	VBF	ZH	WH	$t\bar{t}H$	tE
$C_1(\%)$	0.66	0.63	1.19	1.03	3.52	0.9

Possible to put limits on Higgs self-coupling

Analysis Region Definition

Pegion	Dilepton $SR_{\geq 4b}^{\geq 4j} CR_{3b \text{ hi}}^{\geq 4j} CR_{3b \text{ lo}}^{\geq 4j} CR_{3b \text{ hi}}^{3j}$			Single-lepton			
				$\mathrm{SR}^{\geq 6j}_{\geq 4b}$	$CR_{\geq 4b \text{ hi}}^{5j} CR_{\geq 4b}^{5j}$	lo SR _{boosted}	
#leptons	= 2				= 1		
#jets		≥ 4		= 3	≥ 6	= 5	≥ 4
@85%				≥ 4			
@77%		_					$\geq 2^{\dagger}$
m_{D} -tag @70%	≥ 4		= 3			≥ 4	_
@60%		= 3	< 3	= 3		≥ 4 < 4	
#boosted cand.		_				0	≥ 1
Fit input	BDT		Yield		BDT/Yield	$\Delta R_{bb}^{\rm avg}$	BDT

ATLAS-CONF-2020-058

Region Definition

ATLAS-CONF-2020-058

Manuel Guth (Uni Freiburg, CEA Saclay)

Results - Postfit Modelling

ATLAS-CONF-2020-058

Results - Postfit Modelling - Dilepton SRs

Results - Postfit Modelling - l+jets CRs

Results - Postfit Modelling - Njet

ATLAS-CONF-2020-058

Results - Postfit Modelling - m(H)

ATLAS-CONF-2020-058

Results - Postfit Modelling

ATLAS-CONF-2020-058

Results

- Final-discriminant bins in all analysis regions combined into bins of log(S/B)
- Signal normalised to SM prediction used for calculation of S/B
- Signal normalised to best-fit value also shown
- Lower pad shows ratio data/background, ttH($\mu_{\rm SM}$ =1.0)/background and ttH($\mu_{\rm fit}$ =0.43)/background

Results - STXS Rankings

ATLAS-CONF-2020-058

ttbb Modelling

Process	Generator	ME order	Parton shower	PDF	Tune
$t\bar{t}$	PowHeg v2	NLO	Pythia 8	5FS NNPDF3.0 NLO	A14
$t\bar{t} + b\bar{b}$	Powheg-Box-Res	NLO	Pythia 8	4FS NNPDF30_nlo_as_0118_nf_4	A14
$t\bar{t} + b\bar{b}$	Sherpa 2.2.1	NLO	Sherpa	4FS NNPDF30_nlo_as_0118_nf_4	SHERPA default
tī	Sherpa 2.2.1	tt+0,1NLO+2,3,4@LO	Sherpa	5FS NNPDF3.0 NNLO	SHERPA default

Figure 2: Distribution of the average opening angle between two b-jets, for the 3b selection (left) and the 4b-jet selection (right). The central value of the PP8 $t\bar{t}$ and the other three generators are normalised to 1. The first ratio shows the different curves divided by PP8 $t\bar{t}$. The second ratio plot shows the relative uncertainty of the radiation variations divided by the nominal PP8 $t\bar{t}$ following the above description of simultaneous variations (black) and as the sum of individual variations following the CMS approach (red).

Figure 6: Sum of b-jet transverse momenta in GeV, for the 3b selection (left) and the 4b-jet selection (right). The central value of the PP8 tt and the other three generators are normalised to 1. The first ratio shows the different curves divided by PP8 tt. The second ratio plot shows the relative uncertainty of the radiation variations divided by the nominal PP8 tt following the above description of simultaneous variations (black) and as the sum of individual variations following the CMS approach (red).

ATL-PHYS-PUB-2019-043

ttbb Modelling

Process	Generator	ME order	Parton shower	PDF	Tune
tī	PowHeg v2	NLO	Pythia 8	5FS NNPDF3.0 NLO	A14
$t\bar{t} + b\bar{b}$	Powheg-Box-Res	NLO	Pythia 8	4FS NNPDF30_nlo_as_0118_nf_4	A14
$t\bar{t} + b\bar{b}$	Sherpa 2.2.1	NLO	Sherpa	4FS NNPDF30_nlo_as_0118_nf_4	SHERPA default
tī	Sherpa 2.2.1	tt+0,1NLO+2,3,4@LO	Sherpa	5FS NNPDF3.0 NNLO	SHERPA default

Figure 5: Distribution of the invariant mass in GeV of the two b-jets with the smallest opening angle, for the 3b selection (left) and the 4b-jet selection (right). The central value of the PP8 tt and the other three generators are normalised to 1. The first ratio shows the different curves divided by PP8 tr. The second ratio plot shows the relative uncertainty of the radiation variations divided by the nominal PP8 tt following the above description of simultaneous variations (black) and as the sum of individual variations following the CMS approach (red).

