

Universität Zürich

Flavour Non-universal Pati-Salam Unification and Neutrino Masses

La Thuile, 10 Mars 2021 - Les Rencontres de Physique de la Vallée d'Aoste

Julie Pagès University of Zurich

Based on J. Fuentes-Martín, G. Isidori, J. Pagès and B. Stefanek, arXiv:2012.10492

Flavour puzzle

Structural problem of the SM:

Gauge sector is very compact → 3 parameters for all interactions

Flavour sector is more complex → **13** (+9 for neutrinos) masses and mixings spanning 5 orders of magnitude

$$M_{u,d,e} \sim \begin{pmatrix} \blacksquare & \blacksquare & \bullet \\ \blacksquare & \blacksquare & \bullet \\ \bullet & \blacksquare & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{pmatrix}$$

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

Motivation

B anomalies Hints of Lepton Flavour Universality Violation $\rightarrow \sim 3\sigma$ in charged current $v_{\tau}/v_{\mu}, v_{e}$ \mathbb{W} $b \rightarrow c\tau\nu$ in $\tau/\mu, e$ ratio tree in SM $\rightarrow \sim 4\sigma$ in neutral current Z $b \rightarrow s\ell\ell \text{ in } \mu/e$ ratio loop in SM [See talk by Peter Stangl] Combined explanation at TeV scale requires NP in $\tau \gg$ NP in μ/e $U_1 \sim (3,1)_{2/3}$ vector leptoquark as best mediator [See talk by Javier Fuentes-Martín]

Flavour puzzle

 $Y_{u,d,e} = y_{t,b,\tau} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $Y_{u,d,e} = y_{t,b,\tau} \begin{pmatrix} \epsilon_H & \epsilon_L \\ 0 & 1 \end{pmatrix}$ Deviations parametrised by U(2)⁵ spurions

[Barbieri, Isidori, Jones-Pérez, Lodone, Straub, 1105.2296]

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

Motivation

[Barbieri, Isidori, Pattori, Senia, 1512.01560 Buttazzo, Greljo, Isidori, Marzocca, 1706.07808 Fuentes-Martín, Isidori, JP, Yamamoto, 1909.02519]

Pati-Salam Unification:

[Pati, Salam, PRD 10 (1974) 275-289]

Fermion families (mostly) localised on each site:

 $\Psi_{I}^{(i)} \sim (4,2,1)_{i}$

[Bordone, Cornella, Fuentes-Martín, Isidori, 1712.01368]

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

 $PS_i = SU(4)_i \times SU(2)_{L,i} \times SU(2)_{R,i}$

(minimal group containing U₁ leptoquark)

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

Non-linear link fields: $\Omega_{ij}^4 \sim (4,1,1)_i \times (\bar{4},1,1)_j$ $\Omega_{ij}^L \sim (1,2,1)_i \times (1,\bar{2},1)_j$ $\Omega_{ii}^{R} \sim (1,1,2)_{i} \times (1,1,\bar{2})_{j}$

 \hookrightarrow UV cut-off: $\Lambda \sim 4\pi f_{ij}^{4,L,R}$ vevs

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

 $\Sigma_i \sim (4,1,2)_i$ $\langle \Sigma_3 \rangle = \epsilon_{\Sigma} \langle \Sigma_2 \rangle = \epsilon_{\Sigma}^2 \langle \Sigma_1 \rangle$

 $H_i \sim (1,2,2)_i$ $\langle H_1 \rangle = \epsilon_H \langle H_2 \rangle = \epsilon_H^2 \langle H_3 \rangle$

Horizontal breaking

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

Low-energy model

Fermion masses $\bar{\Psi}_{L}^{(i)}H_{i}\Psi_{R}^{(i)}$ $\langle H_1 \rangle = \epsilon_H \langle H_2 \rangle = \epsilon_H^2 \langle H_3 \rangle$

 $\epsilon_R \approx 0$ \Rightarrow This model with nearest neighbour interactions provides a $\epsilon_H \sim \epsilon_I^2 \sim 10^{-2}$ dynamical description of the flavour sector of the SM consistent with B anomalies for

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

Contribution to B anomalies:

• PS₃ leptoquark with mass $\langle \Sigma_3 \rangle$

Flavour non-universal vector LQ $U_1 \sim (3,1)_{2/3}$

 \checkmark couples mainly to 3rd family \checkmark coupling to light families $\propto \epsilon_{ii}^{L}$

[Di Luzio, Fuentes-Martin, Greljo, Nardecchia, Renner, 1808.00942; Cornella, Fuentes-Martin, Isidori, 1903.11517; Fuentes-Martin, Isidori, König, Selimovic, 1910.13474, 2006.16250. 2009.11296]

Neutrino Extension to PS³

Quark-lepton unification in its original form implies

$$m_e^{(i)} = m_d^{(i)}$$

Low-scale unification $\langle \Sigma_3 \rangle \sim \text{TeV}$ implies Majorana mass for ν_R is limited by $m_{\nu_R}^{(3)} \leq \text{TeV}$

[Greljo, Stefanek, 1802.04274]

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

Minimal extension: add fermion singlets $S_{I}^{(i)}$ with (hierarchical) Majorana masses to implement inverse seesaw

Neutrino Extension to PS³

Inverse Seesaw setup

$$m \approx m_{-}$$

 μ generated dynamically by singlet scalar Φ_i breaking spontaneously $U(1)_F \leftarrow$ fermion number

$$\begin{array}{l} \text{very hierarchical } \mu^{(i)} \sim \langle \Phi_i \rangle \\ \text{Erase U(2)^5 in} \\ \text{the neutrino sector:} \\ \text{hierarchical ratio} \frac{m_D^{(i)}}{m_R^{(i)}} \end{array}$$

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

rino solution $m_{\nu} \approx m_D m_R^{-1} \mu (m_R^{-1})^{\mathsf{T}} m_D^{\mathsf{T}}$

for
$$m_D^{(i)} \sim m_u^{(i)} \sim (10^{-2}, 1, 10^2) \text{ GeV}$$

 $m_R^{(i)} \sim (10^7, 10^5, 10^3) \text{ GeV}$
 $\mu \sim (10^7, 10^{-1}, 10^{-9}) \text{ GeV}$
 $\Rightarrow 10^{-2} \text{ eV} \lesssim m_\nu^{(i)} \lesssim 10^{-1} \text{ eV}$

Neutrino extension

Signature of the model: mixing between active neutrino and pseudo-Dirac neutral heavy states yields

PMNS unitarity violation

 $\eta \equiv |1 - NN^{\dagger}| \sim$ with expected pattern:

First sign of violation in

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

Neutrino prediction

$$\left| \frac{m_D^{(3)}}{m_R^{(3)}} \right|^2 \begin{pmatrix} \epsilon_L^4 & \epsilon_L^3 & \epsilon_L^2 \\ \epsilon_L^3 & \epsilon_L^2 & \epsilon_L \\ \epsilon_L^2 & \epsilon_L & 1 \end{pmatrix}$$

$$\frac{100 \text{ GeV}}{2 \text{ TeV}} \bigg|^2 = 2.5 \times 10^{-3}$$

 $\eta_{33}^{\exp} < 5.3 \times 10^{-3}$ (90 % C.L.)

[Antusch, Fischer, 1407.6607]

Full model in 5D

[Fuentes-Martín, Isidori, Lizana, Selimovic, Stefanek, w.i.p]

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

5D picture

Nearest-neighbour suppression factor:

 $\epsilon_{ii}^{F} = e^{-M_{F}/f_{ij}}$ with $f_{ij} = |y_{i} - y_{j}|^{-1}$

The three-site / 5D flavour non-universal Pati-Salam model:

- quark-lepton unification (with quantisation of $U(1)_{Y}$ charges)
- natural description of the SM Yukawa couplings in terms of $\mathcal{O}(1)$ parameters and fundamental scale ratios
- explanation for the hinted B anomalies

The neutrino extension:

- minimal: addition of fermion singlets $S_L^{(i)}$ and scalar singlets Φ_i breaking $U(1)_F$
- anarchic light neutrino mass matrix despite $U(2)^5$ in the Yukawa matrices
- predicts PMNS unitarity violation with η_{33} close to experimental bounds,
- natural setup in the context of extra dimensions

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

Conclusion

*crossing fingers for next year conference to be like this picture

Carlo Carlo Carlo

Thank you !*

L. MOTORAT

ATCOMPANY.

1100

and the state of the

and the second

L'AD AT

Back-up slides

Neutrino mass matrix diagonalization

$$-\mathscr{L}_{\nu} \supset \underbrace{\begin{array}{c} \mathsf{Dirac\ mass\ } m_{D} \\ \Psi_{L}^{(i)}H_{i}\Psi_{R}^{(i)} \end{array}}_{L} + \underbrace{\begin{array}{c} m_{R}\ matrix \\ S_{L}^{(i)}\Sigma_{i}^{\dagger}\Psi_{R}^{(i)} \end{array}}_{L} + \underbrace{\begin{array}{c} \mathsf{Mixing} \\ (e_{S}\,\overline{S}_{L}^{(2)}\Sigma_{1}^{\dagger}\Psi_{R}^{(1)} + \cdots) \end{array}}_{L} + \underbrace{\begin{array}{c} \mathsf{Majorana\ mass\ } \mu \\ \overline{S}_{L}^{(i)}\Phi_{i}S_{L}^{(i)c} \end{array}}_{L} \\ -\mathscr{L}_{\nu} \supset \frac{1}{2}\bar{n}_{L} \begin{pmatrix} 0 & M_{D} \\ M_{D}^{T} & M_{R} \end{pmatrix} n_{L}^{c} + h.c. \quad \text{with}\ n_{L} = \begin{pmatrix} \nu_{L} \\ \nu_{R}^{c} \\ S_{L} \end{pmatrix}, \ M_{S} = (m_{D} \ 0) \text{ and }\ M_{R} = \begin{pmatrix} 0 & m_{R}^{T} \\ m_{R} & \mu \end{pmatrix} \qquad \begin{bmatrix} m_{D}^{(i)} \sim (10^{-2}, 1, 10) \\ m_{R}^{(i)} \sim (10^{7}, 10^{5}, 1) \\ \mu \sim (10^{7}, 10^{-1}, 10) \end{bmatrix} \\ \text{Perturbative block diagonalization:}\ W^{\intercal} \begin{pmatrix} 0 & M_{D} \\ M_{D}^{T} & M_{R} \end{pmatrix} W = \begin{pmatrix} (m_{\nu})_{3\times3} & 0 \\ 0 & (m_{h})_{6\times6} \end{pmatrix} \quad \text{with}\ W = \begin{pmatrix} \sqrt{1 - BB^{\dagger}} & B \\ -B^{\dagger} & \sqrt{1 - B^{\dagger}} \\ \text{Since det}\ M_{R} = -\det(m_{R}^{T}m_{R}), \text{ all eigenvalues}\ m_{R}^{(i)} > m_{D}^{(i)} \rightarrow \text{expansion parameter}\ m_{D}^{(i)}/m_{R}^{(i)} \text{ independent of }\mu. \\ \text{At lowest order:}\ m_{\nu} \approx -M_{D}M_{R}^{-1}M_{D}^{T}, \ m_{h} \approx M_{R} \text{ and }\ B \approx M_{D}M_{R}^{-1} \qquad \text{with}\ M_{R}^{-1} = \begin{pmatrix} -m_{R}^{-1}\mu(m_{R}^{T})^{-1} & m_{R}^{-1} \\ (m_{R}^{T})^{-1} & 0 \end{pmatrix} \end{cases}$$

 $D^{--}K$ D

 $\Rightarrow m_{\nu} \approx m_D m_R^{-1} \mu (m_R^{\mathsf{T}})^{-1} m_D^{\mathsf{T}}$

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

PMNS unitarity violation

For $m_R^{(3)} \sim 10^3$ GeV, we require $m_D^{(3)} \leq 0.4 m_t \approx 70$ GeV \rightarrow similar to $m_\tau \approx 0.8 m_b$

 \rightarrow no fine-tuning needed but unitarity violation close to present experimental bounds.

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

$$n_{R}^{-1}(m_{D}m_{R}^{-1})^{\dagger} \qquad \eta \sim \left|\frac{m_{D}^{(3)}}{m_{R}^{(3)}}\right| \begin{pmatrix} (\epsilon_{12}^{L}\epsilon_{23}^{L})^{2} & \epsilon_{12}^{L}(\epsilon_{23})^{2} & \epsilon_{12}^{L}\epsilon_{23}^{L} \\ \epsilon_{12}^{L}(\epsilon_{23}^{L})^{2} & (\epsilon_{23})^{2} & \epsilon_{23}^{L} \\ \epsilon_{12}^{L}\epsilon_{23}^{L} & \epsilon_{23} & 1 \end{pmatrix}$$

[Antusch, Fischer, 1407.6607]

PMNS unitarity violation

Miminal Unitarity Violation: [Antusch, Fischer, 1407.6607]

$$\mathscr{L}_{\mathrm{MUV}} = \mathscr{L}_{RMSM}$$

$$\delta \mathscr{L}^{d=6} = c_{\alpha\beta}^{d=6} \left(\overline{L}_{\alpha} \tilde{\phi} \right) i \partial \left(\tilde{\phi}^{\dagger} L_{\beta} \right)$$

canonical normalization of the kinetic term after EWSB leads to a non-unitary leptonic mixing matrix

Set of observables:

- Electroweak precision observables
 - weak mixing angle
 - Z decay parameters
 - W decays
 - W boson mass
- Low energy observables
 - Universality tests (τ , π , μ , W and K decays)
 - Rare charged leptons decays
 - Neutrino deep inelastic scattering
 - Low energy measurements of s_W^2
- CKM unitarity

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

$$+ \delta \mathscr{L}^{d=5} + \delta \mathscr{L}^{d=6}$$
$$\delta \mathscr{L}^{d=5} = \frac{1}{2} c_{\alpha\beta}^{d=5} \left(\overline{L}_{\alpha}^{c} \widetilde{\phi}^{*} \right) \left(\widetilde{\phi}^{\dagger} L \right) + \text{h.c.}$$

Constraints on non-unitarity:

At 90 % C.L.

$$|NN^{\dagger}| = \begin{pmatrix} 0.9979 - 0.99988 & < 10^{-5} & < 2.1 \times 10^{-5} \\ < 10^{-5} & 0.9996 - 1.0 & < 8 \times 10^{-6} \\ < 2.1 \times 10^{-3} & < 8 \times 10^{-4} & 0.9947 - 1. \end{pmatrix}$$

Improvements from future experiments: FCC-ee at CERN, Mu3e at PSi, Mu2e at Fermilab, COMET at J-PARC...

Back-up slides

Global symmetry:

$$U(1)_{F_1} \times U(1)_{F_2} \times U(1)_{F_3}$$

 $U(1)_F$ spontaneously broken \rightarrow Nambu-Goldstone boson:

with
$$\mathscr{L}_J \supset \frac{i}{2} \frac{J}{\langle \Phi_1 \rangle} \mu_i \bar{S}_L^{(i)} S_L^{(i)^c}$$

Given a mass through explicit breaking a

• If $U(1)_F$ broken at Planck scale $m_I \approx 50$ GeV and decay $J \to \nu \nu$ with width controlled by $(m_{\nu}/\langle \Phi_1 \rangle)^2$. \hookrightarrow long lived on cosmological scale and potentially lead to unacceptably large relic abundance. [Akhmedov, Berezhiani, Mohapatra, Senjanovic, hep-ph 9209285]

• If $\Lambda_F \lesssim 10^{12}$ GeV then $m_J \gtrsim m_R^{(2)}$ and decay $J \to \nu_R^{(2)}$ \hookrightarrow no problem with relic abundances.

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

$U(1)_F$ breaking

 $\xrightarrow{\text{turn on nearest-}} U(1)_F$ neighbour interactions

Majoron J

$$\nu_R^{(2)}$$
 open with lifetime of $\tau \sim 1~{
m ps}$

up slides

Neutrino mechanisms

From low-scale quarklepton unification and without fine-tuning: $y_{\nu} \sim y_t$ and $m_{\nu_R} \lesssim 1$ TeV, hence type I Seesaw is excluded.

XSeesaw H 🔊 Q^H XRadiative Ø

A (big) Dirac mass term is already present between ν_R and ν_L , excluding type II/III Seesaw and radiative models.

[Valle, hep-ph 0608101]

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

5D construction

Robin boundary condition generates exponentially decaying vev from localisation site: $\langle H(y) \rangle \sim \langle H_3 \rangle e^{-M_H |y-y_3|}$

4D couplings and masses: given by integrating over $y \rightarrow$ overlap of field profiles, for example $m_{4D}^{ij} \propto m_{5D}^{ij} \left[dy f_L^{(i)}(y) \langle H(y) \rangle f_R^{(j)}(y) \sim \langle H_3 \rangle e^{-M_H |y_j - y_3|} e^{-M_L |y_i - y_j|} \right]$

Connection to three-site model: Identify nearest-neighbour suppression factor with exponential from y profile : $\epsilon_{ii}^{F} = e^{-M_F/f_{ij}}$ where $f_{ii} = |y_i - y_i|^{-1}$

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

Basics of an additional extra-dimension: 2^{5D} Compactification \rightarrow tower of KK modes: $\Phi(x^{\mu}, y) = \sum \phi_n(x^{\mu}) f_n(y)$ Orbifolding or boundary conditions \rightarrow realise chiral fermions Bulk mass generates fermion zero-modes of the form: $f_L^{(i)}(y) \propto e^{-M_L|y-y_i|}$

 \rightarrow same order bulk masses M_F can explain large hierarchies

5D model field content:

Fields	SU(4)	$SU(2)_L$	$SU(2)_R$	$U(1)_F$
Ψ_L	4	2	1	1
Ψ_R	4	1	2	1
S_L	1	1	1	1
Σ	4	1	2	0
H	1	2	$\overline{2}$	0
Φ	1	1	1	2

Profile in the 5th dimension:

Fermions: $\begin{aligned} f_L^{(i)}(y) \propto e^{-M_L|y-y_i|} \\ f_S^{(i)}(y) \propto e^{-M_S|y-y_i|} \end{aligned}$ $f_R^{(i)}(y) \propto \delta(y - y_i)$

Scalars: $\langle H(y) \rangle \sim \langle H_3 \rangle e^{-M_H |y - y_3|}$ $\langle \Sigma(y) \rangle \sim \langle \Sigma_1 \rangle e^{-M_\Sigma |y - y_1|}$ $\langle \Phi(y) \rangle \sim \langle \Phi_1 \rangle e^{-M_{\Phi}|y-y_1|}$

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

5D profiles

flavour structure implies $\epsilon_{12}^L \approx 2 \epsilon_{23}^L \Leftrightarrow \frac{f_{23}}{f_{12}} \approx \frac{2}{3}$

 \hookrightarrow independent on the overall 5D scale $L = f_{12}^{-1} + f_{23}^{-1}$

Back-up slides

Gauge sector in the flat 5D

Problems of a flat extra dimension: 1. $\langle \Omega_{ij}^4 \rangle \approx \langle \Omega_{ii}^{L,R} \rangle \longrightarrow$ same mass for $SU(2)_{L,R}$ and SU(4) vector excitations

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

- \rightarrow constraints from Z and W couplings $\rightarrow \Omega_{ii}^{\mathscr{G}} \rightarrow \Omega(x_{\mu}, y_{\mathscr{G}})$
- 2. $f_{12} \sim f_{23} \rightarrow$ flavour universal leptoquark \rightarrow FCNC bounds \rightarrow push f_{12} to 10^3 TeV or suppress 12 couplings

Warped 5D model

compatible with FCNC suppression in RH currents $e^{-2kf_{23}} \sim 10^{-5}$ and realising correct fermion mass hierarchy with $\langle H(y) \rangle \propto e^{2ky}$

Julie Pagès — Flavor Non-universal Pati-Salam Unification and Neutrino Masses — La Thuile 10/03/21

Features of the warped extra dimension: flavour structure unchanged → coupling of massive vectors $\propto \left(-\frac{1}{kL}, -\frac{1}{kL}, 1\right)$ \hookrightarrow emergence of $U(2)^5$ flavour symmetry \rightarrow SU(2)_L and SU(4) excitations still have same mass, constraints from $Z \rightarrow \tau_L \tau_L$ incompatible with required mass for the anomalies of $m_{LQ} \leq 5 \text{ TeV}$ Reasons unique fundamental PS_{5D} generators all equal on IR scale *kL* Potential solutions brane kinetic terms 6D construction

