CMS Experiment at the LHC, CERN

Data recorded: 2016-Jul-07 12:00:20.388864 GMT Run / Event / LS: 276495 / 223808853 / 188

Evidence for Higgs Boson decay to a pair of muons at CMS (IHEP 01(2021) 148)

Irene Dutta (Caltech)

on behalf of CMS Collaboration

LaThuile 2021 - Les Rencontres de Physique de la Vallée d'Aoste

11 March 2021

The Higgs Boson properties

- Gauge Bosons in the SM acquire mass by electroweak symmetry breaking
- Fermions acquire masses through Yukawa couplings

Higgs couplings to the third generation fermions $(t/b/\tau)$ and to the SM bosons $(W/Z/\gamma)$ are well measured - <u>CMS PAS HIG-19-005</u>

Higgs couplings to 2nd generation fermions

- H→cc has the largest BR, but also more background contamination
- H→µµ is currently the cleanest probe for second generation Yukawa coupling at the LHC
 - BR(H \rightarrow µµ) ~2.15×10⁻⁴ for M_H = 125.38 GeV
 - Mass peak resolution : 1.5~2.5 GeV
- Large background (dominated by Drell-Yan Z→µµ, electro-weak Z, others include top, diboson and triboson production).
- S/B~1/500 in mass window 120-130 GeV.

CMS: a detector designed for muons (and more!)

Muon \triangle p/p varies from ~1% at 50 GeV to ~10% at 1 TeV

Search strategy

- Two oppositely charged muons that are well isolated and have the largest sum p_{T} .
- Higgs-candidate $M_{\mu\mu} \in [110, 150]$ GeV
- Exploit different kinematic features of different production mechanisms

VH (4% of H

cross section)

Events

VBF (7% of H

cross section)

Cross section (pb)

Μ_{µµ}

Purity (S/S+B)

ttH (1% of H cross section)

Event separation

Event separation

- Train independent BDTs for each region
- Background modelled with discrete likelihood profile of physics inspired and empirical functions.
- Signal peak modelled with a Gaussian function with power-law tails on both sides
- Perform a parametric fit to $M_{\mu\mu}$ spectrum

- Train a deep neural network
- Perform a simulation based template fit to DNN score output

Evidence of $H \rightarrow \mu \mu$

Production category	Observed (expected) Signif.	Observed (expected) UL on μ	
VBF	2.40 (1.77)	2.57 (1.22)	
ggH	0.99 (1.56)	1.77 (1.28)	
ttH	1.20 (0.54)	6.48 (4.20)	
VH	2.02 (0.42)	10.8 (5.13)	
Combined $\sqrt{s} = 13 \text{TeV}$	2.95 (2.46)	1.94 (0.82)	
Combined $\sqrt{s} = 7, 8, 13 \text{ TeV}$	2.98 (2.48)	1.93 (0.81)	

- For ggH, VH, and ttH channels - interpolate signal shape parameters analytically from m_H = 120, 125, and 130 GeV signal samples.
- For VBF channel, re-evaluate DNN for each mass point with the mass input fixed to that value and perform a new fit
- Observed jitter in VBF due to shuffling of data events in high score DNN bins as mass changes (binned fit).

M_H = 125.38 GeV

8

$H \rightarrow \mu \mu$ signal strength

Simultaneous fit performed across all channels with $\mu = [\sigma * BR_{obs}] / [\sigma * BR_{SM}]$

$$\mu = 1.19^{+0.41}_{-0.39}$$
(stat) $^{+0.17}_{-0.16}$ (syst) for M_H = 125.38 GeV

Systematic uncertainties on Run 2 combination

Largest systematic uncertainty impacts from

- limited statistics in data.
- the signal and background theory modeling
- Main experimental uncertainties include jet energy scale and resolution uncertainties.

Uncertainty source	Δμ	
Total uncertainty	+0.44	-0.42
Statistical uncertainty	+0.41	-0.39
Total systematic uncertainty	+0.17	-0.16
Size of simulated samples	+0.07	-0.06
Total experimental uncertainty	+0.12	-0.10
Total theoretical uncertainty	+0.10	-0.11

Summary

- Measurement of H→µµ presented, combing four separate analyses targeting ggH, VBF, VH, and ttH production.
- Observed (expected) excess in data over bkg-only prediction of 3.0σ (2.5 σ) at m_H = 125.38 GeV.
- $\kappa_{\mu} \in [0.62, 1.52]$ at 95% CL

Measured κ_{μ} directly by combining with <u>HIG-19-005</u> (PAS-only)

Some common variable definitions

- H_T : Scalar sum p_T of all jets in an event
- H_T^{miss} : The negative vector sum of the p_T of all jets in the event with $p_T > 30$ GeV and $|\eta| < 4.7$
- E_T ^{miss}: The negative vector sum of the p_T of all reconstructed particles
- M_T : Transverse mass or $\sqrt{(E^2 p_z^2)}$
- Collins Soper angles :
 - $\circ \quad \textbf{cos(0^*)}: \text{ The cosine of the angle between the collinear muons (µ) in the dimuon rest frame and the line that bisects the acute angle between the colliding partons (p)} \label{eq:cost}$
 - $\cos(\phi^*)$: The cosine of the angle between the dimuon plane and the plane of the colliding partons

CMS Experiment at the LHC, CERN Data recorded: 2018-Sep-30 16:00:48.744704 GMT Run / Event / LS: 323755 / 1382838897 / 755

ggH channel

ggH

- The ggH channel collects events not selected by the other channels (ttH, VH, and VBF)
- This channel collects the largest amount of $H(\mu\mu)$ events but has the smallest S/B \rightarrow challenging search
- Main background is Drell-Yan+jets
- Machine learning classifier (a.k.a. Boosted Decision Tree or BDT) used to separate Higgs signals from expected backgrounds
- Perform a parametric fit to the $M(\mu\mu)$ spectrum

ggH BDT

Bin the continuous BDT output into different boundaries by optimizing S/B

Signal modeling for ggH

- Need to extract the signal peak from the continuously falling background shape
- Signal model: Double sided crystal ball function
 - Gaussian with power-law tails on both sides

$$DCB(m_{\mu\mu}) = \begin{cases} e^{-(m_{\mu\mu} - \hat{m})^2 / 2\sigma^2} & -\alpha_{\rm L} < \frac{m_{\mu\mu} - \hat{m}}{\sigma} < \\ \left(\frac{n_{\rm L}}{|\alpha_{\rm L}|}\right)^{n_{\rm L}} e^{-\alpha_{\rm L}^2 / 2} \left(\frac{n_{\rm L}}{|\alpha_{\rm L}|} - |\alpha_{\rm L}| - \frac{m_{\mu\mu} - \hat{m}}{\sigma}\right)^{-n_{\rm L}} & \frac{m_{\mu\mu} - \hat{m}}{\sigma} \le -\alpha_{\rm L} \\ \left(\frac{n_{\rm R}}{|\alpha_{\rm R}|}\right)^{n_{\rm R}} e^{-\alpha_{\rm R}^2 / 2} \left(\frac{n_{\rm R}}{|\alpha_{\rm R}|} - |\alpha_{\rm R}| - \frac{m_{\mu\mu} - \hat{m}}{\sigma}\right)^{-n_{\rm R}} & \frac{m_{\mu\mu} - \hat{m}}{\sigma} \ge \alpha_{\rm R} \end{cases}$$

Background modeling for ggH

- Background modeling through Core-PDF method
- No prior assumption on background shape or normalization

Background modeling for ggH

Bias due to choice of background function studied

- Select multiple physics-inspired and agnostic background functions
- For each choice of function: perform B-only fits to data in each category with independent and uncorrelated parameters
- From the post-fit shapes \rightarrow generate pseudo-data across all categories
- S+B fits are performed on the pseudo-data sets using the core-pdf method with a chosen signal strength (μ)
- Measured bias in each category as **median[b = (\mu \mu_{inj})/\sigma_{\mu}]** \rightarrow always < 20% (negligible impact on result).

Fitting strategy for ggH

137 fb⁻¹ (13 TeV)

Data - S+B fit

±1σ ±2σ

----- Bkg. component

> 80 CMS

Events

70

60

50

40 30

20

Data-Bkg

aaH-cat1

m., = 125.38 GeV

- Perform independent S+B fits to M(µµ) in each BDT category
- S+B fit describes the data well throughout the M(μμ) spectrum in all categories.

VH

- No two same flavour leptons with $m_{\parallel} < 12$ GeV in the event
- Main backgrounds are WZ, $qq \rightarrow ZZ$ and $gg \rightarrow ZZ$
- Train two independent BDTs for WH and ZH

WH BDT

Dimuon system

• p_T(μμ)

Single muon

- η(μ₁), η(μ₂)
- $\Delta R(\mu_1,\mu_2)$

Additional lepton (with charge c)

- Flavour , p_τ, η
- ΔR(μμ, I) , Δη(μμ, I)

Weight signal events in BDT training by $1/(\sigma_{\mu\mu}/M_{\mu\mu})$

Others

- $\cos(\theta^*)$ between (μ_1 , I) and (μ_2 , I)
- $\Delta \eta(\mu_1, I)$ and $\Delta \eta(\mu_2, I)$
- ΔR(μ^{-c}, l^c)
- M_T of the extra lepton and H_T^(miss)
- M_{T} of the μ^{C} and the $H_{T}^{(miss)}$
- $\Delta \phi(\mathbf{H}_{T}^{(miss)}, I)$

Bin the continuous BDT output into different boundaries by optimizing S/B

ZH BDT

Dimuon system

- p_T(μμ) , η(μμ)
- $\Delta \phi(\mu_1, \mu \mu), \Delta \phi(\mu_1, \mu \mu)$

Other lepton pair

- M(II), p_T, η, flavour
- $\Delta R(I_1,I_2)$

Others

- cos(θ*) between μμ and II
- Δη(μμ, II)

Weight signal events in BDT training by $1/(\sigma_{\mu\mu}/M_{\mu\mu})$

Bin the continuous BDT output into different boundaries by optimizing S/B

VH fitting strategy

Perform independent fits to $M(\mu\mu)$ in each BDT category

137 fb⁻¹ (13 TeV)

Data

- S+B fit

 $\pm 1\sigma$

±2 σ

Bkg. component

Events / GeV 12

Data-Bkg.

110

145 150

 $m_{\mu\mu}$ (GeV)

CMS

- Signal model: Double sided crystal ball function
- Background fit with analytical functions

CMS

WH-cat2

m., = 125.38 GeV

/ GeV

Events

Bka

110

145 150

m_{uu} (GeV)

25

20

137 fb⁻¹ (13 TeV)

Bka, component

Data

S+B fit

±1σ ±2 σ

GeV

Events /

Data-Bkg.

110

35 F CMS

30

25

20

WH-cat1

m_u = 125.38 GeV

25

CMS Experiment at the LHC, CERN Data recorded: 2016-Jun-04 20:33:48.969022 GMT Run / Event / LS: 274420 / 119660942 / 136

ttH channel

ttH

- Characterized by ≥ 1 b tagged jet
- Split into two orthogonal channels: hadronic (2µ) and leptonic (2µ + additional µ/e)
- Large backgrounds from
 - \circ di-leptonic $t\bar{t}$ production and
 - Drell Yan
 - ttZ production
- Two independent BDTs are trained for ttH-hadronic and ttH-leptonic

ttH BDT

Dimuon system

- p_τ(μμ)
- y(µµ)
- Collin-Sopper angles

Event activity

• H_T , $H_T^{(miss)}$, $E_T^{(miss)}$, N(jets), $p_T(jet)$, $\eta(jet)$, b-tagging score • ζ (projection of $E_T^{(miss)}$ on bisector of dimuon system)

• η(μ)

Single muon

• $p_{\tau}(\mu)/m(\mu\mu)$

Adding either observables aiming at the hadronic decay or the leptonic decay of the top quark

leptonic top • m(lb) Δφ(µµ, I) • $m_{T}(I, E_{T}^{(miss)})$

hadronic top

 RHTT -a BDT trained to identify top quarks decaying to three resolved jets

• p_T(top)

28

Bin each of the continuous BDT outputs into different boundaries by optimizing S/B

ttH fitting strategy

- Perform independent fits to $M(\mu\mu)$ in each BDT category
- Signal model: Double sided crystal ball function
- Background fit with simple exponential (ttH-lep) or polynomial (ttH-had). GeV

Events / 2

1.8

0.6 0.4

0 2

110

Data-Bkg

137 fb⁻¹ (13 TeV)

137 fb⁻¹ (13 TeV)

Template based VBF channel

- Jet selection : $p_T > 35$ (25) GeV for the leading (sub-leading) jet and isolated from leptons
- At least two jets with $M_{ii} > 400 \text{ GeV}, \Delta \eta (jj) > 2.5$
- Train a supervised machine learning classifier (a.k.a deep neural network or DNN) with $M(\mu\mu)$
- MC template based fit to DNN score Performance depends on statistical power of background MC in signal region and data/MC agreement
- Major backgrounds are Drell-Yan Z and electroweak production of Z

Electroweak production of Z+jj

VBF DNN

Dimuon variables

- $M(\mu\mu), \delta M(\mu\mu), \delta M(\mu\mu)/M(\mu\mu)$
- $p_{\tau}(\mu\mu)$, log($p_{\tau}(\mu\mu)$),
- η (μμ)

Dijet variables

- log(M(jj)), M(jj),
- △ŋ (jj) •

Jet kinematics

- j₁ p_T, j₂ p_T
 j₁ η, j₂ η

Quark-Gluon Likelihood: exploit jet constituents and shape to discriminate between quark-jet and gluon-jet (j1 qgl, j2 qgl)

Collins-Soper variables

- $\cos(\theta^*)$
- $\cos(\phi^*)$

Dimuon + Dijet system

- $Z^*(\mu\mu) = Z/(|\eta_{i1} \eta_{i2}|)$, where $Z = \eta_{\mu\mu}$ - $0.5^{*}(\eta_{11} + \eta_{12})$
- min [Δ $\eta(\mu\mu, j1), \Delta \eta(\mu\mu, j2)$] •

Soft jet variables (jets reconstructed by only charged tracks associated to the PV that are not associated with the 2 leading jets or the selected muons)

- HT of soft EWK jets with pt > 2 GeV •
- Number of soft EWK jets with pt > 5 GeV

VBF fitting strategy

Two analysis regions based on $M_{\mu\mu}$

- Higgs peak: $M_{\mu\nu} \in [115, 135]$ GeV
- Higgs sideband: $M_{uu} \in [110, 115] \text{ GeV } \cup [135, 150] \text{ GeV}$

Binned template fit to DNN score

- last DNN bin signal purity 42%
- Simulation provides a background prediction with better precision, including systematics
- 20% improvement in sensitivity compared to a parametric fit to M_{μμ}
- Fit performed simultaneously across data-taking periods and in signal and sideband regions

Inverting the VBF DNN score fit to get $M_{\mu\mu}$

- $M_{\mu\mu}$ distribution for the weighted combination of VBF-SB and VBF-SR events.
- Each event is weighted proportionally to the S/(S + B) ratio, calculated as a function of the mass-decorrelated DNN output (replacing the dimuon mass input to the DNN with a fixed value of 125 GeV).
- **Disclaimer** This plot isn't used to derive the final combined result - just a way to visualize the $M_{\mu\mu}$ spectrum

