

W⁺W⁻ boson pair production at 13 TeV using CMS data

La Thuile 2021 - Les Rencontres de Physique de la Vallée d'Aoste

Pedro J. Fernández Manteca

IFCA (University of Cantabria, CSIC) 9-11 of March, 2021

Introduction

- WW cross section measurements at 13 TeV using the CMS full 2016 dataset
- Two different approaches:
 - Sequential analysis: SEQ
 - Random Forest analysis (multivariate technique): RF
- · Goals:
 - Measure the total WW cross section in the dileptonic channel (SEQ & RF)
 - Measure fiducial & differential cross sections in m_{ℓℓ}, p_{Tℓ1}, p_{Tℓ2}, Δφ_{ℓℓ} (SEQ) + njets (RF)
 - Set limits on Wilson coefficients (SEQ)

Last public result: <u>CMS-PAS-SMP-16-006</u> (2.3 fb⁻¹) WW total Xsec = 115.3 ± 11.0 pb

> This result: (35.9 fb^{-1}) WW total Xsec = 117.6 ± 6.8 pb

Phys. Rev. D 102, 092001 (2020)

High Energy Physics – Experiment

[Submitted on 31 Aug 2020]

W^+W^- boson pair production in proton-proton collisions at $\sqrt{s} = 13$ TeV

CMS Collaboration

A measurement of the W⁺ W⁻ boson pair production cross section in proton-proton collisions at $\sqrt{s} = 13$ TeV is presented. The data used in this study are collected with the CMS detector at the CERN LHC and correspond to an integrated luminosity of 35.9 fb⁻¹. The W⁺ W⁻ candidate events are selected by requiring two oppositely charged leptons (electrons or muons). Two methods for reducing background contributions are employed. In the first one, a sequence of requirements on kinematic quantities is applied allowing a measurement of the total production cross section: 117.6 \pm 6.8 pb, which agrees well with the theoretical prediction. Fiducial cross sections are also reported for events with zero or one jet, and the change in the zero-jet fiducial cross sections are reported within the fiducial region. A second method for suppressing background contributions employs two random forest classifiers. The analysis based on this method includes a measurement of the total production in W⁺ W⁻ events. Finally, a dilepton invariant mass distribution is used to probe for physics beyond the standard model in the context of an effective field theory, and constraints on the presence of dimension-6 operators are derived.

Comments:Submitted to Phys. Rev. D. All figures and tables can be found at this http URL (CMS Public Pages)Subjects:High Energy Physics - Experiment (hep-ex)

- The talk will be focus on the **SEQ** approach

- **RF** analysis results and details can be found in the backup

Sequential analysis

 The sequential selection relies mainly on a set of discrete requirements on kinematic variables and on a multivariate analysis tool to suppress Drell-Yan background in sameflavour channel **Target signature:** two opposite charged isolated leptons, and large transverse missing energy from the neutrinos

0 jet category

Sequential analysis

1 jet category

Sequential analysis

5

Total Xsec measurements

- In both approaches the signal strength is extracted by fitting the predicted yields to the observed events (1-bin distribution). Information from the control regions is included in the fit
 - Sequential fit: 4 Signal Regions, 4 Top Control Regions (2 flavour categories x 2 njets categories)
 - RF fit: 1 SR, 1 TopCR, 1 DYCR, 1 Same-SignedCR

<u>Theoretical prediction</u>: $\sigma_{tot}^{NNLO} = 118.8 \pm 3.6 \text{ pb}$

• Sequential analysis result:

Category		Signal strength	Cross section [pb]	
0-jet	DF	1.054 ± 0.083	125.2 ± 9.9	
0-jet	SF	1.01 ± 0.16	$120 \hspace{0.1in} \pm 19$	
1-jet	DF	$0.93 \hspace{0.2cm} \pm \hspace{0.2cm} 0.12$	$110 \hspace{0.1in} \pm 15$	
1-jet	SF	$0.76 \hspace{0.2cm} \pm \hspace{0.2cm} 0.20 \hspace{0.2cm}$	89 ± 24	
0-jet & 1-jet	DF	1.027 ± 0.071	122.0 ± 8.4	
0-jet & 1-jet	SF	$0.89 \hspace{0.2cm} \pm \hspace{0.2cm} 0.16$	106 ± 19	
0-jet & 1-jet	DF & SF	0.990 ± 0.057	117.6 ± 6.8	

 $\sigma_{tot}^{SEQ} = 117.6 \pm 1.4 \text{ (stat)} \pm 5.5 \text{ (syst)} \pm 1.9 \text{ (theo)} \pm 3.2 \text{ (lumi) pb} = 117.6 \pm 6.8 \text{ pb}$

Random Forest analysis result:

 $\sigma_{tot}^{RF} = 131.4 \pm 1.3 \text{ (stat)} \pm 6.0 \text{ (syst)} \pm 5.1 \text{ (theo)} \pm 3.5 \text{ (lumi)} \text{ pb} = 131.4 \pm 8.7 \text{ pb}$

Random forest gets a purer signal region. However, its sensitivity is concentrated at low pTWW due to jet-multiplicity related variables used in the training \rightarrow more sensitive to theoretical uncertainties of pTWW spectrum corrections than the sequential analysis

Fiducial Xsec measurement

• Fiducial region definition at gen level: two dressed electrons or muons in the event with $p_T > 20$ GeV and $|\eta| < 2.5$, $m_{\ell\ell} > 20$ GeV, $p_{T\ell\ell} > 30$ GeV and $E_T^{Miss} > 20$ GeV

• **Results:** (Different-Flavour + Same-Flavour combination)

<u>Theoretical prediction</u>: $\sigma_{fid}^{NNLO} = 1.531 \pm 0.043 \text{ pb}$

 $\sigma_{fid}^{tot} = 1.529 \pm 0.0020 \text{ (stat)} \pm 0.069 \text{ (syst)} \pm 0.028 \text{ (theo)} \pm 0.041 \text{ (lumi)} \text{ pb} = 1.529 \pm 0.087 \text{ pb}$

 σ_{fid}^{tot} (based on 0 reco jets subset only) = 1.61 ± 0.10 pb

 σ_{fid}^{tot} (based on 1 reco jets subset only) = 1.35 ± 0.11 pb

Fiducial WW+0 AK4 gen jets, pT thres. varied

$p_{\rm T}$ threshold (GeV)	Signal strength	Cross section (pb)
25	1.091 ± 0.073	0.836 ± 0.056
30	1.054 ± 0.065	0.892 ± 0.055
35	1.020 ± 0.060	0.932 ± 0.055
45	0.993 ± 0.057	1.011 ± 0.058
60	0.985 ± 0.059	1.118 ± 0.067

Normalized differential Xsecs

- Differential cross section measurement in $m_{\ell\ell}$, $p_{T\ell 1}$, $p_{T\ell 2}$, $\Delta \varphi_{\ell\ell}$ bins
- Using the same fiducial definition
- Approach: several signal strengths (bins categorized at GEN level) are fitted in RECO bins
 - The simultaneous fit to all bins in a given histogram takes all the correlations into account

- In the electroweak sector of the SM, the first higherdimensional operators containing only massive boson fields are dimension-6
 - Set limits on the 3 corresponding coefficients affecting WW production: EFT effects simulated with Madgraph5 aMC@NLO

Used eµ final state from the sequential analysis

Coefficients	68% confid	ence interval	95% confidence interval		
$({\rm TeV}^{-2})$	expected	observed	expected	observed	
$c_{\rm WWW}/\Lambda^2$	[-1.8, 1.8]	[-0.93, 0.99]	[-2.7, 2.7]	[-1.8, 1.8]	
$c_{\rm W}/\Lambda^2$	[-3.7, 2.7]	[-2.0, 1.3]	[-5.3, 4.2]	[-3.6, 2.8]	
c_B/Λ^2	[-9.4, 8.4]	[-5.1, 4.3]	[-14, 13]	[-9.4, 8.5]	

W.r.t. Run-I (Observed): arXiv:1507.03268

Coupling constant	This result	Its 95% CL interval
	(TeV^{-2})	(TeV^{-2})
$c_{\rm WWW}/\Lambda^2$	$0.1^{+3.2}_{-3.2}$	[-5.7, 5.9]
$c_{\rm W}/\Lambda^2$	$-3.6^{+5.0}_{-4.5}$	[-11.4, 5.4]
$c_{\rm B}/\Lambda^2$	$-3.2^{+15.0}_{-14.5}$	[-29.2, 23.9]

Summary & plans

- The WW production at 13 TeV results using the CMS full 2016 dataset experiment have been shown, including:
 - Total WW cross-section measurement
 - Fiducial & differential cross-section measurements
 - Limits on Wilson coefficients

- Future plans of the analysis:
 - Differential + aTGCs analysis using the full Run2 dataset (2016+2017+2018 CMS data)

Backup

Systematic uncertainties

Sequential analysis

	<u> </u>
Uncertainty source	(%)
Statistical	1.2
tt normalization	2.0
Drell–Yan normalization	1.4
$W\gamma^*$ normalization	0.4
Nonprompt leptons normalization	1.9
Lepton efficiencies	2.1
b tagging (b/c)	0.4
Mistag rate (q/g)	1.0
Jet energy scale and resolution	2.3
Pileup	0.4
Simulation and data control regions sample size	1.0
Total experimental systematic	4.6
QCD factorization and renormalization scales	0.4
Higher-order QCD corrections and p_{T}^{WW} distribution	1.4
PDF and α_S	0.4
Underlying event modeling	0.5
Total theoretical systematic	1.6
Integrated luminosity	2.7
Total	5.7

Random Forest selection

- Alternative approach: Random Forest (RF) multivariate analysis
 - Each individual tree is allowed to use only a random subset of variables. This approach **mitigates overfitting**
- **Pre-selection:** $m_{\ell\ell} > 30$ GeV, third loose lepton veto ($p_T > 10$ GeV), bVeto ($p_{Tj} > 20$ GeV), $|m_{\ell\ell} m_Z| > 15$ GeV for same-flavour leptons
- After the preselection, the largest contamination comes from Drell-Yan and tt → Two independent RF have been trained
 - anti-Drell-Yan: WW vs DY
 - anti-top: WW vs tt
- Hyperparameters of the RFs are optimized by evaluating the RF performance in a multidimensional grid, taking into account all possible combinations between several choices for parameter values

Feature	Classifier				
	Drell–Yan	Top quark			
Lepton flavor	\checkmark				
Number of jets		\checkmark			
$p_{ ext{T}}^{\ell ext{min}}$	\checkmark				
$p_{\rm T}^{\rm miss}$	\checkmark	\checkmark			
$p_{\rm T}^{\rm miss,proj}$	\checkmark				
$p_{\mathrm{T}}^{\ell\ell}$	\checkmark	\checkmark			
$m_{\ell\ell}$	\checkmark				
$m_{\ell\ell p_{ extsf{T}}^{ extsf{miss}}}$	\checkmark				
$\Delta \phi_{\ell \ell p_{ ext{T}}^{ ext{miss}}}$	\checkmark	\checkmark			
$\Delta \phi_{\ell \mathrm{J}}$		\checkmark			
$\Delta \phi_{p_{\mathrm{T}}^{\mathrm{miss}}\mathrm{J}}$		\checkmark			
$\Delta \phi_{\ell\ell}$	\checkmark				
H_{T}		\checkmark			
Recoil	\checkmark	\checkmark			

RF optimized architecture: ntrees= 50, max_depth = 20 min_events_per_split = 50 min_events_in_leaf = 1 max_features_per_tree = sqrt(total_variables)

Random Forest selection

Signal Region definition:

Quantity	Random Forest		
	Different-flavor	Same-flavor	
Number of leptons	Strictl	y 2	
Lepton charges	Oppos	site	
$p_{\mathrm{T}}^{\ell \max}$	>25	5	
$p_{\rm T}^{\ell{\rm min}}$	>20)	
$m_{\ell\ell}$	>30	>30	
Additional leptons	0		
$ m_{\ell\ell}-m_Z $		>15	
Number of b-tagged jets	0 / \		
Drell-Yan RF score S _{DY}	>0.9	6	
tt RF score $S_{t\bar{t}}$	>0.6	ó	

 Selections on RF scores have been optimized by simultaneously minimizing the uncertainty in the cross section and maximizing the signal purity

Random Forest selection

Jet multiplicity measurement

Relaxed cut on Stt (Stt > 0.2) to increase the efficiency for WW events with jets

Efficiency for RF selection w.r.t. preselection

Number of jets	0	1	<u>≥ 2</u>
Efficiency	0.555 ± 0.003	0.448 ± 0.004	0.290 ± 0.004

🛉 Data

POWHEG+PYTHIA

35.9 fb⁻¹ (13 TeV)

CMS

1/a da/dN_J

- Unfolding: Gen jets reconstructed from stable gen particles excluding neutrinos with pTj > 30 GeV and |η| < 2.4, separated from leptons by ΔR > 0.4
 - Reconstructed and generated jets are said to match if $\Delta R_{gen,reco} < 0.4$

Postfit yields

Process	Sequential Cut				Random Forest	
	DF		SF		DF	SF
	0-jet	0-jet 1-jet 0-jet 1-jet		1-jet	all jet multiplicities	
Top quark	2110 ± 110	5000 ± 120	1202 ± 66	2211 ± 69	3450 ± 340	830 ± 82
Drell–Yan	129 ± 10	498 ± 38	1230 ± 260	285 ± 86	1360 ± 130	692 ± 72
VZ	227 ± 13	270 ± 12	192 ± 12	110 ± 7	279 ± 29	139 ± 10
VVV	11 ± 1	29 ± 2	4 ± 1	6 ± 1	13 ± 4	3 ± 2
${ m H} ightarrow { m W}^+ { m W}^-$	269 ± 41	150 ± 25	50 ± 2	27 ± 1	241 ± 26	90 ± 10
$\mathrm{W}\gamma^{(*)}$	147 ± 17	136 ± 13	123 ± 5	58 ± 6	305 ± 88	20 ± 6
Nonprompt leptons	980 ± 230	550 ± 120	153 ± 39	127 ± 32	940 ± 300	183 ± 59
Total background	3870 ± 260	6640 ± 180	2950 ± 270	2820 ± 120		
C	10510	10510 ± 310		5780 ± 300		1960 ± 120
$q\overline{q} ightarrow W^+W^-$	6430 ± 250	2530 ± 140	2500 ± 180	1018 ± 71	12070 ± 770	2820 ± 180
$ m gg ightarrow W^+W^-$	521 ± 66	291 ± 38	228 ± 32	117 ± 15	693 ± 44	276 ± 17
Total W ⁺ W ⁻	6950 ± 260	2820 ± 150	2730 ± 190	1136 ± 72		
	9780 :	9780 ± 300		3860 ± 200		3100 ± 200
Total yield	10820 ± 360	9460 ± 240	5680 ± 330	3960 ± 360		
-	20 280 :	20280 ± 430		9640 ± 490		5060 ± 240
Purity	0.64	0.30	0.48	0.29		
-	0.4	0.48		0.40		0.61
Observed	10866	9404	5690	3914	19418	5210

W.r.t. Run-l results: arXiv:1507.03268

