

Flavour and Collider Signals from a Singly Charged Scalar

Claudio Andrea Manzari

Les Rencontres de Physique de la Vallée d'Aoste - 10.03.2021

A.Crivellin, F.Kirk, C.A.M., L.Panizzi arXiv: 2012.09845

Violation of Lepton Flavour Universality

Violation of Lepton Flavour Universality

Data Require a <u>Constructive</u> NP effect in: $\mu \rightarrow e\nu\nu \& \tau \rightarrow \mu\nu\nu$

Cabibbo Angle Anomaly

Cabibbo Angle Anomaly

Note: there is also a (less significant) deficit in the first column of the CKM unitarity relation. This further strengthen the idea of a modification in V_{ud} from β decays.

 $\mu \rightarrow e\nu\nu$ shows explicitly the connection with CAA

The Singly Charged Scalar

• Y = +1, $SU(2)_{I}$ singlet, Q = +1

Cannot couple to quarks

Couplings are <u>anti-symmetric</u> in flavour space \implies only 3 free couplings!

Note: $\lambda H^{\dagger}H\phi^{+}\phi^{-}$ contributes to the mass m_{ϕ} and has only a significant impact on $h \to \gamma \gamma$

 $\mathscr{L} = \mathscr{L}_{SM} - \left(\frac{\lambda_{ij}}{2}\bar{L}_{a,i}^c\varepsilon_{ab}L_{b,j}\phi^+ + h.c.\right)$

 $\lambda_{12}(\bar{e}^c\nu_{\mu}-\bar{\nu}_e^c\mu)\phi^++\ldots$

Automatically violates Lepton Flavour

LHC Searches

Drell-Yan Pair production

Mono Photon Searches

Lepton Decays

 $\delta(\ell_i \to \ell_j \nu \nu) = \frac{\mathscr{A}_{\rm NP}(\ell_i \to \ell_j \nu_i \bar{\nu}_j)}{\mathscr{A}_{\rm SM}(\ell_i \to \ell_j \nu_i \bar{\nu}_j)} = \frac{|\lambda_{ij}|^2}{g_2^2} \frac{m_W^2}{m_\phi^2}$

Necessarly constructive interference with SM

Loop Effects

 $Br[\mu \to e\gamma] \le 4.2 \times 10^{-13}$ $Br[\tau \to \mu\gamma] \le 4.4 \times 10^{-8}$ $Br[\tau \to e\gamma] \le 3.3 \times 10^{-8}$

 $Br[\mu^{-} \to e^{-}e^{+}e^{-}] \le 1.0 \times 10^{-12}$ $Br[\tau^{-} \to e^{-}e^{+}e^{-}] \le 1.4 \times 10^{-8}$ $Br[\tau^{-} \to e^{-}\mu^{+}\mu^{-}] \le 1.6 \times 10^{-8}$ $Br[\tau^{-} \to \mu^{-}e^{+}e^{-}] \le 1.1 \times 10^{-8}$ $Br[\tau^{-} \to \mu^{-}\mu^{+}\mu^{-}] \le 1.1 \times 10^{-8}$

of the couplings

Conclusions

We study the phenomenology of a singly charged scalar:

- It has only 4 parameters: 3 free couplings + mass \implies it is very predictive; •
- It violates LF(U) and gives a necessary positive contribution to $\ell \to \ell' \nu \nu$, as • preferred by data;
- From collider searches we derive a coupling independent limit of $m_{\phi^+} \gtrsim 200$ GeV;
- Flavour data ($\lambda_{13} \sim 0$) + Collider =
- We predict:

$$Br[\tau \rightarrow e\gamma] \sim 10^{-11}$$

$$\Rightarrow m_{\phi^+} \gtrsim 300 \text{ GeV};$$

$$Br[\tau \to e\mu\mu] \sim 10^{-10} \frac{m_{\phi^+}^4}{(5\text{TeV})^4}$$

BACKUP SLIDES

 $\mu \rightarrow e\gamma$

The other radiative lepton decays have weaker bounds:

required to be non $\lambda_{13} \simeq 0$ zero by $\tau \rightarrow \mu \nu \nu$ $\operatorname{Br}[\mu \to e\gamma] = \frac{m_{\mu}^{3}}{4\pi\Gamma_{\mu}} \left| \frac{e\,\lambda_{13}^{*}\,\lambda_{23}}{384\pi^{2}} \frac{m_{\mu}}{m_{\phi}^{2}} \right|^{2} \le 4.2 \times 10^{-13}$

 $Br[\tau \rightarrow \mu \gamma] \leq 4.4 \times 10^{-8}$ $Br[\tau \to e\gamma] \le 3.3 \times 10^{-8}$

