

Beauty baryons spectroscopy at LHCb

Viacheslav Matiunin NRC KI-ITEP, Moscow on behalf of the LHCb collaboration

La Thuile, 9-11 March 2021 Les Rencontres de Physique de la Vallée d'Aoste (virtual)

LHCD Recent LHCb results on beauty baryons spectroscopy

Recent LHCb results on beauty baryons spectroscopy

5.65

 $\left[\text{GeV}/c^2 \right]$

 $m(\Lambda_{\rm b}^0 \pi \pi)$

 $[GeV/c^2]$

background total fit

5.6

 $m_{\psi(2S)p\pi^-}$

🕂 data

Candida

 $\left[\text{GeV}/c^2\right]$

background

5.5

5.6

 $m_{\chi_{c1} p \pi^-}$

5.7

40

5.4

 $m(\Lambda_b^0 \pi^+ \pi^-)$ [GeV/c²]

3.94

b-hadrons analysis strategy

Detached vertex method (keep only long-lived candidates)

Further selection to suppress background

- Track quality
- Particle identification
- Decay vertex separation from PV
- b-hadron pointing from PV

- Tracks not from PV
- Decay vertex quality
- Trigger on J/ψ and $\psi(2S)$

Motivation

Pentaquark resonances

Hidden-charm pentaquark resonances have been seen only in the $J/\psi p$ and $J/\psi \Lambda$ systems:

- $\Lambda_b^0 \rightarrow J/\psi p K^-$ [PRL 115 (2015) 072001, PRL 122 (2019) 222001, PRL 117 (2016) 082002]
- $\Lambda_b^0 \rightarrow J/\psi p \pi^- \left[\underline{\text{PRL 117 (2016) 082003}} \right]$
- $\Xi_b^- \rightarrow J/\psi \Lambda K^-$ [arXiv:2012.10380]

Interesting to search for resonances in other systems, like $\psi(2S)p$, $\chi_{c1}p$ and $\chi_{c2}p$.

Tetraquark resonances

Tetraquark resonances have been seen in the $\psi(2S)\pi^-$ and $\chi_{c1}\pi^-$ systems using following decays:

- $B^0 \rightarrow \psi(2S)K^+\pi^-$ [PRL 100 (2008) 142001, PRD 80 (2009) 031104, PRD 88 (2013) 074026, PRL 112 (2014) 222002, PRD 92 (2015) 112009]
- $B^0 \rightarrow \chi_{c1} K^+ \pi^-$: two $Z_c^{+} \rightarrow \chi_{c1} \pi^+$ observed by Belle [<u>PRD 78 (2008) 072004</u>], not confirmed by BaBar [<u>PRD 85 (2012) 052003</u>]

Interesting to search for same resonances $\psi(2S)\pi^-$ and $\chi_{c1}\pi^-$ with other decay channels.

Previous analysis of the $\Lambda_b^0 \rightarrow \chi_{c1,2}^0 pK^-$ decays:

•
$$\frac{Br(\Lambda_b^0 \to \chi_{c2} p K^-)}{Br(\Lambda_b^0 \to \chi_{c1} p K^-)} = 1.02 \pm 0.10 \pm 0.02 \pm 0.05 \ [PRL 119 (2017) 062001],$$

which is much higher than that for $B \rightarrow \chi_{c1,2} K^{(*)}$ measurements by Belle, BABAR and LHCb. Such a suppression is expected within QCD factorisation approach.

For example, $\frac{Br(B^0 \to \chi_{c2} K^{*0})}{Br(B^0 \to \chi_{c1} K^{*0})} = (17.1 \pm 5.0 \pm 1.7 \pm 1.1) \times 10^{-2} [LHCb-PAPER-2013-024]$

Observation of the decay $\Lambda_b^0 \rightarrow \chi_{c1} p \pi^-$

Channels under study:

 $\begin{array}{ll} \mbox{Signal:} & \Lambda_b^0 \rightarrow \chi_{c1,2} p \pi^- \\ \mbox{Normalization:} & \Lambda_b^0 \rightarrow \chi_{c1,2} p K^- \end{array} \} \begin{array}{l} \chi_{c1,2} \rightarrow \gamma J/\psi, \ J/\psi \rightarrow \mu^+ \mu^- \end{array}$

 $\chi_{\!c0}$ contribution is not expected to give a sizeable contribution:

- suppressed within QCD factorisation approach (wrt χ_{c1})
- much smaller (wrt $\chi_{c1})$ branching fraction to $\gamma J/\psi$

Background suppression:

Multivariate analysis: $c\tau(\Lambda_b^0)$, kinematics, particle identification

Data: 2015-2018, integrated luminosity 6.0 fb⁻¹

Mass is calculated with PV, J/ψ and χ_{c1} mass constraints

arXiv:2103.04949

Observation of the decay $\Lambda_b^0 \rightarrow \chi_{c1} p \pi^-$

Background-subtracted $m(J/\psi\gamma)$ distributions

arXiv:2103.04949

Observation of the decay $\Lambda_b^0 \rightarrow \chi_{c1} p \pi^-$

Systematics

arXiv:2103.04949

- Systematic uncertainties largely cancel for the ratios
- The remaining contributions are summarised in Table:

Source	$\mathcal{R}_{\pi/\mathrm{K}}$	$\mathcal{R}^{\pi}_{2/1}$	$\mathcal{R}_{2/1}^{ ext{K}}$
Fit model	2.4	3.7	3.7
$\Lambda_{\rm b}^0$ production spectra	< 0.1		
$\Lambda_{\rm b}^{0} \rightarrow \chi_{\rm cJ} {\rm pK}^{-}$ decay models	< 0.1		< 0.1
Track reconstruction	< 0.1		
Hadron identification	0.3		
Trigger efficiency	1.1		
Data-simulation agreement	2.0		
Simulation sample size	0.4	0.6	0.7
Sum in quadrature	3.3	3.8	3.8

Alternative fit models:

- Maximum deviation of yields ratio is taken from fits of high-statistics pseudoexperiment samples with alternative models as a systematics for $R_{\pi/K}$, $R_{2/1}^{\pi}$ and $R_{2/1}^{K}$.
- Statistical significance of the $\Lambda_b^0 \rightarrow \chi_{c2} p \pi^-$ channel is calculated from fits of data with alternative models. The smallest significance of 3.5σ is taken as its **significance including systematic uncertainties**.

Resonant structure of $\Lambda_b^0 \rightarrow \chi_{c1} p \pi^-$

Results: branching fraction ratio

arXiv:2103.04949

$$\mathcal{R}_{\pi/\mathrm{K}} = \frac{\mathcal{B}\left(\Lambda_{\mathrm{b}}^{0} \to \chi_{\mathrm{c1}} \mathrm{p} \pi^{-}\right)}{\mathcal{B}\left(\Lambda_{\mathrm{b}}^{0} \to \chi_{\mathrm{c1}} \mathrm{p} \mathrm{K}^{-}\right)} = (6.59 \pm 1.01 \pm 0.22)\%,$$

$$\mathcal{R}_{2/1}^{\pi} = \frac{\mathcal{B}\left(\Lambda_{\mathrm{b}}^{0} \to \chi_{\mathrm{c2}} \mathrm{p} \pi^{-}\right)}{\mathcal{B}\left(\Lambda_{\mathrm{b}}^{0} \to \chi_{\mathrm{c1}} \mathrm{p} \pi^{-}\right)} = 0.95 \pm 0.30 \pm 0.04 \pm 0.04, \qquad \mathcal{R}_{2/1}^{\mathrm{K}} = \frac{\mathcal{B}\left(\Lambda_{\mathrm{b}}^{0} \to \chi_{\mathrm{c2}} \mathrm{p} \mathrm{K}^{-}\right)}{\mathcal{B}\left(\Lambda_{\mathrm{b}}^{0} \to \chi_{\mathrm{c1}} \mathrm{p} \pi^{-}\right)} = 1.06 \pm 0.05 \pm 0.04 \pm 0.04,$$

Background-subtracted distributions for the $\Lambda_b^0 \rightarrow \chi_{c1} p \pi^-$ decay

Overall, no evident peaking structure.

A search for small contributions from exotic states would be possible with a larger data sample.

LHCb Previous study of similar decay $\Lambda_b^0 \rightarrow \psi(2S) p\pi^-$

Channels under study:

Signal: $\Lambda_b^0 \rightarrow \psi(2S)p\pi^-$ Normalization: $\Lambda_b^0 \rightarrow \psi(2S)pK^ \psi(2S) \rightarrow \mu^+\mu^-$

Data: 2011-2016, integrated luminosity 4.9 fb⁻¹

Branching fraction ratio:

 $\frac{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \psi(2S)p\pi^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \psi(2S)pK^{-}\right)} = (11.4 \pm 1.3 \pm 0.2)\%$

Background-subtracted distributions:

Mass is calculated with PV and $\psi(2S)$ mass constraints

JHEP 1808 (2018) 131

HCD Comparison with analogous measurements

Results for χ_{c2}/χ_{c1}

JHEP 1808 (2018) 131, arXiv:2103.04949

$$\mathcal{R}_{2/1}^{\pi} = \frac{\mathcal{B}\left(\Lambda_{\rm b}^{0} \to \chi_{\rm c2} \mathrm{p} \pi^{-}\right)}{\mathcal{B}\left(\Lambda_{\rm b}^{0} \to \chi_{\rm c1} \mathrm{p} \pi^{-}\right)} = 0.$$
$$\mathcal{R}_{2/1}^{\rm K} = \frac{\mathcal{B}\left(\Lambda_{\rm b}^{0} \to \chi_{\rm c2} \mathrm{p} \mathrm{K}^{-}\right)}{\mathcal{B}\left(\Lambda_{\rm b}^{0} \to \chi_{\rm c1} \mathrm{p} \mathrm{K}^{-}\right)} = 1$$

 $.95 \pm 0.30 \pm 0.04 \pm 0.04$, Result shows also no suppression of χ_{c2} mode wrt χ_{c1}

 $1.06 \pm 0.05 \pm 0.04 \pm 0.04$,

In agreement with previous measurement by LHCb $1.02 \pm 0.10 \pm 0.02 \pm 0.05$ [PRL 119 (2017) 062001]

Results for Cabibbo-suppression:

$$\frac{\mathcal{B}\left(\Lambda_{\rm b}^{0} \to \psi(2S)p\pi^{-}\right)}{\mathcal{B}\left(\Lambda_{\rm b}^{0} \to \psi(2S)pK^{-}\right)} = (11.4 \pm 1.3 \pm 0.2)\%$$

$$\frac{\mathcal{B}\left(\Lambda_{\rm b}^{0} \to \chi_{\rm c1} \mathrm{p} \pi^{-}\right)}{\mathcal{B}\left(\Lambda_{\rm b}^{0} \to \chi_{\rm c1} \mathrm{p} \mathrm{K}^{-}\right)} = (6.59 \pm 1.01 \pm 0.22)\%$$

Comparison with previous measurements

Conclusion

- The LHCb experiment provides an excellent possibility for study of beauty baryons spectroscopy:
 - Observation of the decay $\Lambda_b^0 \rightarrow \chi_{c1} p \pi^- [arXiv:2103.04949]$
 - Observation of the decay $\Lambda_b^0 \rightarrow \psi(2S)p\pi^-$ [JHEP 1808 (2018) 131]
- Looking forward to new results!

For more LHCb results see:

- Exotic hadrons: recent LHCb discoveries (talk by Zehua Xu)
- Rare Decays and Anomalies at LHCb (talk by Mick Mulder)
- Precision flavour physics at LHCb: CP violation and CKM constraints (talk by Sevda Esen)

Acknowledgments

OLGA IGONKINA FOUNDATION

I would like to express my gratitude to the Olga Igonkina Foundation for supporting this talk