Latest results from the CUORE experiment

Alice Campani for the CUORE collaboration Università di Genova - INFN

La Thuile 2021 - Les reconcontres de Physique de la Vallée d'Aoste

Double beta decay

Rare 2nd order nuclear decay: $(A, Z) \rightarrow (A, Z + 2) + 2e^- + (2\bar{\nu}_{\rho})$

Constraints on neutrino mass and hierarchy

The CUORE experiment

Cryogenic Underground Observatory for Rare Events

- Scientific goal: search for OvBB decay of ¹³⁰Te • (isotopic fraction ~34%, Q_{BB} ~2527 keV, only ²⁰⁸Tl γ line above)
- Tonne-scale detector: 988 ^(nat)TeO₂ crystals operated at ~10 mK TeO₂ mass is 742 kg (206 kg of 130 Te)
- Underground experiment at LNGS •

Effective FWHM at QBB 7.0(4) keV Background index in the ROI 1.38(7) · 10⁻² counts/keV/kg/yr

Adv. in High En. Phys. 2015, 879871 Eur. Phys. J. C77 (2017), 532

Projected sensitivity (5 years) $T_{0\nu\beta\beta}^{1/2} = 9 \cdot 10^{25} \text{ yr}$

The CUORE challenge

Bolometric technique

Particle energy release measured via crystal temperature increase

Pulse amplitude $\propto \Delta T \propto \Delta E$ (1 MeV $\Delta T \sim 100 \mu K$) NTD Ge thermistors: $\Delta R \sim 3M\Omega/MeV$

Custom cryogen free cryostat

•

Radiation shielding

Underground (LNGS): cosmic rays flux 10⁻⁶ relative to surface

> Internal shields: top: 30-cm Pb shield side and bottom: 6-cm ancient roman Pb shield (210Po<4 mBq/kg)

5 pulse tubes to reach 4K Dilution unit to maintain ~10 mK Strict constraints in terms of temperature and mechanical stability, materials radiopurity

External shield from γ s: 25-cm Pb layer External shield from neutrons: 20-cm layer in polyethylene H₃BO₃ panels

The CUORE commissioning and detector optimization

- Detector assembly in 2012 first cooldown in 2016 data taking started in 2017 \bullet
- \bullet

- Temperature scan to identify the optimal temperature (currently at 11.8 mK) •
- Upgrade of our detector calibration system in 2018 less invasive external setup' ullet
- Maintenance of the cryogenic system in 2019 stable data taking since then •

Linear drives and active noise cancellation to minimize vibrations induced by the pulse tubes

The CUORE data taking

- >90% uptime
- Reached 1 tonne-yr exposure
- Average rate ~50 kg·yr/month

- Voltage across NTD Ge thermistors continuously sampled at 1kHz
- Events triggered with software offline •

The CUORE data analysis

7

evaluation

The CUORE data analysis

Results on the OvBB decay of ¹³⁰Te to the ground state

- TeO₂ exposure included is 372 kg·yr
- Bayesian unbinned fit to the maximum posterior probability: flat priors, $\Gamma_{0
 u\beta\beta}>0$

We model the ROI (2490, 2575) keV with:

- Flat continuum
- ⁶⁰Co sum peak (rate + position)
- Posited peak for OvBB (rate)

No evidence of 0vßß decay $T_{0\nu\beta\beta}^{1/2} > 3.2 \cdot 10^{25} \text{ yr} (90\% \text{ C}.\text{ I.})$

Phys. Rev. Lett. 124, 122501 (2020)

Results on the OvBB decay of ¹³⁰Te to the ground state

We artificially release the physical constraint $\Gamma_{0\nu\beta\beta} > 0$ to evaluate how the systematics (nuisance parameters) affect our best fit [<0.04%] The impact on the half-life limit is <0.4%

Exclusion sensitivity

Median 90% C.I. limit setting sensitivity $T_{0\nu\beta\beta}^{1/2} = 1.7 \cdot 10^{25} \text{ yr}$ The probability to obtain a stronger limit than 3.2.10²⁵ yr is ~3%

The CUORE background model

- Based on CUORE-0 + CUORE budget Eur.Phys.J.C 77 (2017) 8, 543 •
- 9 geometric elements included: crystals, towers copper structure, copper vessel, cryostat thermal shields, lead shields, lead suspension system
- 60 β/γ contaminants + muons + ¹³⁰Te 2vBB decay
- GEANT4 + detector response to simulate CUORE events
- 3 energy spectra considered:

 \star single bolometer energy deposition (M_1) [~90% BB events]

 \star energies simultaneously deposited in two crystals (M_2)

 \star sum energy of M₂ events (Σ_2)

 M_1 events

 M_2 events

[γ scatters, α decays]

The CUORE background model

- •
- Flat prior for all the sources except muons (Gaussian pdf)

MCMC binned Bayesian fit of simulations to real data with JAGS

arXiv:2012.11749

New measurement of ¹³⁰Te 2vßß decay half-life

2υρρ

-0.00

Systematic effects:

- 2vBB spectral shape (SSD/HSD) [±1.3%]
- Energy threshold (300,800) keV [±0.4%]
- Different detector splitting [±0.8%]
- Single dataset fits [+0.3%,-1.1%]
- ⁹⁰Sr removal/only 25 sources [±0.3%]

tat.)
$$^{+0.12}_{-0.15}$$
(syst.)] 10²⁰ yr

arXiv:2012.11749

Other analyses with CUORE

¹²⁰Te positron emitting electron capture (0vBEC) decay $^{120}\text{Te} + e_b^- \rightarrow ^{120}\text{Sn} + \beta^+ + X$ $\rightarrow ^{120}\text{Sn} + 2\gamma_{511} + X$

•
$$Q_{BB} = 1714.8 \text{ keV}$$

- Several decay signatures based on where the positron/511-keV γs release energy
- Bayesian fit algorithm tested on blinded data
- Median 90% CI exclusion sensitivity (toy MC) $T_{0\nu\beta EC}^{1/2} = 3.3 \cdot 10^{22} \text{ yr}$

Conclusion and perspectives

- CUORE proved the scalability of the bolometric technique and paved the way to rare processes bolometric searches
- Data taking is proceeding smoothly to collect 5 years of run time •
- More than 1 tonne \cdot yr exposure collected up to now
- Updated results on ¹³⁰Te OvBB and other rare decay searches • will be released soon

Thank you on behalf of the CUORE collaboration

