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Introduction (1/2)

L DAFNE is an electron-positron collider in operation at LNF for physics experiments since 1999.
» It is composed of two rings, one per type of beam, and operates with (usually) 105 bunches at 510 MeV nominal energy.

L Due to the high circulating beam-current and the presence of HOMs in the RF accelerating cavity, longitudinal coupled-bunch
instabilities can severely limit the performance of the machine.
» These instabilities grow exponentially with time and can lead to losses of entire bunches in a few thousands of turns.

O A significant damping of the HOMs was achieved in the 1990s by opening slots onto the cavity-surface and conveying
(coupling) the HOMs fields out of the cavity with waveguides terminated onto 50 () external loads.
» This solution, although important, couldn’t prevent the occurrence of coupled-bunch instabilities at high beam-currents.

0 Therefore a bunch-by-bunch longitudinal feedback was installed in each DAFNE ring and became operational since 1998.
» The active element of this feedback is a broadband cavity-kicker which provides voltage corrections to the bunches.
» This feedback system strongly contributed to the achievement of the 1.4 A — 2.4 A beam currents available today.

O In the 1990s, M. Migliorati developed for his PhD thesis a Fortran code able to simulate the longitudinal beam-dynamics of
DAFNE bunches in the presence of synchrotron radiation, HOMs induced-voltage and feedback corrections.
» Each bunch is represented by just one macroparticle, therefore only oscillations of the bunches centroids can be studied.
* However this type of oscillations is the main issue as concerns the coupled-bunch instabilities.
» The code accurately models the HOM induced-voltages, the complete bunch-by-bunch feedback system and even the
additional RF feedback able to counteract the beam-loading voltage in the accelerating cavity.



Introduction (2/2)

U The studies performed with the Fortran code provided useful indications for stable machine operation, such as expected grow
rates of coupled-bunch instabilities and optimal feedback parameters to counteract them.
» The code was rarely used after the 1990s and in particular it was never benchmarked with measurements.

L The code is relatively fast and easy-to-use. This recently motivated the desire to make it usable again, both for accelerator
physicists and operators who can use it in (almost) real time to better understand the beam-dynamics under observation.
» The code is modular and can be easily customized, therefore it can also be applied to other accelerators.

 Recently, the Fortran code was rewritten entirely in Python, which is an open-source high-level programming language.
» Pros of using Python: less lines of code for a given task, better code-readability, easier production of data and plots.
» Cons of using Python: execution speed. However this can be solved by converting the most time-consuming Python
routines into the C++ language and embedding them into the Python code (as done e.g. for the CERN BLonD code).

 During the code conversion from Fortran to Python, some routines were generalized or improved, some minor bugs were
fixed and new functionalities were added.

O Three types of content are included in this presentation.
» Essential theoretical concepts, which are needed to understand the principles behind the code, are covered in detail.
 Complete derivations are presented to make the presentation as self-contained as possible.
» Several important code-routines are described and explained in depth.
» The code-capabilities are illustrated by numerous examples.
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Single particle equations of motion: energy equation (1/5) |

RF cavity l

gap

O We call [, the length of the RF cavity.

L We assume that the particle traverses the RF gap along its central axis.

L We assume that the electric field g(s) seen by the particle in the RF gap is purely longitudinal and given by

- N l l
o= bsin (w24 gyy) e |- e

» Where é is the design amplitude of the electric field;
» wyr and @, are respectively the RF angular frequency and phase of ¢;
» vis the particle speed assumed constant during the passage (in DAFNE v = ¢).



Single particle equations of motion: energy equation (2/5)

[ Let’s assume that the circulating particle has charge e.

O The energy gain of the particle after it has crossed the gap one time is

lgap lgap

2 .
AEgqin= ej E(s) ds = efj sin TS + <prf) ds = eé sin cprff

lgap _lgap
2 2

lgap c Wrf

U Therefore

AEgqin= eVySin @y

» where the peak RF voltage and the transit time factor are given by

: (‘)rflgap
R Sin <Z—C>

Vie = élgapTa Ty =
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wrflgap @
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Single particle equations of motion: energy equation (3/5)

0 We suppose that the nominal energy E, is constant, i.e. no acceleration, such as in the DAFNE case (E;=510MeV).
U From E, we compute the reference revolution period Ty. We use T, to define the external clock

t,EZ'])c = nT, n=20,..

3 We call t™ the nt™ arrival-time of the particle at the RF cavity (supposed point-like).

(0) (1) (2) 2 3)
tref t® tref t™ tref t tref Absolute time
— — i @ i >
0 T 2T, 3T,
— - —
At(®) At(D At(2)

L We define the particle arrival time with respect to the reference clock as

At = (M) _ t;g} n=0,..



Single particle equations of motion: energy equation (4/5)

O The energy gain of the particle at the crossing time t(™ is

(AEgain)n = evrf Sin[(prf(t(n))]
> where

+ @ ()

s £ p+AE™
) = d = d dr +
(Prf(t ) Wy (T)dT + @offset Wy f (t)dt + ) Wy f (T)dT + @offset
0 0 trof

n-—1

= z 0r D Ty + 0 WAL + @oggser = 0r, WAL + @y

=0
\ J
| \

» This is multiple of 2m, and therefore irrelevant, only if
wrf(i) = 2mhf, (h is the harmonic number).

» It can represent e.g. constant phase offsets or

the injection of RF noise in the RF cavity for
This condition isn’t satisfied e.g. when beam-based controlled emittance blow-up.
LLRF loops, such as phase and radial loops, modify the

RF frequency to damp the bunch oscillations.



Single particle equations of motion: energy equation (5/5)

O In DAFNE, supposing a)rf(i) = 2mhf,, we have

(Prf(t(n)) — wrfAt(n) T Qoffset
O Choosing @yfset = /2, we have

(AEgain)n = evrf COS[a)rfAt(n)]

 After crossing the cavity, the particle energy is

EMD = EM 4 eV ¢ cos|w, At (V]

O Defining
AEM=EM™ — E,

J we obtain the energy equation of motion

AEMD= AEM 4 oV ¢ Cos[a)rfAt(”)]



Single particle equations of motion: time equation (1/4)

0 Using the definitions given previously we can write

ALGFDZ A 4 D) _ ) A f T )y i(i _ 1) _am 4 2 1
f@  fo fo\f@™ fo 1_|_f(n)_fo
fo
» where f, is the nominal revolution frequency and f(”) is the particle revolution frequency.
O It can be proven that
(n) _
= —Jo_ s
fo
» Where
) — Ap™  AE™  AE®) In DAFNE
N Do N '3350 - E, Bo(510 MeV) =0.999999498 ~ 1

* po(Ep) and Sy (Ey) are respectively the nominal momentum and relativistic beta;
e Ap®M=pM _p AEM™ =FEM _E,.
. p(") and EM are respectively the momentum and energy of the circulating particle.



Single particle equations of motion: time equation (2/4)

O From the previous slide
n(8) = (Mo +n16 +126% + )8
» where the n; are called the slippage factors.
U The slippage factors are defined through the momentum compaction factors «;, which are constant numbers for a given

machine and depend on the optics.
» For instance

1
No = Q& ——
Yo
» where y, is the nominal relativistic gamma.
O The y, such that ny = 0 is called transition gamma
1
)/tr - \/a_o

O In DAFNE oy = 0.018, ¥, =998 and y;, = 7.45. Since vy > V4, the beam is ‘above transition energy’.



Single particle equations of motion: time equation (3/4)

O When yy > ¥4, one can take just the first term of the 1(§) expansion, i.e.
n(8) = (Mo +n16 +126% + )8 = 108
» In DAFNE, since Yo > V¢,

1
No = G - = 0.018 — 10_6 ~ g
Yo

> Therefore
™ — 1
fo

* Aparticle with E > E; has f < f,. Indeed above transition energy the particle speed is essentially equal to the
light speed and more energy corresponds to more mass and inertia, forcing the particle to travel on a longer orbit.

—ay6™

L Therefore

1 1 1 1
At D= At 4 — — 1\ =A™ ¢ —( - 1)
fo 1+f(n)f—f0 fo\l = aps®™
0
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Single particle equations of motion: time equation (4/4)

O Since |a05(")| « 1 then

AL~ AL - L 1)~ At 4 Tyaes®™
fo\l —ayé6™ 070

1 Therefore the time equation of motion is

At(n+1)= At(n) + Toaod(n)

[ To summarize, the two equations of motion are

Tha
A+ D= A 4 070 Ap(™) Particle-drift along the rin
P > g the ring

AEMtD) = AF(M) 4 eVTf cos[a)rfAt("“)] ‘ RF voltage-kick to particle

» The particle-tracking starts at the exit of the accelerating cavity.
* The particle drifts along the ring, then it receives an energy-kick by the cavity, then it drifts along the ring with
the new energy, etc.
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Equations of motion in the code (only RF)

L Using the coordinates AE™

Ap™= w, AL 50 d
0

O the equations of motion become

A+ D= A + 2rha 6™

eV, cos[Ap (D]

5(Tl+1) e 5(7’1,) -I—
Eq

O In the code each bunch is described by only one macroparticle.
» The above equations imply that the evolution of each bunch is independent from the evolutions of the other bunches.
e Asshown later, each bunch is tracked in the code with a more complicated version of these equations.

U These equations of motion can be seen as a map M O It can be easily verified that the Jacobian of M is one, i.e.
between coordinates at consecutive turns. 6(A<p("+1)) 0(A<p(”+1))

<A(p(n)> M (A(p(nﬂ)) (M) = 0(ap™)  a(E™) | _

() E——) 5n+1) a(sD) (5D

0(Ap™) (M)

» This implies that the phase-space area enclosed by the
bunch (particle) trajectory is preserved over time.



Synchrotron radiation (1/6)

O Let’s assume that a particle with charge e and relativistic factor y follows a curved trajectory with bending radius p(s).
» It can be proven that the power lost by synchrotron radiation (SR) is given by

2 e?c y*
P(s) = 3 4me, p2(s)
* where g is the free-space permittivity.
QO If the particle is on the nominal orbit then
2 e?c v§
Fo(s) = 34meq p2(s)

» where pg is the bending radius corresponding to the nominal orbit.

U If the lattice is isomagnetic, i.e. if pg(s) = py, the SR energy-loss per turn for a particle on the nominal orbit is

2 e%c yi 2w e? yi e E&
U0=fP0(t)dt=— Voz Po _ Yo _ i 0
34mey pp? ¢ 3g0 po 3egmizc® pg

L What is the SR energy-loss U for a particle with energy different from E,?



Synchrotron radiation (2/6)

O From the following drawing, we can derive the relations

dl Generic trajectory
Y (AE % 0)
Nominal trajectory —— 3
(AE = 0) S dl ds dl X
Po - (Po + %) Po E:1+p_o

L We know from transverse beam-dynamics that the horizontal displacement of an off-energy particle can be written as
AE
x(s) = Dy(s) E_
0
» where D,.(s) is the dispersion function of the lattice.
 Therefore

dl D, AE
— =14 =—
ds Po Eo



Synchrotron radiation (3/6)

 The energy-loss per turn for the off-energy particle is the integral of the radiated power around the off-energy orbit
1 1 D, AE
U(AE) =¢P(t)dt=sz(l)dl =E¢P(s) 1+—E— ds

Po Eg

[ Equating the magnetic Lorentz-force acting on the particle with the centripetal force we derive the magnetic rigidity formula

2
=" mm B(s)p(s) =2

» where B is the dipolar magnetic field bending the particle.

O The following proportionality relations can be deduced

)/4 E4 E2p2

PO % 2o “ 2 “ 2 (s)

x E%B?(s)

O Therefore P(s) can be written as a function of energy and transverse displacements

P(AE, x)(s) « (Eq + AE)?B?(x)(s) P(0,0)(s) = Py(s) x E2B2(s)

» Py(s) is the power radiated at the position s of the design orbit, where the dipolar field is By (s).



Synchrotron radiation (4/6)

U Expanding P(AE, x) linearly we have

P(AE,x) = P(0,0) + op (0 O)AE+aP (0,0)x = P + 2o g 2P0 4B (0)
)= ’ 0AE ’ 0x X =To EO BO dx x

 Therefore, keeping only the linear terms in AE,

1 D, AE 1 2P, 2P, dB AE D, AE
U(AE)=EfP(S) 1+EE—O dS:Z% PO+E_0AE+B_OE(O)D'XE_O+POEE_O ds

O Expanding also U(AE) linearly we have

(0)AE = U, + 1j£ %o | 2ho dB(O)D + P2\ as| ag
d(AE) 0 C EO BOEO dx x OpoEO S

U Since the integral of Py(t) is U, then

U(AE) = U, + 2U"+ ! 39 2Fo dB(O)D +P Dx\ as| Ak
0 EO CEO BO dx x Opo S



Synchrotron radiation (5/6)

0 We define the focusing parameter for gradient fields as

dB
(O

Lk =
By po

U Therefore

U(AE)—U+2UO+ 1j£2P°dB(0)D +PD ds|AE = U 2U"+ 1%1) 2kon 4+ — ) ds| AE
— U0 BT R, ] By dx 0% ) & R R Pot - )as

U
= Uy + DAE = U0+E—0(2+K)AE
0

> where D is the damping coefficient and, since P, < 1/p3,

2k 1
1 " ¢ PyD,, <2k,o0 + i) ds $Dx (% + ?) ds
K = P,D <2pr )ds - Po/ —
CUO Po ﬁpods Eﬁ_zdS



Synchrotron radiation (6/6)

O The quantity K is entirely described by integrals of lattice functions

$ D, <Po p10>ds

gﬁ—ds

K =

U Contributions to K come only from bending magnets and wigglers, where 1/p, # 0.
» For parallel-edged bending magnets k # 0 at the entrance and exit of the magnet.
* This exactly compensates the term 1/ pg above, so that K =0.
» For sector bending magnets k = 0 if the focusing isn’t performed by the bending magnets but by dedicated quadrupoles.

O In DAFNE there are parallel-edged magnets, sector magnets and wigglers.
> Using data from M. Migliorati PhD thesis, D = 3.66 X 107> and U, = 9.3 keV.
* Assuming Ey =510 MeV, we can derive an estimation for K

E,
K=2pD_2=71x%x1073
Uy

» Therefore K can be neglected in

Uy 2U,
UAE) = Uy + — (2 + K)AE = Uy + — AE
Eq Ey



Equations of motion in the code (RF+SR)

O Including the synchrotron-radiation effect, the equations of motion become
A D= Ap™ 4 2mha,6™

eV,r cos A1)
Eq

U
sM+D) — s _ 20 (1 4 25
2 (1+260) +

1 The Jacobian becomes

a(A(p(n+1)) a(A(p(n+1))
d(he™) o™y | . 20,

2(5MHD)  a(s™D) _1—E—Oe(0,1)
9Be™) ()

JM) =

» The phase-space area enclosed by the bunch (particle) trajectory decreases with time.
e This is due to the radiation damping, as shown later.

O Also these equations of motion are decoupled for the different bunches.
» Each bunch can be tracked independently of the others.
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Synchronous phase

O The synchronous particle is the ideal particle which travels along the design (central) orbit at each turn.
» For this particle § = 0 at each turn and the corresponding phase Aggy is called synchronous phase.

eVrf cosApsp U, B
Eo Eo

0 )

Uo
A@sp= arccos —
eVrf

» The subscript SR indicates that the synchronous phase is evaluated considering the synchrotron radiation.
» Aps =Apsp(Uy=0) =m/2 =1.571 rad is the synchronous phase without considering the synchrotron radiation.

cosAp [1]

1.0

0.5

-0.5

-1.0

Example of difference between A@ and A@gp in DAFNE

0

21T
Aps=1/2

O Apgp < m/2, since the corresponding RF voltage must
be positive in order to compensate for the energy lost
by synchrotron radiation.

0 In DAFNE, using Uy = 8.88 keV and V¢ = 130 kV, we
have

A@qsp = 1.502 rad

O As shown later, Apsg changes when induced voltages
are added to the equations of motions.
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Small-amplitude synchrotron frequency and damping rate (1/3)

L We first derive the continuous version of the equations of motion assuming that dt = T, in the derivative.

At D= Ap™ 4+ 2mha,s6™ Ap = Wy @6
eV, cos AL [, I . eV Uy
§+D) = 5w 4 1 — (14 26® § =—2L cosAp — 1+ 268
Ey By ) EoTo %% " Eor, 1 T2
L We expand cos Ag around A@gr and we assume that the phase displacement ¢ is small.
cos Ap = cos(Apsr + @) = cos Apggr — sin Apsg @
O Since Agp = ¢, we have
1/ eV, U eV,
C f f . 0 f .
Po = WrFAo0 6= EOTTO cos Apgp — Eo;o sin Apsp @ — EoT, (1+296) = _Eo;o Sin A@gsp @ —
L And deriving again
.. eV, 20, .
f oo 0
6= _Eo;o sin Apgsp wyragd — EiT, 1)

2U,

)
EoTo
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Small-amplitude synchrotron frequency and damping rate (2/3)

L Therefore
6+ 2a, 50 + Q%25 =0

» where ;. g and Q2 are given by

= 0% = in A
dy SR E,T, E, T, SIN APgRr

O The eigenvalues of this differential equation are

2420, A+ Q% =0 ‘ A12 = —0rsR ij\/ﬂz — al g

» therefore the solution is

5(t) = Ae™%rSRcos (\/Qz —afpt+ B) * Aand B are constants

O 6 decays exponentially oscillating. The small-amplitude damping-rate and synchrotron-frequency are given respectively by

U eVrfwrfao : el?rfa)rfao :
Ay sp = Eo;o (=0ifUy =0, i.e. no damping) Ws0,5R = \/ sin Agpgg — aE,SR = \/ E,T, ifUp =0

>0 ~



Small-amplitude synchrotron frequency and damping rate (3/3)

(J The constants A and B in
§(t) = Ae™ %R cos(wg spt + B)

» depend on the initial conditions §(0) and §(0)
5(0) = AcosB 6(0) = —a, sgAcos B — wgysgAsin B

O If for instance we assume that §(0) = 0 then

. 5(0)
cosB =0 AsinB = —
wsO,SR
> or
s (0
B=+-— A=+ ©)
2 Ws0,SR
> therefore, using the relation between §(0) and ¢4(0), we obtain
6(0 eV, sin A 0
5(t) = ©) e~ rsRtsin(wgg gpt) = — o Psr Pol )e_“T»SRtsin(a)S(),SRt)

Ws0, SR EyTy Ws0,SR
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Comparison between simulation and analytical formula (1/2)

O Comparison between § evolutions from single-bunch simulation (d;,,,) and analytical formula (6,,,).
L Used parameters:

> Uy =9.3keV, Eg =510 MeV, Vs = 260 kV, a; = 0.02; .15 15ms  Errorcurve
> ©0(0) =107 rad, §(0) = 0; Zoom 3
» 200000 turns are simulated. , 2
= 1
s Evolution of §¢;,,, and §,,, | g g
6 P 5—1
4 - .
2 - 5

0.01500 0.01502 0.01504 0.01506 0.01508 0.01510
Time [s] 0.00 0.01 0.02 0.03 0.04 0.05 0.06

Time [s]

6 [1]
o

O The two curves have the same amplitude of oscillations (exponential envelope).
» However the phase-difference between the two curves can be large.
* The curves are out of phase by almost /2 at 15 ms.

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Zoom Zooms O This phase-difference comes from the fact that the equations of motion in the code

- are discrete while the analytical formula is continuous.

Discrete » The equations of motion are correct, the analytical formula is an approximation.
Smooth » As shown later, the phase-space orbits associated to the equations of motion are

tilted ellipses, while the analytical formula provides non-tilted ellipses.
Discrete

Smooth

511
o

L For example, the error can decrease by just decreasing «.
> fso0sr decreases, therefore the discretized curve converges to the smooth one.

5.00000 0.00005 0:00010 0.00015 0.00020
Time [s] 000000S  000000SS  000000%a 00000050 00000062

i |||
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Comparison between simulation and analytical formula (2/2)

O« is decreased from 0.02 to 0.002.
18 ms Error curve

: le—14
Evolution of §;,,, and & Zoom e
sim an a
24e=12 Te—13
6
4 2
1 —
2 -
jary Uam 0
E 0 o 0 |
w -2 E
s
s -2
0.0178 0.0179 0.0180 0.0181 0.0182 —_
, 6“" Time [s] o _ ! ‘ | ‘ |
~470.00 0.01 0.02 0.03 0.04 0.05 0.06 0.00 0.01 0.02 0.03 0.04 0.05 0.06
Time [s] Time [s]

> The phase difference is barely visible. The maximum error is reduced from 3 - 10713 to 4 - 10714,

U a, is decreased from even more, from 0.002 to 0.0002.
17 ms Error curve

Evolution of d;,,, and §,,, Zoom le-14
le—12 —
6 el T 1.0
2.
4
1 = 0.5
2 = &
- = 0
= 9 = 0 > 0.0
© E
=11 w
- t ©_05
-4 sim -2
6 0.0164 0.0166 0.0168 0.0170 0.0172 0.0174 o
—6 an Time [s]
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.00 0.01 0.02 0.03 0.04 0.05 0.06
Time [s] Time [s]

> The phase difference isn’t visible anymore. The maximum error is reduced from 4 - 10~ 1% to0 1.2 - 10~ 1%.



Amplitude of motion for small oscillations (1/2)

d We start from the discrete equations of motion

A D= Ap™ 4 2mha,s™

eV,r cos At
Eo

U
(n+1) — g(n) _ (1 +258m
5 s + Eo( + )

L We change variable Ap = Apgsp + @y --> @y and we linearly expand cos Ag around A@gp for small @,

(pénﬂ) = <p(§n) + 2mhay 6™

~

el U
s+l = s 4 E—rf(cos Apsp — sin Apgp <p(§n+1)) — E_O (1 + 25("))
0

0
eVrf sin Apgp

=5 _
Eo

2U
(o8 + 2mhags™) - —2 5™
Eo

eV.-sin A 2thageV..¢ sin A 2U
rf Psr <p((,n) + (1 _ 0€Vrr Psr o) NG
Eo Ey Ey



Amplitude of motion for small oscillations (2/2)

O We can write these two equations in matrix form

(n+1) R 1 %T[hao )
(‘po > = eVrr sin Apgp 2mhageVyr sin Apsg  2U, ((pO )
5m+1) — 7 1-— 5 ~ s
0 0 0
U The 2x2 matrix can be written as
1 2rthay _ 8.
5 5 _(cos iy + a, sin p, ¢ SIN Uy
B eV sin Apgg - 2mhageV,r sin Apgg B 20U,y | = ( . sin i, cos 1, — a, sin Iix)
Eq Ey Eq
» where
cosu. = 1 — nhaOeVrf sin Apgp B ﬂ “inu. — \/1 e~ . 1 —cospu, _ 2mha _ eVrf sin Aggp
b E, E, b b x sin X sinp, Ve E, sin u,

L This matrix representation indicates that the phase-space orbits are tilted ellipses with equations

€ = Vx5 + 20xP8 + P57

» and the amplitude of motion is proportional to

5 ) * This formula is used in the code to evaluate how
Ve = [Vx®5 + 202906 + Bi6 the bunch amplitude of motion evolves with time.

O This idea of matrix representation comes from transverse beam dynamics, where u, is the phase advance and a,, By, ¥, are the Twiss
parameters.



Example: amplitude of motion for small oscillations

O Single-bunch simulations are performed with the code to verify that the bunch-orbits in phase-space are indeed titled ellipses.

> Parameters used in simulations: E, = 510 MeV, ay = 0.02, ¢,(0) = 107° rad, Vrf =260 kV.

30

Non-damped motion, slightly tilted ellipse Damped motion, slightly tilted ellipses
0.61 0.6 1
0.4, 0.4

— 0.2 — 0.2

| |

© 00-8------m -2 © 00re---f---@--—--Q--—-—-@F--A4---Y----J---} - - - -

i \am!

«© —-0.2 / « -0.2 /
—0.4! AUO — 0 eV -0.4 U’g — 9. 3 keV
—0.61 " Vrf = 260 kv -0.6 : Vrf = 260 kv

—-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Po[107° rad] ©o[1076 rad]

O Unrealistically we increase the voltage to Vrf =26 MV to see better that the ellipses are tilted.

Non-damped motion, very tilted ellipse Damped motion, very tilted ellipses

Ellipse-point with
largest &

L <_ax\/yzx'\/€_yx>

Ellipse-point with
smaller ¢

(e

Simulated bunch at

turn O
@® turn 12500
turn 25000

® turn 50000
@® turn 100000




31

Example: bunch profile (delta) performing synchrotron oscillations

O Simulation of a Dirac-delta bunch-profile performing synchrotron oscillations in DAFNE.
» Used parameters: Ey =510 MeV, Uy = 9.3 keV, Vrf =130 kV, ay = 0.018, initial oscillation-amplitude of 0.1 rad.
» From these parameters we derive f; = 3.07 MHz, frr = 368.26 MHz and f( sp = 28.69 kHz.
» The inverse of the synchrotron tune 1/Q; = f,/fs0 = 107 corresponds to the number of revolution turns necessary to perform
one synchrotron period in phase space.
» We simulate exactly one synchrotron period.
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O What is the spectrum of a bunch-profile performing synchrotron oscillations?
» Doing numerically a Discrete Fourier Transform (DFT) of the time-domain bunch-profile is computationally expensive.
» We can recur to analytical evaluations.
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Spectrum of one bunch performing synchrotron oscillations

d We need these three general properties, two concerning the Dirac-delta function 6§ (x) and the last one related to a series-expansion of a

complex exponential. . . . .
Dirac comb n-th Bessel function of the first kind

|
1 (> . — . e~ T .
5 (x) :EJ e*t dt Z 6(t—kT) == z J2mar /¥ cos O = Z J Y () e

(00]
k=—o0 n=—oo
Perlod

O We assume that the bunch-profile is a delta arriving at a given machine-spot at time t(¥) = kTy + Ag cos[wst(")], k integer.
» Ag is the synchrotron-oscillation amplitude, which we assume constant (no synchrotron radiation).
» The bunch current and spectrum can be written as

+o00 + 0o
A(t) o< z 6(1: — kTO — AS COS[(J)St]) o< Z eijCI(t_AS cos[wst]) — Z ejwoqt e—ijCIAs COS((USt)
k=—o0 q=—oo q=—o0
+00 +
=3 oot S mweangenei = ST 5 wgany e
q=—00 n=—oo q=—oo n=—0oo

+ 00 400 o
S@) = [ a@eitdees Z Z J M n(woads) | eltawormoswtae e ) Z ™ (@004¢) 8(qwg + no — )

q=—co n=—co q=—00 n=—00

O The bunch-spectrum is therefore discrete and its lines are at w; ,, = qwg + Nws.
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Example: spectrum of bunch performing synchrotron oscillations

L We consider again the last example, where the simulated bunch-profile was a delta performing synchrotron oscillations.
» Parameters: 1/Qs = 107, f5o sg = 28.69 kHz, f = 3.07 MHz, f,.r = 368.26 MHz, A; = 0.1 rad/wgp.

+ 00 4o

O We can use Python to evaluate the bunch spectrum S(f) « z Z I @rfoqAs) 8(afs + nfosk — f)

q:—oo n=—oo

Bunch spectrum versus frequency Af Zoom 6frf
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O Given a frequency in (0, f*), the spectrum-amplitudes strongly decrease as |n| increases.
» As an example, the zoom shows that the spectrum-amplitudes for |n| = 3 are essentially zero in the range [4frf, 6frf].
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HOM induced voltage (derivation)

ip(t) = Qp48(t) (6 is the Dirac delta function)
R;: shunt impedance

L: inductance

C: capacitance

V(t): voltage across the capacitance at time t
i(t): currentin the inductance at time t

ip(t)

» i, (t) charges the capacitance with the charge @, at t = 0.
» This leads to a voltage across the capacitance.

» Applying the Kirchhoff’s law to the currents flowing across the three branches of the circuit

Vi) 1t dv(t)
— | V(s)d C =0
R + LJO (s)ds + 7
» Deriving
) : 1
V+2IV+ w2V =0 r

~ 2CR,

O If =1, each HOM of the accelerating cavity can be treated as a parallel RLC circuit driven by a point charge current.

I
3~
=~



HOM induced voltage (derivation)

» The eigenvalues are

w w
Al,z=—rij/w$—F2=—ﬁijwn Q=55  @n= Jof =T

» The solution of the differential equation gives free oscillations of the kind
W
V(t) = e_ZQt[Al cos(wnt) + By sin(w,t)]

» w, and Q are respectively the angular resonant frequency and the quality factor of the HOM.

U The current in the inductance satisfies the equation

di(®)
V(t) = LT

» direct verification shows that i(t) is of the kind

Wy
i(t) = e 2Q'[A, cos(wyt) + By sin(wy,t)]



HOM induced voltage (derivation)

L We need to find the constants A4, B;, A, and B,.

» A, and A, are immediately computed

V() ="V,
1(0) =i
» As for B,
di Lw,
VO = La(O) = _ﬁlo +L(1)nBz
» As for By
Vo dVv ,
—_——_—— = —_— = — B
R, ' Cdt(o) 20 Vo+ CwnB; mmmp

1 The solution is therefore

V(t) =e 2Q _VO cos(w,t) + | — 20w, Vo — 0w,
. _@r [ Q
i(t) =e 2Q _lO cos(w,t) + (RST Vo + 20w,

—

lo> sm(a)nt)]
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A =T,
AZ = lO
1 wT‘ ‘I‘Q w‘l‘
B, =—V,+ Vo +
2= T, T 20w, ° T Ruw, ° T 20w, °
Cw, 1
2 R 1 0 R.w
B, = © SVo lop = ) Vo T
Cwy, Cwy, 20w, Quwy,

wr
— e 20

Kcos(wnt) — 22); sin(wnt)> Vo —

l0> sm(wnt)] =e ZQ [;)TQ

S

n

sin(w,t) Vy + (cos(wnt) +

ZQn

W
L sin(wy,t) iol

n

sm(wnt)) 10]



HOM induced voltage (derivation)

L In matrix form

RSwT .
(I./(t)> o cos(wpt) — ZQ o ———sin(wyt) - an sin(wy,t) (]./0> _ e <A11(t) Alz(t)> (l./()) — W (l./())
20 ;:er sin(wyt) cos(wpt) + ZQ sin(wpt) ‘o A21() Az2(O/\ iy ‘o

O Let’s suppose that the HOM is unloaded att=0",i.e. V(0™) = 0and i(0™) = 0.

» Let’s suppose that a charge Q;, crosses the accelerating cavity at t=0. The charge induces the voltage AV on the HOM

Qb str
AV = —— = —
C Q <P
» According to the beam-loading theorem, the energy change of the particle due to the voltage induced by itself is
AR = AV B R Wy <0
= Qp 2 =20 Q5

» The bunch therefore loses energy due to the HOM.

» The current does not change at t=0 and therefore V, = AV, i, = 0.



HOM induced voltage (derivation)

O Let’s suppose that a second charge Q,, crosses the accelerating cavity at t = t; > 0.

» The voltage and current of the HOM at t = t; are V(ty) —w Vo AV
: =W)| . |+
i(ty) Lo 0
* vb AV
» The voltage seen by the particle at t = t; is W)\ . + >
‘o first row

[ Let’s suppose that a third charge Q,, crosses the accelerating cavity att = t, > t;.

> The voltage and current of the HOM at t = ¢, are (V(t2)> =W(t; —t1) (V(tl)) + (AV>
i(tz) i(tl) 0
. L V(ty) AV
» The voltage seen by the particle at t = t, is w(t, —t)| . +—
g (tl) first row

O And so on for the other charges...
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HOM induced voltage (notes)

3 Note 1: 0 terrp  2tgr 3tpr  4lpp Stgp
> The voltage of the HOM is discontinuous at the times | ‘ ‘ | |
of passage of the charges
» The current of the HOM is continuous everywhere

> 20 <

but not differentiable at the times of passage of the & *5
charges B 0 3
_, di®) = s

V() =1L dt 2 ~200

» Example on the right: DAFNE case, one HOM.

i
B
o

i(t)

0 2 4 6 8 10 12
Time [ns]

I
S

L Note 2: propagation property of the matrix. If t; and t, are positive, then

<V(t1 + t2)> _ e—;)—(g(tﬁtz) (A11(t1 +1t) Ap(t+ tz)) <V(O)> _ e—(z‘)—(gtz (A11(t2) Alz(tz)) <V(t1)>
i(t, +t3) Az (ty +ty) Axp(ty +t3)) \ i(0) A1 (tp) Axa(t)) \i(ty)

=e 2Qt2 (A11(t2) A12(t2)>e Qtl (A11(t1) A12(t1))<v(0)>=e‘—(t1+tz) <A11(t2) A12(t2))(A11(t1) A12(t1))<v(0))
Ay1(ty) Aza(ty) Ay1(t1) Axp(t1)/ \ i(0) Axi(ty) Aza(ty)/ \Ax1(t1) Axa(t1)/\ i(0)

» This property is useful to keep track of the HOM voltage and current as bunches travers the cavity at different times.
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HOM induced voltage (notes)

U Note 3: if the HOM voltage and current are freely oscillating at t < t; due to the passage of the first bunch at t = 0 and if
the second bunch Q, arrives at time t4, then, using Note 2,

V(ty +t2)\ | -2, (A1 (82) A ()N (VD) AV _Prvey) (A (E + ty) A (b +8)) [AV “Qry (A11(tR) A () (AV
= (e ame) i )= i a0t G ane) o
(t1)

i(t; +ty)
contribution from first bunch contribution from second bunch

» The voltage and current at time t; + t, can be decomposed as sum of two free oscillations: the first comes from the
first bunch (free oscillation for t; + t,), the second comes from the second bunch (free oscillation for t,).
» This can be generalized to the passage of more than two bunches.

O Note 4: if the HOM is unloaded and a charge Q; passes through the accelerating cavity at t = 0, then, before the passage of
the second charge, we have

(111((;)) ) - W) <A0V> W) V)= -0, g7 cos(ont) ~ g sinand)

» This V(t) expression is the well-known one. Why we need to also consider the HOM current and the matrix propagation?
* |If the matrix is not used, then another method is to consider the first row of the expansion in Note 3, i.e. to add the
freely oscillating voltages produced by the previous charges. This is inefficient as the number of charges increases.
* Another possibility is to save into memory the future voltage as the sum of the past and current voltages. A voltage
decay-time must be defined (first approximation) and interpolations are needed (second approximation).

O Note 5: if we have more HOMs, then each HOM is treated separately, i.e. the traversing charge drives separately each HOM.
» Since we suppose that the HOMs are in series, the traversing charge sees the sum of the HOM voltages.
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Equations of motion in the code (RF+SR+HOM)

L The equations of motion for the bunch k (k = 1, ..., N,) become

A= 0™ + 2mhay s\
= (n+1) Nyom
Uy eV,rcosAg, e 1
s — g _Z0(q 1 26M) 4 + E v Ly,
k k EO( k ) EO EO = [ k,j,RES k,],IND]

» where Ny is the number of HOMs,

» where Vk(T}E?S is the residual voltage present in the HOM j and which the bunch k sees atturnn + 1

e k= 2, . ,Nb
(n+1)
V(n+1) _ W —(TL+1) Vk—l,],RES T AVk_l’]
k,j,RES — Vi (tk—l,k) (n+1)
k—1,j,RES
time distance between .
(n+1) (n+1) voltage induced b
_(n+1) (A k —Apy_q ) the bunches k — 1 and k AV, . .= _Rs,jwr,j 0 th i k—1 Y
be-1c = T Trpdi-1k (d is the distance in L Q, <‘hk-t MeEhaIEe
Wy g k=1k J on the HOM j
buckets)
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Equations of motion in the code (RF+SR+HOM)

A(p§("+1)= A(pin) + 21tha06§(")
= (n+1) Nuom
U eV,.rcosAg e
n+1) _ (m) YO (n) rf k (n+1) .
o =8 - g (1+26)+ B g Z (Vi ds + Vijwo]
]:
e k=1
(n+1)
1,j,RES — j(th,l ) .(n+1)
Np,j,RES
time distance between the :
Ag n+1) A(p(n)) R . : voltage induced by

—(n+1) _ ( 1 Np bunches N, and 1, at turn n AVy = — 5T 0 the charge N» on
tNpa ™ = Wy + Trpdny, and n+1 respectively (dy, 1 NovJ Qj oo 8e b

J the HOM j
is the distance in buckets)

» where Vy ; yp derives from the beam loading theorem: the charge k sees half of the voltage that the charge itself induces
on the HOM j

_ AV Rsjor;
Vijinp = —— = =, 0, bk
j




Synchronous phase considering also the HOMs

O Imposing 6,?1) = 6,£n+1) = 0, the synchronous phase A@y oy  is the solution of
U, eV,.rcosAg e oy
_ 0 rf HOM,k (n+1)
0=——+ - o Z (Vs + Viejunn)
0 0 0 =
> if all the HOM volta e VD —y 0 =0, th
ges are zero, i.e. Vi pps = Vi jivp = 0, then
-1 UO
Apyom k= Apsp= cos >
eVrf

» if all the HOM residual voltages are zero, i.e. V,C(T};?S = 0, then

A@pom = cos™? N

* notethatVy ; ;yp < 0, indeed the RF cavities must now compensate for U plus the energy lost by the particle due
to the beam loading theorem

» we need an iterative procedure to find A@gop k in the general case, see below.



HOM initial conditions (unloaded vs loaded)

[ In the code the HOMs can be either ‘unloaded’ or ‘loaded’.

» Unloaded: the HOM residual voltage and current are both zero at the start of the simulation.
» Useful to study transient effects, however in this case the injection process has to be simulated as well.

» Loaded: the HOM voltage and current satisfy a stationarity condition, as if the bunches were already circulating for a
long time in the ring at the start of the simulation.
* Useful to neglect the injection and transient phases, allowing at the same time perturbative studies where the
bunches are positioned close to their synchronous phases in phase-space.

O Stationarity condition for a loaded HOM:
» When a charge traverses the RF cavity, the induced AV must compensate the decay of V(t) during the previous period
Ty, while the current must remain constant. Normalizing with respect to @Q,, this condition reads

(V(tO)/Qb> _ e——QTO (All(TO) AlZ(TO)) (V(tO)/Qb> 4 (AV/Qb>
i(to)/ Qb Az (Ty) Az2(To)/ \ i(ty)/Qp 0

O Solving with respect to V(ty)/Qp and i(ty)/Qp, we obtain

V(to) —R a)r/Q B i(to) A21(T0) ~ B
- = ay(To) = ay (Ty) = @;(Ty)
R (All(TO) t A}“ZTE 71_0)1:142221((77":?))) Je"To e Qp  eTo—Ap(Ty) ¥ ° 0



HOM initial conditions (unloaded vs loaded)

O In order to start the tracking of the bunches in the code, we need

» The initial phases Acp,(ko) of the bunches

» The energy-deviations 620) of the bunches

» The residual voltage Vg(,)j),RES and current ig(,)].),RES of thejth HOM when the first bunch traverses the RF cavity.

O Case of unloaded HOM.
» The Fortran code allows to set the initial phases of the bunches to values close to A@pgsp= cos_l(UO/Vrf)

0
A‘P§< )~ A@sg

» The Fortran code allows to set the initial energy-deviations of the bunches to values close to 0
0) _
» The residual voltage and current are O for the first bunch at turn O

(0) _ :(0) _
Vijres = tijres = 0

> NOTE 1: if intensity effects are large, then the difference between A@y oy x and A@gy is large, therefore the bunches
close to (A@gsp,0) are far from their equilibrium positions and can display unwanted large initial dipole oscillations.

» NOTE 2: even if bunches are at (A@yop £,0), dipole oscillations are still visible since the HOM is unloaded and A@youm k
assumes that the HOM is loaded. However these dipole oscillations are lower than the ones obtained when the bunches
are at (Apgp,0).



HOM initial conditions (unloaded vs loaded)

U Case of loaded HOM.
» The Fortran code allows to set the initial phases of the bunches to values close to Apgp= cos‘l(UO/Vrf).
Apy~ Aggg
» The Fortran code allows to set the initial energy-deviations of the bunches to values close to 0.
65(0) ~ 0
> In the Fortran code, the residual voltage and current for the first bunch at turn 0 are computed as

> tj1 = Trp(h — dy;) is the time distance between the bunch

(0) N _
V1 RES B Zb: Wit ay(Ty)Qp,; i at the previous turn and the bunch 1 at the current turn.
iSO_)RES - (ti1) a;(To)Qp; -> d4; is the distance in number of buckets between the first
vk i=1 ’

and the i™" bunches.

* This equation represents the sum of residual voltages and currents generated by the N, bunches during the last turn.

* Asdesired, this equation implies that the HOM voltage and current are Ty-periodic for each bunch (see below).

The sum in the equation should be extended to all the previous turns, however the propagation properties of W

listed above and the stationarity condition allow to restrict the sum to just the last revolution period.

* NOTE 1: a strong assumption was made, i.e. that all the bunches are in A@sp, with time distances which are multiple
of T}.r. However the actual equilibrium phases are Apyon x# A@sg and the time distances aren’t multiple of T;.f.

> NOTE 2: if intensity effects are large, then the difference between A@yop k and A@gg is large, therefore the bunches close
to (Apgsp,0) are far from their equilibrium positions and can display unwanted large initial dipole oscillations.
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Ty-periodicity of voltage and current for loaded HOMs |

. o . )
o s OM e ot () _ (1) (000
. ' i 0 O\ @(To)Qpa

U The Ty-periodicity works also for more bunches. 1 ~
> Example: two bunches on a h=3 ring with one HOM. W <T _m ) (aV(TO)Qb,Z)
* wrr ) \@i(To) Qb2

(n-1)T0 nTO (n+1)T0 _ _
1.0 _(ay(To)Qp 21\ (ay(To)CQp,2
. — _ + W TO - —
a;(To)Qp,1 Wy f a;(To)Qp,2
= 0.5 perturbation from second bunch
N\
= Qb1 | |@b2 Qb1 | 1Ob2
;C 0.0/ G <AV2> W < 2n> AR
— .(n—1 — .(n-1
S os iy 0 AL
U U _ <aV(TO)Qb,2> ( 21 ) (aV(TO)QbJ)
=1 _ + W _
—1.01 ! : 5 - 55 o =5 - a;(To)Qp,2 Wy a;(To)Qp,1
t[s] perturbation from first bunch
(n) (n—1) _ _ (n—1)
Wy [An cwilT - 2\ [ V; _ (ay(To)Qp1 cwilr - 2\ (ay(To)@p2\ [ V2 T,- periodicity
@ =\ o 0 (-1 | T\ g.(T 0 7.(T =1 .(n-1 i £
i) wrr )\ i, a;(To)Qp,1 Wy )\ 8i(To)Qp,2 i; is verified.

perturbation from second bunch



Example of simulation using unloaded and loaded HOMs

L DAFNE case: E, =510 MeV, U, = 9.3 keV, Vir =260 kV, 14 HOMs, 100 bunches with @5, = 15 nCin buckets 1, 2, ..., 100.

O The initial phases and energy-deviations are respectively A

L We plot the dipole oscillations for the bunches 1, 50 and 100 along 10000 turns.
O We plot the HOM voltages seen by the bunches along 10000 turns.

=
o
¥,

=
o
=

I
fry
o
o
=]

Induced voltage [V]
b
u
o
<

—2500+

Bunch 1
Bunch 50

Bunch 100

Unloaded HOMs

2000 |

0 2000

4000 6000 8000
Turn [1]

10000

0 500

1000

1500 2000 2500
Time [us]

3000

1.65

=
o)
=)

=
Ul
=

Phase mod 2mr [rad]

=
i
w

=
i
o

—500/

Induced voltage [V]

—25001

Bunch 1
Bunch 50

Bunch 100

§(O)= A‘PSR and 65(0) = 0.

Loaded HOMs

|
i
o
o
o

—15001

—2000+

0 2000

4000 6000

Turn [1]

8000

O The dipole oscillations remain
practically the same when the HOMs
are loaded.

O The voltages seen by the bunches
when the HOMs are unloaded
converge rapidly to the voltages seen
by the bunches when the HOMs are
loaded.

10000 = We need a better algorithm to

AR,

1500
Time [us]

2000

2500

3000

compute the stationary voltages of
loaded HOMs.
> The stable phases are Apyop
and not A@psr and so the time-
distances between bunches are
not multiple of T, ¢.
» Finding A@yom i allows also to
position the bunches close to
their equilibrium points at turn O.
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Improvement of the loaded-HOM algorithm

AProm1 = AProm2 = APsr  -> First guess for A@yop 1 and A@pom 2

‘/1%95 = sz%s =0 ->First guess for V%‘BES and V%%ES

forj =1, .., Niter => Njer is the chosen number of iterations Compute
t11 = hTpp, ty1 = Trf(h —dqz) + (AQUHOM,rAQDHOM,z)/wrf residual
0) - B voltage
Vi RES NEW ay (To)Qp,1 ay(To)Qp,2 and
.(0) =W(t)| - + Wt | -
i1 rES a;(To)Qp,1 a;(To)Qp,2 current for
first bunch

tiz = Trrdiz + (A@uom2-DPrOM 1)/ Wrf Compute

(0) (0) residual voltage
Vo RESNEW Viresnew T AV ;
= W(ty,) and current for
.(0) 12 .(0)
L2 RES L1,RES second bunch
_ |y © © |*, |y© 0 |?
error ‘\/ |V1,RES,NEW - Vl,RES| + |V2,RES,NEW ~Vyres| > Lz norm

Compute updated
values for A@yom 1

and A@yom 2

A@pom,1 = arccos l(Uo — AV /2 - Vlflgi?S,NEW) /Vrf]

0
A@pom,2 = arccos [(Uo — AV, /2 — V2$R355,NEW) /V'rf]
ANRA() @ _ 0

1,RES ~ Y1,RES,NEW’ Y2,RES =~ Y2,RES,NEW -> save voltages to compute error at iter. j+1

y© @ 0 (0

return AQyom,1, AProm,2» Vi rEs: U res: Va.RES' 12 RES -> outputs

O Example with only two bunches
and one HOM.

O The routine provides as output

V(O) :(0)

Aprom1, DPrOM 2, 1,RES’ Y11 RES

0) .(0)
Vo RES 12 RES-

L The routine is an iterative
algorithm: at each iteration j the
error is expected to diminish.

O The routine is launched one time
before the main tracking loop.

U Idea behind the algorithm:

> Guess Apyop 1 and AQyom 2

> V1€g355 and szz(ggs are
determined

» Aprom1 and Apgop,2 are
determined ...

 The routine can be also used to
compute A@gop 1 and
A@yopm 2 for unloaded HOMs.

1 The Fortran loaded-HOM routine

is obtained setting n;;.,-=1 and
Aprom i = Apsg for all the bunches.
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Previous simulation using improved routine for loaded HOMs

O DAFNE case: E, =510 MeV, U, = 9.3 keV, Vs =260 kV, 14 HOMs, 100 bunches with Q=15 nCin buckets 1, 2, ..., 100.

O The initial phases and energy-deviations are respectively A(pg))z A@yom x and 65(0) = 0.

J Unloaded HOMs: Vg(,)j),RES = ig(,)j),RES = 0.

» As desired, the dipole oscillations are significantly lower than the ones obtained when A(pg))z A@gp-

J Loaded HOMs: Vg(,)j),RES and ig(,)j),RES come from the outputs of the improved routine.

> As desired, there are no dipole oscillations and the voltages seen by each bunch are constant in time.

Unloaded HOMs (improved routine) Loaded HOMs (improved routine) Loaded HOMs (Fortran routine)
1.534 I— 1.533 1.65
N fi:i Bunch 1 g0
%1528 Bunch 1 51.530 Bunch 50 %:z Bunch 1
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Effects of the bunch length on HOM-voltage computations

O In the code, each bunch is represented by just one macroparticle.

L How to take into account the actual bunch length a; in the HOM voltage calculations?

w%a%

» Inthe code, the R, of each HOM is multiplied by e~ 2 and then computations are done as for a single particle. Why?

Q If A(t) = Q,64(t) is the longitudinal line-density of a particle-bunch crossing the RF cavity, then the residual voltage in the
cavity is given by

VO = —0, R.w e‘(z‘)—ét [cos(wnt) — 22);,1 sin(wnt)] = —Qpw(t)

» where wy(t) [V/C] is the wakefield of the HOM.

Q In general, given an arbitrary A(t), the residual voltage in the RF cavity is given by the convolution of A and w,

NOTE: V(t)/Q, is called wake

V(t) = —A() *wy(t) = _jo At — ) wy(r)de function or wake potential

» where A(t — 1) is the charge at t — T which affects the charge at t. The particles at the head of the bunch have lower t.
» The formula is indeed true if A(t) = Q;,6,4(t)

V) = - j Qu8a(t — T wy(D)dT = —Qywy (D
0



Effects of the bunch length on HOM-voltage computations

3 Applying the Fourier transform F and using its inverse F~! we obtain

FW)=-FQA)Fwy) = -S(w)Z(w) or V=-FHFQ) Fwp] = -FS(w)Z(w)]

» where S is the bunch spectrum and Z is the longitudinal coupling impedance of the HOM
Rs

» The formula is indeed true if A(t) = Q,64(t)

V() = —FHFQ) Fw)] = —QpF HFw] = —Qpwy(t)

> If A(t) is Gaussian, then

_t2 w2o? _wl?
A0 = -2 5(w) = g2 V(E) = —FUFOFw] = —0pF 1 le= 2 F (wy)]
O-t\/ﬁ
V() = —QpF 1 [e_%?(wu)]@—%e_wrziw” (t) = —Q, RSQ(UT e_;)_g?t cos(w,t) — 22); sin(a)nt)] R, = e_wgat R

Is this approximation ok?



Effects of the bunch length on HOM-voltage computationg

O Let’s check if the following approximation can be done

2

T-1<e‘wzftf<w">>zfﬂ(aw’f?(w")) or  FUS@)Z(@)] = FUS(@Z@)]  or S@Z(w) ~ S(w)Z(w)

O We take as an example one HOM of the DAFNE RF cavity and we consider a Gaussian bunch with o, =30 mm (S = S/Q,).

300 1.0 3001 1.0
R Green anc! Zoom
250 0.9 »50/ Magenta lines 0.9
, overla
200 0.8 200 P 0.8
= 13 07 = = 07 =
E 150 f " S150, o
g Re[Z(f)] 0.6 g 0.6
100{ = ,
S(HRe[Z(f)] s o
50 50-
— JL 0.4 0.4
o| S(fr)Re[Z(f)] 0
0.0 05 1.0 15 50 0.3 1.17501.17751.18001.18251.18501.1875
Frequency [GHZz] Frequency [GHz]

a Closeto £, S(f) = since the HOM bandwidth is small. ‘ S(Re[Z(f)] =~ S(f,)Re[Z(f)]

Q Far from f,, S(f) significantly differs from ,but Re[Z(f)] = 0 ‘ S(f)Re[Z(f)] =~ S(f,)Re[Z(f)] ~ 0



Effects of the bunch length on HOM-voltage computanns

( DAFNE example with one Ty
Gaussian bunch (o, =30 O Wake from Gaussian bunch 4
mm) and one HOM: § 5.0° Wake from single charge

» Q0 =336 — 25 Wake from single charge with correction 3

> R, =307 Q &

» w, = 7.424 Grad/s E‘ 0.01 2
8 -2.5

O Very good agreement in 0 g 1
and above T,.; between g =>.0
wake from Gauss.ian bunch 0 50 100 150 500 50 300 0
and wake from single Time [ns] /
charge with correction. —T,y \ 0 T,f To- Ty To To+ Tyf

O There is significant 6 Zoom :: 02 Zoom 0
disagreement if the wake ~ @ 4 30 2 4, ﬂ /\ 204
from single charge isused. = 2 )5 % 2.02

2 0 — 2.0 g 0.0 2.00

d We suppose that the actual %_2 beam-loading ( 15 & 198
bunch is Gaussian with a § _, | theorem \)_,37 1.0 é —0-19 L o6
constant bunch-length and 0.5
that all the charge is atthe  ° 00 92 1.94

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 325 326 327

bunch centre.

Time [ns] Time [ns]



Coupled-bunch instabilities (1/12)

[ Let’s suppose to have N, equally-spaced bunches, each with charge @y, circulating in a ring with circumference C,..
» We assume that each bunch is described by only one macroparticle.

U For each bunchn =0, ..., N, — 1, the continuous equations of motion are

: : Uy el eV,
Ay = wrraydy Oy = (1+ 26, + Wn 11

A
" EoT, EoT, | EoT, °o%n

» Where th is the induced-voltage seen by the bunch n and induced by all the charges circulating in the ring.

O Deriving and substituting

. wyragU Y wrraoeVih  wpragel,
A(pn=—M(1+2 Pn >+ 70 + 0 chosAgon
O Changing variable from Ag,, to ¢, = Ap, — A@Pyomn, and then from @, to zg,, = —c@g /W, ¢, We obtain

3 cagUy D cageVih caOeVrf 21h



Coupled-bunch instabilities (2/12)

Q th can be obtained summing wake-function contributions over all the past revolution turns g and over all the bunches h

tOt Np—1 +o0 h n h c
n(t) = —0Qp Z ZWM +N_b_N_b Cr+2zop |t — q+N_b_N_b Ty _ZOn(t)_wrf (AprOM,h—AprOM,n)

> where w(z) = 0 for z < 0 and the A@yop , are mod(2m).

O The A@pom n must be all equal due to the symmetrical position of the full buckets in the ring. We call A@yp the common value.

L Therefore, expanding Vt"t linearly with respect to the equilibrium positions zy , = zg,, = 0, we obtain

” G h dw, n h
n(t) = —sz z W) "‘—b—N—b Cr( T, |Zon CI+N—b—N—b To | — Zon(t)
» where
aw, = awy and il (Z) i a)r - 2Qc TZ [——cos (a) E) + < i — a)n> sin (a) E)]
dz dz <q+N_b_NLb)CT dz Q "¢ 4Q%cw, ¢ "¢

L We linearly expand the accelerating voltage as well

2mh

. 2mh
C Zon | = Vrr cos(Apyom) + C
r r

Vy. cos (A(pHOM — i sin(A@rom) Zon

57
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Coupled-bunch instabilities (3/12)

O Substituting into the differential equation we obtain

. . Np—1 +00
) cagUy D capeVys 2rhcageVyr Qpcage b dw,
om =Ty Ty om T TET, SAPHom T\ Togr, S APHom t TR Z z “on
Np—1 + Np—1 +
+chaoe z Z N n h c. +chaoe Z dW" . N n h -
E,T, MIN\1T N, TN, E T, " dz “dz Jon 1N, "N, °
h=0 q:O h=0 q=

L Therefore
Np—1 +oo

. D 5 Qpcage dw n h
Zon T+ T—OZo,n + Ws HomZon = EoT, z Z Zo,h q+ N_b - N_b Ty

» where, setting for instance n = 0 due to the symmetry of the charge distribution,

For O, = 0 we obtain the zero-intensity

Np—1 +o0 .
2 cape 27ThV W” | zero-amplitude synchrotron frequency
WsHOM = E,T, C Sln Aprom + Up z z | with synchrotron radiation
r ~
: w3 _ Zo®rselrs sin Ap
Np—1 +o0 AN Y e —— e — — 1
. |1 .
Uy = eVrf cos A@yom — Ope z z wy {<q _ N_> C } ITh|s equation can be used to compute|
- b | APHOM |



Coupled-bunch instabilities (4/12)

L We have to solve a system of n coupled second-order differential equations with the forcing term being a linear combination
of the solutions themselves computed at different times.

1 We find a solution of the type

ZO,n(t) = anejﬂt

» with a, and 2 complex quantities to be determined.

O Substituting into the differential equation we obtain

Np—1

jD Qpcape dw,
<Q2 T, ‘”SHOM> R Z Z n Ay o
e g e

Np

. n h
~iaTo(a+y-5)

> where the sum over q could be extended for negative values since w;(z) = 0if z < 0.

O From the definition of the longitudinal coupling impedance we have

; + oo , n_h
dw, L wZ, (a))e_]wT‘)(quN_b_N_b)dw
27tc J_,



Coupled-bunch instabilities (5/12)

O Multiplying by the exponential, summing over g and using one property of the delta function, we have

+ 00 . n h . +00 ) n h o=
dwy -sat(arpwy) -~ I [ 7 (e @O D eI g,
dz 27C J_
gq=—o00 q=—0
— [ —j(w +n)(l—i)T0 2m
= zj wZy(w)e No Np/ "8l w + 02 — P dw
p=—o00 "%

Z (wop — D) Zy(wep — Me (1\1’119 I\i’lb)p

p——OO
O Substituting
. . Np—1 +o0c0
JD jQpcage —omj(-2
0N? ——0 — wg,HOM Ap =——7— Z ap Z (wop — D) Z(wop — N)e 7U<Nb Nb>p
To CrEoTo
h=0 p=—00
O Defining
1 jD jeage
AR) =—(0* -0~ wg,HOM b, = Qpay My, (2) = z (wop — D) Zy(wop — Me
Qb To CrEoTo

2w,

Np Np

AN



Coupled-bunch instabilities (6/12)

» we obtain the system of linear equations Np—1

/Tbn — Z Mn,h(ﬂ)bh n = O, v Nb —1
h=0

> where we imposed that all the A(£2) are equal, calling 1 the common value.

U From linear algebra, we know that this system of equations has N; complex eigenvalues A, u=0,.., N, — 1.
> Asetof N, eigenvectors by, (h = 0, ..., N, — 1) is associated to each 4,,.

 The square matrix ||Mn,h|| is said circular since it satisfies the property

MO,O MO,l MO,Z MO,Nb—l MO,O MO,l MO,Z MO,Nb—l
”M ” _ Ml,O M1,1 M1,2 Ml,Nb—l _ MO,Nb—l MO,O MO,l MO,Nb—Z
nh||l — : : : . : _ : : : . :
My,-10 Myy,-11 Myy-12 - My,—1n,-1 Mo1 Moz Moz - Mgp

O Since ||Mn’h|| is circular, then the N, eigenvalues are given by

Np—1 + oo Np—1

_ 21 icage 21
Ay = Z Mo,h(ﬂ)e]thﬂ =120 Z (wop — D) Z(wop — 2) Z WP
h=0

£ - CrEoT, =



Coupled-bunch instabilities (7/12)

Q If (p + ) is a multiple of N, (p + u = I[Ny, L integer), then the last sum is equal to Nj, otherwise

Np—1 Np—1 h . Np—1 2
21 21 — pJ2n(p+up) TLLANONN
E e]th(er“) = E (e]Nb(pw)) = L=e 2 =0 » E e’ No P NpOp+p,iny,
LLTT ’
~(p+
h=0 h=0 1-— e]Nb(p ) h=0

O Therefore the N}, eigenvalues are

. +w
~ _ jcageNy

Ay = mlz LNy — wwo — 2] Zy[(INy — p)wy — 1]

=—00

» where u =0,..., N, — 1is called coupled-bunch mode.

O Given a certain u, an important property of the corresponding eigenvectors can be obtained from

Np—1 2T Np—1 Np—1
Jn-hu
h=0 p=0 p=0

O It follows that

,2TT
Inhee, () _ (W)
e Nb bn# - bh‘l-ll-n—Nb

W _ LW 2 W _ W S
b} = bt e "Nb - b,/ = by e Nv

h+n—Nyp

62



Coupled-bunch instabilities (8/12)

U Givenu =0, ..., N, — 1, the solutions of the original differential equation are

>

>

(W= : (1)) 4 2T
25(6) = a®e i+ ZEnp) _ 0 () g-1m(a®)e 1| Re(2®) e+l P

where we highlighted the dependency of {2 from u, since {2 is the solution of
+ 00

1 jD jcageN,
Q_b(ﬂz - T_OQ (UsHOM) C I(E)'OTOb 2 [(INp — wWwo — 2] Z||[(le — wWwo — 2]

IF QW is complex with negative imaginary part, then z(()f;) (t) grows exponentially in time and the bunch is unstable.

O Givenu =0, ..., N, — 1, the phase-shift between consecutive bunches is given by

V V VYV

A, = 2T
=5 MU
u Nb
If e.g. u = 0, then Agpy = 0 and all the bunches oscillate in phase (“0 mode”);
If e.g. u = Np/2 with Ny, even, then Agy, ,» = T and pairs of consecutive bunches oscillate in antiphase (“m mode”);
Foru =1,..., N, — 1, it occurs that Ay, _, = —A¢, mod(2m).
Example of Turn 0 Turn T /2

“r mode”
scheme for 3 ‘ ‘ ‘ ‘

bunches: | . | | |. }O } H }. } .} }
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Coupled-bunch instabilities (9/12)

[ To estimate the grow-rates of the unstable bunches, we assume that 2 = wg you-

_ a2 P 2 jD _ jD
Qbﬂ(ﬂ) =" - T_Q — WgHom =~ Za)s,HOM(-Q — (Us,HOM) - T_a)s,HOM = za)s,HOM ) — Ws HoM — _ZT
0 0 0

O Therefore, rearranging the terms,

0

+ 00
jD jeayeN,Qyp
= WsHom T+ 2T, ZCrEoTows,HOM lZ [(UVb — Wwo — (Us,HOM] le[(le — Wwo — ws,HOM]

O Taking the real and imaginary parts of 2

+ 00
cageN,Qp
Re[ﬂ(“)] = Ws,HOM — 2CET Z [(le — Wwy — ws,HOM] Im{Z”[(le — Wwg — ws,HOM]} = Ws,HOM — Aw)
rboloWsHoM £t
Uy cageNyQy

Im[QW] =

400
(u)
E,T, ZCTEOTOwS,HOMl:Z:OO[( b — WWo — Ws pou ] Re{Zy | (IN, — W) wo — wsnom|} = ar s A oM

O The imaginary part of the impedance leads only to a shift of the angular frequency of the bunch oscillation.

[ Since Re(Z)) = 0 for all frequencies, the bunch instability is caused by the real part of the impedance with [ < 0.
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Coupled-bunch instabilities (10/12)

O To summarize, for a given u, we have

] 2T
(H)(t) — a(#) —(arSR+a§L20M)teJ[(ws,HOM_Aw(M))t+N_bnul

L The bunches are unstable if and only if

+ 00
cageN,Qy
0(7(”{30M - Z [(le — Wwo — (Us,HOM] Re{Z”[(le — Wwo — (Us,HOM]} < —Qrsr
2CEoTows nom =
Q If Z, is given b imped h Re[Z(w)] ks w; Ry ©2E20
t ,t wane w = — 5
| 1S given by a resonator impedance, then o (ﬂ ) &)2 a),?a)z T 0%(0? a)r)z
¢ W, W

» Therefore we can compute numerically “79201\4 limiting the sum to indices | € [—L,,0x Limax], With L, 4, sufficiently large.

> After having computed A@p oy with the formula shown earlier, wg o can be evaluated with

Np—1 +o0

cage [ 2mhV,¢ W||
Ws HOM = EoT, C, sin Apyom + Qp Z z

h
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Coupled-bunch instabilities (11/12)
D)

O The expression for a,’};,, assumes that each bunch is represented by just one macroparticle.

» This assumption is also done in the macroparticle code and therefore there is consistency.
» However, as explained earlier, all the HOM shunt-impedances were rescaled in the code to take into account that bunches have

a Gaussian profile. wio?
R, =) .~ R,
» To have again consistency, we need to correct “5{201\4 assuming that bunches have a Gaussian profile.
* All the steps done previously to arrive at “ﬁfgom can be repeated changing L
wi(z) —) V() or equivalently Zj(w) o) 7, (a))e_%

* whereV,(2) is the voltage induced by a Gaussian bunch at a distance z from its centre of mass.

1 Therefore the “1(}201\4 can be corrected as

+00 2 .
cageN,Qy _aNp-wwo-wsnom] ot
aﬁfﬁm = E |(INy — Wwo — wspom| Re{Zy[(INy — wo — wgyom] e 2
20 EoTows nom =

» This expression can be refined even more using a correction factor involving a Bessel function (derivation from Vlasov equation).
 However, the proposed exponential factor is more consistent with the type of shunt-impedance rescaling done in the code.

O The assumption that 2 = wg yop in the argument of Z; can be strong since Z varies rapidly with frequency due to the high Q.
> If the beam-spectrum couples with Z; at essentially just one frequency, then we can solve directly the equation for (2.



Coupled-bunch instabilities (12/12)

U Indeed, calling [; the index associated to the unique coupling frequency, the equation to solve is

. 2 o .
jcageN,Q, _lawo-wsnom| ot jUs
n=A —0)Z)lqwy — 2 2 > wh A= +
+3 CEoTo®w rom (qwo — M Z[qwy — e where Ws HoM EdT,

q=1UN,—pu

O Assuming that |2| < w, and that qw, = w,, the impedance term can be expressed as

R R R
Zylqwo — 2] = : = . = :

— ) W 2 ; 2
1+ (Clwo _ r ) A[qQwe 2  w, w; 0 . <qw0_ wr)_]_Q w;-
e Wy quwo — {2 1+/¢ Wy Wy qWo GEwi Wr 1+J0 W, qwg Wy 1+ q2wh o

J Therefore

icageN R _lawo-wsuom]’of B(gwn, —
0= 44 S b (Gwy — 0) s . 2 _ (quo — )

2CEgTywg yom 140 (qa)o Wy ) _j@ (1 + w? )_Q C — D1

Wy qwy) Wy q%w§

» where the complex constants B, C and D are

. - 252 .
. jcaoeN,QpR; e_[q(uo wséHOM] of C=14j0 q_fo_f_r D= ]_Q 1+ ¥
2CE Tows oM fr dfo T*f

L Rearranging the terms we obtain this quadratic equation in 2
DN? —(C+AD + B)2 + AC + Bqw, = 0

» and the desired (2 is the smallest solution in absolute value. The grow-rate is the imaginary part of (2.



Coupled-bunch oscillations: beam spectrum (1/2)

O We fix the coupled-bunch mode u and we assume that each bunch-profile is a delta function.

O At turn k, the bunch h arrives at a fixed point of the ring at time
T, 21
t&) = kT, + h— + A, cos [Re(ﬂ(“))t(") + —h,u]
Np Np

» where we assume that all the bunches have the same oscillation amplitude As.

J The beam current can be written as

+00 Np-—1 +00 Np-—1

iq 2TL’
A(t) o E E ) (t — kTy — hI’I\;— — A cos [Re([)(ﬂ))t + _h‘u]> § § piawot o~ N_b —jqwoAs Cos[Re(_Q(H))t+ hu]
k=—00 h:() b q—_oo Py
i sz_:l . —thz—” io _]m[Re(Q(M))H it ] E E ]t(Qa) mRe(.Q(u))) NbE 1 —th_”(q+mu)
a=mo0 R0 m=-e q=—c0 m=—oo h=0

co

x5S Sl — )N mR(a V)

l:—oo m=—0o



Coupled-bunch oscillations: beam spectrum (2/2)

O Therefore the beam spectrum can be written as

+00 Fo X +00
S(w) = j At)e 1t dt Z Z ST [Ny — mp) woAs] j e/tl(Ny=mwo-mRe(2)-w] g¢

l:—oo m=—0o

x f i T [(INy = M) woAs)8 ((INy — mu)wy — mRe(QW) — w)

l=—co m=—o00

 The beam spectrum is discrete and its lines are situated at w = (IN, — mu)wy — mRe(!)(“)).
» If N, =1, then u = 0 and the linesare at w = lwy — mRe(!)(O)) ~ lwg — MW youm-

d We saw that, for bunches having a delta profile, the grow-rate of the coupled-bunch instability is o S(a))|
m=1

+ 00

+o00
+00 [ |
aﬁfQOM X Z [(le — W wo — ws,HOM] Re{Z”[(le — Wwo — ws,HOM]} X z j wRe{Z,[w]}6 ((le — Wwo — Ws oM ~ 0)) dw

l=—o00 l=—0c0

» The electromagnetic interaction between the different bunches is due to the multiplication of the beam coupling-
impedance Z;, with the beam spectrum § with m = 1.
* Only the beam spectrum-lines with m = 1 (dipolar motion) are significant to evaluate the coupled-bunch instability.
* This is consistent with the adopted macroparticle model, where each bunch has no internal structure and therefore
the spectrum lines with m # 1 (quadrupolar motion etc.) can’t be excited.



Example for the DAFNE ring: coupled-bunch instability (1/7)

O ay =0.018, Uy = 8.88 keV, V,.r = 130 kV, f.r = 369 MHz, f, = 3 MHz, f;o = 29 kHz. Accelerating cavity
O N, = 4 equally-spaced bunches, bunch-current I, = Q, /Ty = 15 mA, g, =20 mm.

O 4 coupled-modes u = 0, 1, 2, 3. The phase between consecutive bunches is A(,bu = %ﬂ-

Scheme of 4
(d One HOM of the accelerating cavity has f,, = 796.8 MHz, R, = 20 kQ, @ = 40000. equally-spaced
» We want to excite a certain coupled-bunch mode with this HOM. bunches in the ring

* R, and Q are always kept constant, whereas f,. is shifted to obtain the desired
coupling between beam-spectrum and impedance.

O The critical frequencies which can lead to instability are negative and given by
fou = @l —Wfo — fsnom [<0 u=0,1,23

» We want to excite only the mode i through the line at f; , , with [; < 0.
* Since Re(Z)) is symmetric with respect to the axis f = 0, and assuming that f; yom = fs0, We set f; at

—fiou = fr =140 = 1)) = (4 —pDfo + foo = (4l — 12 fo + fso

> f1,u, is the line-frequency closest to f, and some coupling could occur, although the @ is quite large.
* Inanycasel, = 1—1; > 0 and therefore the mode u, = 4 — u; (mod 4) is damped and not excited.
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Example for the DAFNE ring: coupled-bunch instability (2/7)

1 We want to excite y; = 0. Real part of the HOM longitudinal impedance
> Ifl, = —66, then f. = 264f, + f.y = 811.05 MHz.

: . . _ 263f, 264f, 265f,
» The high Q leads to a small coupling (damping) of u, = 0. 20l 1 -~ . i
i ws Zoom | |
O At turn O, the four bunches start with different initial conditions. il = i !
» The maximum oscillation amplitude is 0.3 mrad = 0.13 ps. = o 100 : :
N_ 1 7.5| i 1
Phase oscillations of the four bunches along the first 100000 turns £ - E > : | E
34 ! w1 1
§ 0 : l 811.00811.02 811.04 811.06 811.08 811.10 :
= 808 809 8io 811 812 813 8ia
= 2] Frequency [MHz
S Bunch 31 d v ]
O . . . . .
GEJ 11 Bunch 61 O Exponential growth of oscillations in the first roughly
e Bunch 91 15000 turns, then convergence to an equilibrium due to
o ol wake-field/RF-voltage non-linearities and synchrotron
0 20000 40000 60000 80000 100000 radiation.
Turn [1]

Zoom (0-200 turns)  Zoom (14.75k-15k turns) Zoom (99.75k-100k turns)

+1.5

O At equilibrium the four bunches oscillate with roughly the
0.0008 i:: 25 same amplitude of 1.32 rad =570 ps.
0.0007 » The instability is fast and strong.

B 1541

N
o

5152

=
n

B 1.50
81,

$1.48
m

3  After a certain transient time and during the exponential
0.0003 o growth, the bunches oscillate in phase, i.e. A¢py = 0.

0.0002 0.0

0 50 100 150 200 14750 14800 14850 14900 14950 15000 99750 99800 99850 99900 99950 100000 » The bunches aren’t in phase anymore at equilibrium.

Turn [1] Turn [1] Turn [1]

=
o

0.0004

Phase mod 2m [rad]
o o
o o
o O
o o
o &

Phase mod 2n [rad]

o
%




o
el
i

|~
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Example for the DAFNE ring: coupled-bunch instability (3/7)

O We want to excite u; = 1.
» Ifl; = —66, then f,, = 265fy + f;o = 814.12 MHz.
» The high Q leads to a small coupling (damping) of u, = 3.

[ The initial conditions of the bunches are the same as those chosen for
1 = 0 (the maximum oscillation-amplitude is 0.3 mrad = 0.13 ps.)

Phase oscillations of the four bunches along the first 100000 turns

—3

=

©

5 2] Bunch 31

g . Bunch 61

¢ Bunch 91

e

o 0

0 20000 40000 60000 80000 100000
Turn [1]
Zoom (0-200 turns)  Zoom (14.75k-15k turns)

0.0008
0.0007"
0.0006

0.0005

+1.502

50

100
Turn [1]

150

200

Phase mod 2n [rad]

= = = [t
) ) ™ o

=
N

=
o

14750 14800 14850 14900 14950 15000
Turn [1]

Zoom (99.75k-100k turns)

3.0

= ~MoN
o o

Phase mod 2n [rad]

o
n

0.0

99750 99800 99850 99900 99950 100000
Turn [1]

Real part of the HOM longitudinal impedance

264f, 265f 266f
20+ 1 1
I 20.0 | 1
| 17.5 ! Zoom |
1 1
— 15 15.0 I
g » = :
— Il 10.0 | 1
N= 10 | 75 : |
Q : 5.0 | :
m 51 1 2.5 :f 1
| 00 | Jr 1
I 814.08 814.10 814.12 814.14 814.16 514‘1.8 I
0 | |
811 812 813 814 815 816 817

Frequency [MHz]

O Exponential growth of oscillations in the first roughly
12000 turns, then convergence to an equilibrium due to
wake-field/RF-voltage non-linearities and synchrotron
radiation.

O At equilibrium the four bunches oscillate with roughly the
same amplitude of 1.40 rad = 604 ps.
» Instability even faster and stronger than for u; = 0.

d After a certain transient time, consecutive bunches
oscillate in quadrature, i.e. A¢p; = /2.
» This phase difference isn’t preserved at equilibrium.
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Example for the DAFNE ring: coupled-bunch instability (4/7)

O We want to excite u; = 2.

» Ifl; = —66, then f, = 266f, + f;o = 817.19 MHz.
» The high Q leads to a small coupling (damping) of u, = 2.

[ The initial conditions of the bunches are the same as those chosen for
1 = 0 (the maximum oscillation-amplitude is 0.3 mrad = 0.13 ps.)

Phase oscillations of the four bunches along the first 100000 turns
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Real part of the HOM longitudinal impedance
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L Exponential growth of oscillations in the first roughly
15000 turns, then convergence to an equilibrium due to
wake-field/RF-voltage non-linearities and synchrotron
radiation.

O At equilibrium the bunches 61 and 91 have the largest
oscillation amplitude of 1.31 rad = 566 ps.
» Instability comparable to that obtained for y; = 0.

 After a certain transient time and during the exponential
growth, the bunches oscillate in antiphase, i.e. A, = 7.
» This phase difference isn’t preserved at equilibrium.



Example for the DAFNE ring: coupled-bunch instability (5/7)

O For each analysed case (u = 0, 1, 2) we plot the longitudinal phase space for the first 15000 turns.
» The oscillation amplitudes grow exponentially (the value-limits on the axes are modified every 5000 turns for better visualization).
» All the phases are mod 27 so that the evolution of the different bunches can be seen on the same bucket.

O After a certain number of turns:
» u = 0: Consecutive bunches oscillate in phase (A¢, = 0) and the four bunches are superimposed.
» W = 1: Consecutive bunches oscillate in quadrature (A¢; = m/2) and the four bunches coincide with vertices of squares.
» W = 2: Consecutive bunches oscillate in antiphase (A¢, = m), bunches 1 and 61 are superimposed, bunches 31 and 91 are superimposed.

u=20 u=1 u=2
Turn number 15 Turn number 15 Turn number 15
1.0
0.2 0.2
_ 05 _
7 . 7 7 .
S 0.0 T Eg S 0o °o = 090 . &
© 05 <
—-0.2. —0.2;
~1.0]
0.0000 0.0005 0.0010 0.000 0.002 0.004 0.0020 0.0025 0.0030

A mod 2m [+1.5 rad] A@ mod 27 [+1.5 rad] A mod 27 [+1.5 rad]
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Example for the DAFNE ring: coupled-bunch instability (6/7)

O Finally we compute in simulation the grow-rate of bunch oscillations and compare them with analytical estimations.
» As an example we consider the following six cases in simulation.

A@ mod 27 [rad]

od 27 [rad]

HoEoe
B B B
NOOBR O
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Bunch 1, fit from turn 4k to 15k
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Bunch 31, fit from turn 4k to 15k
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Bunch 1, fit from turn 7k to 15k

1
a, = 1589 —J
S
” )
| | Time[s] |
Bunch 31, fit from turn 7k to 15k
1
a, =1584—
S
H=s | |
| | Timel[s] |

» As expected from theory, given a certain u the grow-rates are practically the same for all the bunches.
» As already seen, the largest grow-rate occurs for 4 = 1, whereas the grow-rates for y = 0 and u = 2 are essentially the same.

O The analytical damping-rate due to synchrotron radiation is @, sg = 53 1/s (= 57400 turns).



Example for the DAFNE ring: coupled-bunch instability (7/7)
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L To analytically estimate the total grow-rate (including synchrotron radiation) we use the two formulas discussed earlier

» ‘Explicit’ formula

It’s safe to set |I| < 100 ay =
since the critical [ is -66

Uo

cageNpQp

» ‘Implicit’ formula

The () with the smallest

magnitude is considered

N=A+

EoTy 2C-EoTowspom

jeapeNypQp

2CEgTows gom

+100

2 |(INy — Wwo — wsgoum| Re{Zy AN, — wo — ws pom]}

[=—100

(qwo — 2)Zlqwy — N]e

0 Comparison of a,- values from simulations and analytical estimations.

» The discrepancies between a, from simulations and analytical estimations are in %.

_ l[qwo —ws,HOM]2 ot

a,[1/s]foru=20

a,[1/s]foru=1

a, [1/s] for u = 2

From simulation 1588, 1583 1642,1639 1589, 1584
Analyt. explicit 1542 (2.8%) 1588 (3.3%) 1542 (2.8%)
Analyt. implicit 1636 (3.1%) 1631 (0.6%) 1635 (3.0%)

» Why the implicit formula, expected to be precise, overestimate a,- if u = 0 or u = 27?

2

a, = —Im[Q2]

» The explicit formula confirms that . is
the largest for u = 1 and that a,. is the
same foru = 0and u = 2.

These values are lower than those
found in simulations by just 3%.

» The implicit formula provides
essentially the same «a,. for each u.

The maximum discrepancy with
simulations is just 3%.

 Ifu; =0thenu, = 0andif uy = 2 then u, = 2, so the implicit formula neglects the line at positive frequencies which
contributes to a small damping of the mode and to a decrease of «,..
* If u; = 1then u, = 3, soin this case the neglected damping refers to mode 3 and therefore doesn’t affect the mode 1.

» If the implicit formula has to consider also the line at positive frequencies, then a cubic equation in 2 must be solved.
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Bunch-by-bunch longitudinal feedback

O Let’s suppose that
» We have only one bunch circulating in the DAFNE ring.
» The bunch intensity is very low, so that the induced voltages can be neglected.

» The bunch is injected into the ring with a phase error of 0.23 rad with respect to A@szr= arccos eg(’ :
rf

d The particle performs Turn 1 Turn 1
synchrotron oscillations in )

phase space.

=
o

O The phase and energy
oscillations are sinusoidal
functions with initial phases
which differ by /2.

0 [%]

=
-

Phase [rad]

- -0.1

[ How to actively damp these | 1.25 1.50 1.75 0 200 400
phase and energy oscillations? Phase [rad] Turn [1]

O Simplifying a lot, the DAFNE bunch-by-bunch longitudinal feedback
» measures the last synchrotron oscillation of the bunch phases;
» shifts this synchrotron oscillation by - 7/2 to obtain a sinusoidal function in anti-phase with respect to the é oscillation.
» applies this shifted synchrotron oscillation as an energy correction to the bunch during the next synchrotron oscillation.



Bunch-by-bunch longitudinal feedback in DAFNE

1 The energy correction is provided by a so-called kicker, which can be an RF cavity, as in DAFNE, or a stripline structure.

O Here is a simplified scheme of the bunch-by-bunch longitudinal feedback used in DAFNE.
» When multiple bunches circulate in the ring, the feedback acts on each bunch independently from the other bunches.

[coyiicer|

Bunch

| Longitudinal pickup “ Beam orbit
(wide-band between 4frf and 6frf)

— Amplifier
Attenuator Y
\ DAC
Comb-filter generator A Attenuator Amplifier — (conversion
(used to minimize the noise 1 from digital to
and tuned at 4f..- or 6 analog signal).
Jrs fry) Amplifier
\ Amplifier 1 The phase oscillation is obtained when
. the low pass filter is applied.
Local oscillator (LO) Mixer Low pass filter w P I I. p.p ! :
onal q : d to obtain th O The shift of this oscillation by - /2 is
(signal at 4f, or 6y and —= (used to mix — (used to obtain the done in the FPGA using a digital filter.
In quadrature with respect the bunch and low-frequency [ The shifted oscillation is converted back
to the bunch-signal) LO signals) content of the signal) to analog and provided to the kicker.




Longitudinal pickup: special-button BPM

L The Beam Position Monitors (BPMs) are the main diagnostic tools in DAFNE.
» They consist of four “button” electrodes mounted flush with the vacuum pipe.

O In each DAFNE ring, special-button BPMs can measure individual time offset on a bunch-by-bunch basis, i.e. without memory
of the preceding bunch.

O These special-button BPMs must
» have a reasonably high transfer impedance Z; and shouldn’t have narrow-band resonances in the frequency-range of
interest:
* in DAFNE the frequencies of interest are between 4f,.r = 1.47 GHz (~30 bunch operation) and 6f, s = 2.21 GHz
(~120 bunch operation);
* the necessary design value of Z is 0.3 = 0.4 Q) in the region 1.3 + 2.2 GHz.
» keep the beam coupling impedance and parasitic losses within acceptably low values.
» NOTE: in general these two impedances grow together (e.g. with the increase of the button radius), so a compromise
must be found.

U For the longitudinal feedback, one special-button BPM is chosen out of two available.
» this BPM measures the bunch current summing together the signals coming from the four button electrodes.
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Analytical formulae for the electrode impedances

O The transfer impedance of a button electrode is the complex ratio between the voltage induced by a centred beam at
the external termination of the detector circuit and the beam current.

7, () = Vp(w) <¢Ro 601) jw/w,

I(w) W,/ 1+ jw/w,
» where ¢ = r/4b is the so-called coverage factor, with r and b the button and beam-pipe radii;

» R, is the characteristic impedance of the coaxial cable connecting the button to the detector circuit;
» w1 = 1/RyCyp, with C;, the electrode capacitance; w, = c¢/2r is the inverse of the electrode traversal time.

U The frequency response of Z,, is of the high-pass type since

. _ (PR .
> For low frequencies w < w4 Zy(w)=|—]jw
W7
: . w1
» For high frequencies w > w5: - Zp(w) = pRy— -
W7

O In first approximation, the coupling impedance is simply

Z)(w) = (¢ Zj—) Zy ()

2

Multiplication by jw.
The electrode acts like a time differentiator.

The asymptotic response is purely resistive.
The electrode voltage is in phase and
proportional to the beam current.
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Longitudinal pickup: transfer and coupling impedances

O Simulations were performed in 1996 to estimate the transfer and coupling impedances of the DAFNE special-button BPMs .

Button transfer impedance from the HFSS code BPM coupling impedance from the HFSS code
: : : - 10 T - : =
10 . . .......... s Working ....... ............... j : First
1 ’/ region : | stronger |
| ’ | o1t HOM
= N 001 e
= o e
................................................................................ 0.001 g fre o
F. Marcellini 0.0001 g o F. Marcellini
| : | et al. (1996) ] ; g i | etal. (1996)
0.01 TIIY—i’TIIUi Irl'i'_fTTl ryrrerhyprTTTa 10_5 LI e L llllillllilfllll'TTl
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Frequency [GHz] Frequency [GHz]

O The coupling impedance is indeed roughly proportional to the transfer impedance.

O In the working region the button transfer impedance is sufficiently flat with a satisfactory value of 0.43 Q.

O The button low-frequency impedance is relatively small and is acceptable from the beam dynamics point of view.
O The first stronger HOM at 5.2 GHz is not dangerous to the multibunch instabilities due to its low Rq.
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Phase detection for a signal coming from the pickup

O The analog front-end of the longitudinal feedback is designed to measure 7, which is the time of arrival of each bunch relative
to the RF master oscillator clock.
» Equivalently, the goal is to measure @ = 4@ — A@,; = w,fT, i.e. the difference between the bunch phase and the
synchronous phase.

[ The bunch-signal coming from the pickup is a short differentiated pulse.
» We can numerically reproduce the electrode transfer function and apply it to the typical DAFNE bunch current.

t
0 Ats tRF Lot 0 Atg RF
| : I |
, : Simulated | |S||Z| |
. |
08 | | Gaussian || ©08 0.8 .
! [l bunchwith ! 003 3 i
—06 | | uncn wi | 0.6 \ s 0.6 5 ). . :
A N 6,=20mm || & = s PU — |
o | | z= — N -1
~<0.4 : : : 50.4 :::0.4 The IOW 3 T (SZb) :
I il A I 07t~ frequency regime !
02 : : 0.2 02 | (differentiation) !
| | | _ . ~
A s = ) || dominates :
' ' ! ' 1072 0 2 ; 6 0.0 05 10 15 20 25
00 05 1.0 1. 20 25 0 1 2 3 4 5 6 : . 0 : . :
Time [nSS] Frequency [GHz] Frequency [GHz] Time [ns]

O If such a short pulse is used for phase detection, the obtained signal will be also a short baseband pulse.
» The sampling of this signal by the ADC clock will be very sensitive to pulse and clock timings.
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Stripline comb generator

O To avoid this sampling sensitivity, the pickup signal is 4-cycle comb generator at 6f,.; used for PEP-II
‘lengthened’ by feeding it into a comb generator. X S A G ARSI e A R T e i

- - - - -

(] — — - —

[
» Planar stripline circuit made from a copper-clad teflon 3
material and then gold plated to lower the losses. T T _ — = S TR
L The comb generator converts the pickup signal of a bunch S e eoee e o e 2 oo ) | D, Foxet
into a tone burst of a few cycles at an harmonic of f;¢. Signal _ 1 al. (2007)
from PU ¢ ==

O When the bunch-spacing is T.f, 4-cycle tone bursts at 6f;.¢
are often used (as in PEP-II, PLS).

> The tone burst must be shorter than the bunch Comb o e O e e
spacing to minimize the interbunch crosstalk. output | Measured BPM signal (8 bunches) and comb output (8
» Some margin is left since the actual bunch-spacing 4-cycle tone bursts at 6f,.¢) at PLS, South Korea
can be less than T,.;: adjacent bunches SEBPTAERR  Sater P el & S S Wik DR 3
* have non-zero bunch length; e % ol
e can oscillate not in phase. o [

Differentiated
Gaussian bunch

O When a burst is phase-detected, the baseband phase-
signal has a rectangular envelope with duration equal to
that of the input burst.  maeov

» The sampling of the phase-signal is less sensitive to
pulse and clock timings.

J. Y. Huang,
M. Kwon (2000)




Stripline comb generator at 4f,.r: measurements (1/2) 85

O Measurements of the frequency response of DAFNE 5-cycle comb generatorat4f,,  Measured frequency response
comb-generators were performed at INFN using a v

VNA (G. Franzini, D. Pellegrini, D. Quartullo).
» Considered frequencies between 300 kHz and
8.5 GHz (maximum possible).

WA 10205 il
o

'III’“‘ ..
K2 T

K First measured comb generator: 5-tone-burst at 4f,. ¢
=1.47 GHz.

O The frequency response is made of sinc-like
functions at 1.50 GHz (~ 4f,¢), 4.47 GHz (= 12f, ¢ =

4.42 GHz), 7.44 GHz (~ 20f,; = 7.37 GHz).

Simulated comb-filter Simulated comb-filter in
O We reproduce in simulation the comb-filter in time in time domain at 4f,f frequency domain at 4frf
and frequency domain. 3(iel2 100
— — 4 12 20
» We suppose that the comb-filter in time =T E i frf i frf i frf

domain is ‘a smoothing’ of the derivative of a % L % ! : !
1.47 GHz square-wave. 2 S 1 i i i
* Sinc functions at 4(2k+1)f,; (k=0,...) in "_é _1 "_é i i i
frequency domain. S, S 10- i i i
| | |

O Good agreement between measurements and o5 10 15 20 25 30 35 " i 6 "

simulations. Time [ns] Frequency [GHz]



Stripline comb generator at 4frf: measurements (2/2)

0 Measurements of the response of the Impulse of Setup with generator (down), Zoom on the output of
comb-generator in time domain were then length 456 ps comb (middle), oscilloscope (top) the oscilloscope
performed. o) I

» An impulse-generator and an
oscilloscope were used.

O A pulse of 456 ps length was generated and "‘-
sent to the comb-generator. .-il"-l

» It was not possible to have shorter -§==-.
pulses without decreasing the signal - -.

amplitude.
» The pulse length was 2/3 of the Convolution between
square-wave period (equal to 680 ps). Simulated pulse with Simulated pulse simulated pulse and comb
O The oscilloscope provides as output a sine- 356 PS end-to-end length spec;rul'r‘n,. coml()i filter filter in time domain
456 ps and their product . 680 ps

like 5-cycle tone burst with period of 678 0.0
ps or frequency of 4f,.¢.

&
[a.

O This output is reproduced in simulation
convolving the reconstructed pulse with
the comb-filter in time domain.

» The pulse acts like a low-pass filter -10

-1.0 -0.5 0.0 0.5 1.0

-0.6/

Pulse [a.u.]
Pulse spectrum

Comb filter, product [a.u.]

2 4 6 8

which keeps only the sinc at 4f, . Time [ns] Frequency [GHZ] Time [ps]



Stripline comb generator at 6frf: measurements (1/2)

5-cycle comb generator at 6f ¢

d Measurements were then repeated for another
comb generator: 5-tone-burst at 6f,.¢ = 2.21 GHz.

) B
h
O
?

R | P
i 3

O The frequency response is made of sinc-like
functions with frequencies at 2.27 GHz (= 6frf),

6.76 GHz (~ 18f,; = 6.64 GHz).

1 We reproduce in simulation the comb-filter in
time and frequency domain.
» We suppose that the comb-filter in time
domain is ‘a smoothing’ of the derivative of
a 2.21 GHz square wave.

Simulated comb-filter
in time domain at 6f,.f

* Sinc functions at 6(2k+1)f,r (k=0,...) in
frequency domain.

~
w

w
o

w
>

o
o

O Good agreement between measurements and
simulations.

|
W
[=]

1]

Comb filter [a.u.]

|
~
5,

o
=}

0.5 1.0 1.5 2.0

Time [ns]

2.5

Measured frequency response
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10°§ Gfrf 1

Comb filter [a.u.]
B —

Simulated comb-filter in
frequency domain at 6f,.f

Frequency [GHz]
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Stripline comb generator at 6f;.r: measurements (2/2)

0 Measurements of the response of the Impulse of Setup with generator (down), Zoom on the output of
comb-generator in time domain were length 456 ps comb (middle), oscilloscope (top) the oscilloscope
then performed. NAROIL I — T sl

M2

O A pulse of 456 ps length was generated
and sent to the comb-generator.
» The pulse length was comparable
to the square-wave period (equal
to 452 ps).

i
| ——
il o

L The oscilloscope provides as output a

sine-like 5-cycle tone burst with period _ Convolution between
of 439 ps or frequency of 6f,. Simulated pulse with Simulated puls.e simulated pulse and comb
456 ps end-to-end length spectrum, comb filter filter in time domain
O This output is reproduced in simulation —— and their product . 453 ps
convolving the reconstructed pulse with . AP h ﬂ ﬂ
the comb-filter in time domain. — S - : 0.8 % > ) Wt
» The pulse acts like a low-pass filter = B aof i A 1\ G les 2 E Al F
which keeps only the sinc at 6f, . E ; 10-4 SEEE i o é 5 o "
3 L - Bl
O Good agreement between measurements £ 6f s i " > S | U | U U U
and simulations, as for the case of the P 00 05 o g W’ g S o > 3

comb at 4f,.f. Time [ns] Frequency [GHz] Time [ps]
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Comb-generator as a filter

O The simulated comb-filter, confirmed
by measurements (see before), was
applied in simulation to the signal
coming from the pickup.

» As an example, we considered a
4-cycle comb-filter at 6f; .

Ucomp [a.u.]

1 The bandwidth of a sinc is equal to

1.0

0.5

0.0

-0.5

-1.0

Simulated comb-filter

in time-domain
lel3

Simulated comb-filter in frequency-domain
6f,f 18 ]I”rf

]

Ucomb

=
o

i
4'5f1‘f:

000 025 050 075 1..00 125 150 1.75 2.00

Time [ns]

o
o)

o
o

©
&

|Feoms| [a.u.]

o
N

0.0

0 1 2 3 4 5 6 7 8

Frequency [GHz]

 Therefore in DAFNE the actual bunch current (~ Gaussian) is filtered first by the pickup and then by the comb generator.

=
o

Vcomb(t) X T_l(s X Zb X Fcomb)

o
oo

o
o

» The signal coming from the
pickup acts as a band-pass
filter which keeps only the
sinc at 6f;¢.

o
~

ISI - 1Zbl, |Fcomb] [a.u.]

o
N]

o
o

Gfrf

\ISIIZI,I

18f ¢

Frequency [GHz]

6frf 18)|ch

0.8

e
o

|S||Zb||Fcomb|

o
[N}

|S‘ : ‘Zb| * |Feoms| [a.u.]
o
S

4 5
Frequency [GHz]



Time signal before and after the comb generator (1/3)

1 We consider one synchrotron period in DAFNE and we simulate the output-signal coming from the comb-generator.
» Three different input-signals are used.

» The macroparticle code is not used here. Synchrotron oscillations are obtained by simply shifting the input signal by

A: oscillation amplitude = 0.1 rad

T = Acos(wskTo) k: turn number

[ First example: We obtain V,,,,; by convolving the numerically reconstructed comb-filter in time domain with a delta signal
arriving at time At + 1.
+ 00
A(t) - 6(t - Ats o T) » Vcomb(t) X A(t) * Ucomb (t) — j 6(t —a-— Ats o T) Ucomb (a) da = Ucomb(t _ Ats o T)
0

» The output from the comb generator is 0 At Turn 1 LRF
the filter itself shifted by At + 7. | [

» The relative phase between A and
V.omp 1S preserved over time.
* Required for phase detection.

» This model is not realistic since the

signal entering the comb-generator is

not a delta function, as shown before. 0.0 0.5 1.0 1.5 2.0 2.5
At [ns]
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Time signal before and after the comb generator (2/3)

L Second example: The input signal is Gaussian with mean At 4+ T and with g, = 20 mm or 30 mm.
» We obtain V,,,,,; by convolving this signal with the comb-filter in time domain

+ 00 _(t—a—Ats—r)z

Veomp () % A(8) * Ucomp(t) = j e 20 Ugomp(@) da ~ |A(t)| sin[6w,(t + t, — At; — 7))
0

» The output of the comb generator is sinusoidal with frequency 6f;.¢.
* The filter sinc-functions at higher frequencies are made negligible by the Gaussian spectrum.
» The relative phase between A and V..., is preserved over time. This is essential for phase detection.
* With respect to the mean of 4, this phase difference is equal to 6w, rt, and is larger for longer bunches.

> For large 0,, V.omp is amplitude-modulated in correspondence of the first and fourth periods (amplitude |A(t)]).
» This better model is not realistic yet since the comb-generator input is not Gaussian, but a differentiated Gaussian.

At Turn 1 (o, =20mm) At Turn1 (o,=30mm)

1.0 -1 1.01 -1
r— 3: LE—
> S S
w© 0.5 0 o ©05 0
~< g ~<

~
0.01 | , , , , =1 0.01 | , , , , r—1
00 05 1.0 15 2.0 25tgr 000 05 1.0 15 2.0 25t¢tpp

At [ns] At [ns]
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Time signal before and after the comb generator (3/3)

O Third example (realistic): The input signal is a differentiated Gaussian.

» This signal is obtained by applying Z; to a Gaussian profile with mean At 4+ T and with g, =20 mm or 30 mm.
» We obtain V,,,,,p by convolving the input signal with the comb-filter in time domain.
+00

Veomp(t) ¢ A(t) * Ucomp(t) = JO At — AU omp(a)da o |B(t)| sin[6w,;(t + t; — Ats — T)]

» V.,mp has essentially the same features of the V,,,,,;, computed for Gaussian inputs (second example).
* Itis sinusoidal with frequency 6f.f.

* The phase difference between V), and the mean of the Gaussian profile is 6w, ¢t; and constant over time.
V.omp €xtends to the adjacent bucket, leading to possible coupling between phases of consecutive bunches.

Ats Turn 1 trf + At Ats Turn 1 trf + At
1 -1
5 0.4 5 504 ';
5, L) 5,
> 0.2 0 « 0.2 0 o
A, Y g
~ 0.0 ~ < 0.0 ~
~1 -1




Voltage from the comb generator

O The signal exiting the comb generator goes through an attenuator, which is followed by an amplifier.

U Characterizing better the proportionality factor, V..., is equal to:
Qb . /
Vcomb(t) - T_ |Zb|gpgcga|B(t)| Sln[6wrf(t +tqg — At — T)]
0

» V.omp is proportional to:

* the total bunch current Q/T;

* the magnitude of the button transfer impedance |Z,|, which is constant (= 0.43 () in the working region, i.e.
around 4f,.- or 6f,.¢;

* the coefficient g,,, accounting for the attenuation provided by the pickup-attenuator, which is able to control the
level of signal measured by the pickup;

* the coefficient g., which accounts for the attenuation-level provided by the comb-generator and the attenuator
placed after it;

* the gain g, of the amplifier placed after the comb generator;

* the amplitude modulation |B(t)|, which can be different from 1 in correspondence of the first and fourth periods
of the sinusoidal tone burst.
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Local oscillator and mixer

O The local oscillator is locked to the ring RF clock and produces a sinusoidal signal with frequency 6f, ¢
Vi, (t) = sin[6(w,,ft + qblo)]

» where ¢, = P11 + P02 is adjusted by using a phase shifter (servo), so that
* Vj, isin quadrature with respect to the sinusoidal V. mp;
* @2 is the phase advance of the comb-voltage relative to the bunch centre of mass minus the synchronous phase

6¢lol — _T[/Z ¢102 — wrf(tzl o Ats)

 Therefore
Vio(t) = —cos|[6w,f(t + t, — Aty)]

O V.omp and V;, are multiplied together in the mixer
Q@ . , ,
Vmix(t) - T_ |Zb|gpgcga|B(t)| Sln[6wrf(t + tg — At — T)] COS[6wrf(t Tt — Ats)]
0

— ZQ_T?O 12519p99aIB®)|[sin(~6w,) + sin(12w,(¢ + t; — At;) — 60,7



Low-pass filter

U A low-pass filter is then applied to V,,,;, to eliminate the high-frequency component of the mixer output

Qp . 3Qp
Vips(t) = 2T, 1Zp|9p9:94|B(t)| sin(6¢,) ~ Ty 1Zp|9p9:94|B ()| 9o

For small phases

L More in general we have
Qp . ~
Vips(t) = T, 1Zp|9m9p9c9a|B(t)| sin(g,9y)

» where g,, < 0.5 is the conversion efficiency of the mixer;
» where g; = 4 or 6 depending on the DAFNE operation mode;
» where

Qo =P+ Pci+ Perr + Pofr

* being ¢.; an error phase accounting for the possible coupling between consecutive bunches when a tone burst
reaches the adjacent bucket (as shown earlier);

* being ¢, an error phase present when the phase advance of the comb-voltage relative to the bunch centre of
mass is not compensated (as shown earlier);

* being @,sr a phase offset which one can adjust to compensate the other phase errors.
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Example continued: mixer

O Third example continued: V,,,,,; is the comb-generator output when the input is a differentiated Gaussian signal, g, = 20 mm.
» We suppose first that the local oscillator can’t compensate for tj.

» We compute numerically V,,,;, and its Fourier transform along one synchrotron period.

At Turn 1 Lyrr DC cwponent Turn 1

S | | |

7 10 ! 4 : ~4 I3frf |5frf |12frf

E < | | |

. 0 1 =, I

s | 1| 1 |
~-10/1 1| & | | I

a L . L 0: . . | o]V
0 1 2 0 1 2 3 4 5 6
At [ns] Frequency [GHZz]

» Qualitativel
Y Vonix(t) o< — |B(t)|sin[6w,.f(t +t, — Aty —1)] cos[6wrf(t — At)]

__|B(®)]
2

sm[6wrf(r - ta)] - IB( BOI g n[lZwrf(t — At,) + 6w, f(t, r)]
l ] |
DC component (signal average) High-frequency component at 12f .,




Example continued: low-pass filter

O We apply a Bessel low-pass filter By, to Vi, in order to obtain only the DC component of Vi,

» A baseband Bessel low-pass filter was used at PEP-II.
» In simulation the filter has order 4 and the gain magnitude is -3 dB at 3f, .

— 0 At Turn 1 trp L+ At = DC component Turn 1

= l d | I E I l¢ 1., 1.0
l_q'§ 101 ] 'l | 234 I3frf I frf I frf

P 1l £ Lo |

£ 0 = | | 0.5
R I I - I I I

s -104 1 | " \AL* I |

=~ S S ol NA AN A 00
= 0 2 3 & 0 2 4 6

At [ns] Frequency [GHz]
» Qualitatively B(O)]
Vips(t) > sin[6wrf(r — t;)]

> Vs doesn’t oscillate around zero due to the lack of compensation for ¢;.
» Vi, ¢ extends to the adjacent bucket, leading to potential coupling in phase detection.
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Example continued: phase compensation

O If the reference signal from the local oscillator can compensate for the phase error 6w,.rt, then V¢ oscillates around zero
and consequently the phase detection is correct.

DC component Turn 1

— Ats Turn 1 > ';‘ ;

s d a | l k) I I L, 1.0

= 10 i — 4 1 3frr | &Frs Tk

S ' 2

N I >§< | l |

: 0 SN S B 0.5

e | S22\ |

S —

s—101 1 [ N l I l

= o |\ , 1 | S AL AN o= 0.0

= 0 1 2 ty3 ty+At, B0 2 4 6
At [ns] Frequency [GHz]

> Qualitativel
Y lef(t) X Sin(6(1)rf'l')

» At each turn, the time-span where V;,, ¢ is constant is relatively large thanks to the tone-burst technique.
* In this time-span |B(t)| = 1 (no amplitude modulation in V,,,,,3), therefore we assume that |B(t)| = 1.
 The ADC clock could for instance sample in correspondence of the orange line at each turn.

» Vi r still extends to the adjacent bucket, leading to potential coupling in phase detection.
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Phase detection and input for ADC

U In the macroparticle code @y = A@ — A@gp is already known at each turn,
» Ag is known from the tracking and the constant A¢@gg can be easily computed.
» The signal manipulations shown in the last slides (Gaussian profile, button transfer impedance, comb-generator, etc.)
can’t be directly applied in the code since each bunch is represented by just a macroparticle.
 However the Python routines able to perform these signal manipulations are available for separate analysis.

O In the code we directly compute Q, ]
lef — T_O |Zb|gmgpgcga Sln[gl(‘l’o T Qe+ Peorr + (Poff)]

» where phase errors can be included through ¢_; (bunch coupling) and ¢.,.- (phase advance of the comb-voltage).
O If intensity effects are large, then the synchronous phase is A@ oy # A@sp and this shift can’t be neglected. Therefore, from
Vipr = (Tz—(’)’ 1Zp|gmIp9cGasinlgi(Ap — Appom + (AProm — APsr) + @ct + Perr)]
» we see that, even when ¢, = ¢@,,- = 0, we have to compensate the synchronous-phase shift due to the HOMs.
* This can be done in the code since A@ oy can be computed with the new Python routine;

* |n operation, an input-offset can be set in the phase-servo-loop panel in order to obtain the desired compensation.

L Before entering into the ADC, Vips passes through an amplifier with gain g,;.
» Noise can also be added in the code and the input voltage for the ADCis Vpc = ga2Vips + NV (0,0y), where V' is a
sample from a Gaussian distribution with mean 0 and rms o ,.
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ADC processing

[ Let’s suppose that the number of bits for the ADC is 1y apc-
Q With ny; 4pc we can represent the 2™itADC signed numbers
{_(znbit,ADC_l — 1)’ — (anit,ADc—l — 1) +1, .., -2, —1, 0, 1, 2, .., 2Mitanc~1 _ 1 anit,ADC—l}

U The ADC converts a mixer-voltage V ;¢ (real number) into an output 1, 4p¢ (integer number)

Vapc € |—o0, +00[

g

Noapc
m

{_(znbit,ADC_l — 1), — (znbit,ADc—l — 1) +1, .., =2, —1, 0, 1, 2, .., 2Mitapc—1 _ 1 anit,ADC_l}

Q Calling Viax.4pc the maximum input voltage for the ADC
|=%0, ~Vinaxanc| @ Vanc ‘ —(2mpitapc=1 — 1) |Vinaxapc: +0| 3 Vapc ‘ 2"pitapc1

U For other values of V 4, we divide the interval [_Vmax,ADC; Vmax,ADC] into sub-intervals with length AV 4p¢

AV o — Vinaxapc — |—Vmaxanc] _ 2Vinaxapc
ADC = S
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ADC processing

O Therefore we have the correspondences

—SAV 4pc —AVapc  3AV pc
o Vmax,AD C 2 2 2 Vmax,AD C
$ $ \ ¢ $ $
{_(znbit,ADC_l — 1)’ — (znbit,ADC_l — 1) +1, .., =2, —1, 0, 1, 2, .., 2Mitapc—1 _ 1 anit,ADC_l}

1t L L) 1t

—3AV pe  AVapc
2 2

_Vmax,ADC + AVADC Vmax,ADC _ AVADC

[ The relations are

AV apc Vabpcn, 1
> (2noapc — 1) =Vapcn,,,, W) Noapc = o

AV 4pc 2

Q i Vape # Vanen, o then the above relation yields a non-integer number and we take the integer part of it

V 1 2MpitADC — 1 | 1
Noapc = int< Abc + —> = lnt< 2 Vv Abc + E)
max,ADC

Q In DAFNE 1y 4pc = 8 and therefore the conversion formula is

DC NOTE: bug in the Fortran code, the formula
+ 0. 5) %

Va
n =int|127.5—— -
0ADC ( maxADC on the left is used even when np;t apc # 8
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ADC processing: DAFNE examples

O Simulation of an oscillating bunch. Phase amplitude of 0.1 rad, no intensity effects, no action of the feedback.
» We plot the voltage signal entering the ADC and the ADC output (V,;,qx. apc = 200 mV).

Input voltage for ADC between +200 mV ADC output between -127 and 128
Phase oscillations around A@gp o \ n n ﬂ W n ” 1oo| ) n T n n n n
el N . 5 = Not
1:550 E 0.0 ::> I_g 0 saturated
— 15000 T T T T T T 71" T T I I 11111
s JVVV VUV .
< A APsR Q 02762060 4060 600 800 1000 ~ ou u2ooU yoou 6!0 800 1000
1.450 h V Turn [1] Turn [1]
1.425 g 03
N N
HAo0 ou U200u Boo 600 u sgo U1000 02'\‘ ﬂ -ﬂ— A' 'Q —ﬂ' Q —n- Q —”—Vmax'ADC o | ]} ﬂ ﬂ ﬂ ﬂ
Turn [1] < 0l E 50 Saturated
s D §
» Too high gains can lead to signal -0 S -0
saturation in the ADC. ~0.2= = —U- U —U— U -U— U -U— U- - 100
~03 OU 200 400 600 800 1000 ou uzoou l:Lo - E)o U 350 Uloog

Turn [1] Turn [1]
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FPGA: introduction

L The ADC output n, 4 is processed by the FPGA (Field Programmable Gate
Array), which is a configurable integrated circuit.

Xilinx FPGA used in DAFNE

[ The goal of the FPGA is to shift the n, 4p¢ signal by /2, so that the output
signal is in anti-phase with respect to the energy oscillation of the bunch.

O The shift by /2 is performed applying a FIR (Finite Impulse Response) filter
to the ny4pc signal.
> FIR: the filter is not recursive, i.e. the output is not used in the input.

O Different filters can be programmed in the FPGA, although the sinusoidal
one is generally used in DAFNE operation.

L Concerning the sinusoidal filter, a convolution is performed between the n,,p¢ signal, evaluated along the last synchrotron
period, and the sinusoidal function fz;z with angular frequency w¢y and phase ¢,. At time t;, the FPGA output is

Ntap_1 Ntap_1
Norpca(t) = grpcaloanc * frir = 9rprea z Noapclti-ilfriri = 9rrca 2 Noapcltk—il sin(wsoAtpspi + ¢2)

» where grp4 is the gain of the FPGA;
> Lk—Nygp+10 -+ Lic @re equidistant bunch arrival-times when the feedback operates (we call Atpsr the time interval);

» N¢qp is the number of filter taps and is such that 1, 4pc[tx] = 1oapc [tk_Nmp].
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FPGA: shift of the input-signal using a convolution

L Why this convolution is able to shift the n, 4 signal by /2? We start from the expression
Ntap—1

z Noapcltrk—il sin(wsoAtpsri + ¢,) Atpsr
i=0

IrpGA

Norpca(ty) = Atps
DSF

QO If Atpsp is small, this expression can be approximated with an integral

9rpcaloanc ‘ . .
noFPGA(t) — At > J Sln[wso (t - T) + ¢1] Sln(wSOT + ¢2) dT —
DSF t—kTgo
A t A kT
= drpas OADCJ [cos(wsot — 2wg0T + 1 — ¢3) — cos(wgot + Py + P3)]dT = — JrpaAZoADCT 50 cos(wgot + ¢1 + ¢2)
20tpsr Ji—kr, 2Atpsk

» where k = 1 is the number of synchrotron periods along which n, 4 and fr;r are evaluated;
» where A, ,pc and ¢, are respectively the amplitude and phase of n,,p.

[ Therefore we have the transformation

. grrcaloanckTso n
Noapc(t) = Aoapc Sin(wsot + 1) # Norpca(t) = ZAZDSF = sin ((Usot t ¢+ P2 — 5)

» if ¢, =0, then n,y,p is shifted by /2 as desired.
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FPGA: frequency response of the sinusoidal filter

L We compute the frequency response of the filter, assuming an arbitrary small time-step.
» We take as an example DAFNE with f;, = 28.72 kHz. The filter has phase ¢, =0

|F (frir)| [a.u.]

Phase of F(fr;z) [rad]

fm

k=1

N [0 o — -

(8]

50 75 200

Frequency [kHz]

100 125 150 175

AN AN
ENANNRNY

Frequency [kHz]

|F(frir)| [a.u.]

Phase of F(fr;z) [rad]

k=2

75

Frequency [kHz]

100 125 150 175

b —

fso

'YYYYYYYYYYY'

ARRRARRRRAN

-1/2

125 15 200

Frequency [kHz]

O The absolute value of the
filter Fourier-transform is a
sinc-like function.

» The maximum value
occurs at f,; < fso and
fm approaches fgy as k
increases.

1 The phase decreases linearly
with frequency and has
discontinuities where
|F(frir)1 =0

» The phaseis-m/2 in
correspondence of f;
as expected.

Q If the input signal has f; =
fs0, then the phase has to be
as close as possible to - /2.
» k = 1is preferable to
k = 2 since the phase
slope is higher.



FPGA: down sampling factor (1/5)

U Let’s suppose that the feedback operates every djsr turns. dpsr = 1 is an integer called down-sampling factor.
L Using a down-sampling factor larger than 1 has pros and cons.

(J Advantage: the number of operations per unit-time performed in the FPGA is reduced by factor dlz)SF.
» Computations on 1/dsr of the original data, moreover the time available to do the computations is djsr times longer.
» The saved computational time can be used to do more complicated filter-calculations and/or treat more bunches.

(] Disadvantage: the feedback doesn’t provide the proper correction at each revolution turn, but just every dp¢r turns.
» The last computed correction is given until a new correction is evaluated.

U In theory, according to the Nyquist theorem, Atpgr can be as low as Ty /2 in order to properly reconstruct the sinusoidal
synchrotron oscillation of the bunch.
» Two samples per period (N4, = 2) are sufficient to detect amplitude and phase of the synchrotron oscillation.

QO In practice, the synchrotron oscillations are not perfectly sinusoidal, for instance when the bunch is far from the synchronous
phase or when intensity effects are high.
» Moreover, the two samples are useless if they are close to zero.
* This can happen when the sampling times are close to the zero crossings of the sine function.

O Usually in operation Ny, = 5.
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FPGA: down sampling factor (2/5)

U As seen earlier, n,4pc is shifted by -m/2 when convolved with fzz.
» Both signals should extend over one synchrotron period and ¢, should be zero.

O Using Ny, taps means to divide the synchrotron period T into Ny, intervals, each with length Atpgr= dpgpTy.

U 1/0Q, is the number of revolution turns necessary for a particle to perform one synchrotron period.
» Assuming that 1/Qs is an integer multiple of N, then

1 1
_TO — TSO — NtapAtDSF: Ntap(dDSFTO) ‘ dDSFNtap = Q—S

S

U Therefore the following three expressions are all equivalent

Ntap—l Ntap_l
TlOFPGA(tk) = 9rprGA Z nOADc[tk_i] Sin(a)soidDSFTO) = 9rprca Z nOADC[tk—i] Sin(znidDSFQs)
(=0 i=0
N -1
N _ 2Tl
= 9rprca z Noapcltk—i] sin N
i=0 tap

O When (as usual) 1/Qs isn’t an integer multiple of N¢,,,, we use the first of these three expressions.
» The time step of fr;p is dpsrTy, Which is also the time step of n,4pc. This is required to perform a proper convolution.
» However it’s usually not possible to cover exactly one T, using this expression, as instead it occurs using the third one.
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FPGA: down sampling factor (3/5)

L The previous formula doesn’t take into account the following two delays.
» Feedback delay: the feedback-correction computed at turn n is not provided to the bunch at turn n.
* Inthe macroparticle code we assume that this correction is given at turn n + 1.
» Hold-buffer delay: The feedback-correction computed at turn kdpsrT, is the one given to the bunch for all the times
between kdpspTy and (k + 1)dpgpT,.
e The feedback-correction at turn kdpsrT, is computed as if the turn is not kdpsrTy but kdpspTy + Atpsr/2.

O The filter sinusoidal function has to compensate these two delays with a constant phase offset ¢,

. . . . dpsrTy
friri = sin(wsolidpsrTy + ¢2) = sin| wsoidpspTy + wgoTy +Wso—5—

Feedback delay = Hold-buffer delay

L The filter sinusoidal function is not supposed to add DC components to the output signal.
» Even if the integral of the sine function on one period is zero, discretizations can add a non-zero DC component.
» Therefore the average of the Ny, filter-coefficients is subtracted from each fz g ;.

W Therefore we have

. . dpsr
Norpca(tk) = Grpca Z Noapcltk—il{sin [wgoidpspTy + wgoTy <1+ > >] N Z frIR,j
L tap 4=
=0 J=0




U There is still one correction to be added to ¢,.

L To see this, we compute again the frequency response of the sinusoidal filter.
» This time we take into account the two delays in ¢, and the fact that the samples are taken every dpsr turns.

» Used parameters in this example: Ty from DAFNE, f5o = 28.7 kHz, dpgp = 6, Nigp = 16, ¢ = wgoT) (1+ dDZSF)-

frir [a.u.]

1.00
0.75
0.50
0.25
0.00
—0.25
-0.50
-0.75
—1.00

Filter coefficient

0

20 40 60
Turn [1]

Ge
80

|F (frir)| [a.u.]

Frequency response:

modulus

2.00

1.75|

1.50

Zoom |
(0 DC)

1.25]

1.00|

0.501

0 50 100 150 200
st

Frequency [kHz]

» ¢&,, is due to two independent reasons:
* the filter function can’t cover exactly one Ty, (|¢.,-| > 0 even if ideally the time step is arbitrarily small);
 the time step is not arbitrarily small (|¢.,-| > 0 even if ideally one T is exactly covered).

Phase of F(fr;z) [rad]

Frequency response:
phase

1
0 f 50 100 150 200
s0

Frequency [kHz]

Phase of F(fr;z) [rad]

FPGA: down sampling factor (4/5)

-1.30

-1.35

-1.40

—1.45

—-1.50

-1.55
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Zoom on the phase plot

Frequency [kHz]
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FPGA: down sampling factor (5/5)

[ Iterative procedure in the new Python code to compensate for this phase error:
» lteration 1: ¢,,. is subtracted from ¢,, i.e. the new ¢, is = ¢y — P,y
* In this way the phase frequency-response at f;, becomes ¢, as desired.
* However, since the time step is not arbitrarily small, changing ¢, leads to a non-zero DC component.
» lteration 2: the average of the filter coefficients is subtracted from the coefficients themselves.
* In this way the DC component is zero.
* However, this subtraction changes the phase frequency-response at f;, which is not ¢, anymore.
> Iteration 3: the new ¢, is subtracted from ¢, i.e. the new ¢, is ', = ¢py — P, — L.
> lIteration 4: ...

U The iterations repeat until the filter has zero DC component and the phase frequency-response at f, is sufficiently close to ¢,.
» Usually few iterations are needed to reach convergence.

* In our example 10 iterations diminish the phase error from 5.6 - 10™2 rad to 1.3 - 10~°.

Iteration 0 fso Iteration 0 2.0 Iteration O — st Iteration O . Iteration O
1.0 ‘ ) | 'g | ]
® — 8] — I &~ 2] I g —1 .28 = o -
— osle o. = I 5 15 Zoom | || ~ [ ~ Zoom
. G 61 (o) ~ —
3 so s onabs | 1| & \! E 130 I\ |on
— 0.0 o ~ [ ~ 1.0 H 7 o; l — |
. <4 o plot TS & 1 \| phase
e o N I G Y
“Z -0.5 ° SoLt ! $S o5, 1| © =x=k=\=a= o -1.32- I \ plot
oy = |! t I 52 1 g |
-1.0 ‘ ‘ g 0! I | ‘ ‘ _00 | | I E I | | | 2_13 ———I—r‘ —I———
0 25 50 75 100 0 50 100 150 200 Y9 10 20 30 & 0 50 100 150 200 o 1343 28 29 30 31

Turn [1] Frequency [kHz] Frequency [kHz] Frequency [kHz] Frequency [kHz]
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DAC processing and ideal voltage

L The DAC (digital-to-analog converter) converts the digital output of the FPGA into analog values.
» The inputs of the DAC must be integers between —(2™vitpac™t — 1) and 2™vitPAC™1 where 1y p4c is the number of bit
for the DAC (in DAFNE 1yt pac = 8).
» As a function of time, the output of the DAC is a continuous piecewise-constant function.
* The discontinuities are located in correspondence of the bunch arrival-times when the feedback operates, i.e. those
times which are multiple of dpsrT.

O If Vi axkick represents the maximum voltage which the cavity-kicker can provide to the bunch, then the analog values given
by the DAC represent the fractions of V4 vric Which the cavity-kicker should provide to the bunch to damp its oscillations.
» The feedback provides the values of the requested voltages, whereas the actual voltages are produced by the cavity
kicker and its generator.
» We denote the voltage values requested by the feedback with Vigyick-
* Asshown later, these values are ideal since the bunch can see in reality only approximations of them.

U The output of the DAC and Vg are given by

int(gpacnorpca)
2Mpitpac—1

Nopac = VEBkick = MopacV maxkick

» where gp 4 is the gain of the DAC and the operator int() takes the integer part of gpcnorpca;
> if int(gpacnorpga) > 2M01tPAC™, then ngpac = 1;
> if int(gDACnOFPGA) < _(anit'DAC_l — 1), then Nopac = -1+ 1/2nbit'DAC_1.
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Equations of motion in the code: RF+SR+HOM+FB (simplified)

O If we assume that the cavity-kicker can provide exactly the voltage requested by the feedback, the equations of motion are

A V= 2" + 2mhays)Y
(n) = (n+1) Nuom
U eVin, . eV.,.-cosAp e
(n+1) _ o(m) YO0 (n) FBkick,k rf k (n+1) _
]=

Ideal kicker

(n) . . .
» where V EBLick 1 1S the voltage provided by the kicker to the bunch k atturn (n + 1). (correction)

. V%)kick’k usually changes from bunch to bunch and, for a given bunch, changes

every dpsp Ty turns. Accelerating cavity

n) (n) (RF + HOMs)

* Ifforinstance dpsr = 1, then VI(E‘Bkickk is evaluated using A, ~ and not

A(pgﬁl) since the feedback-kicker system acts with a delay of one turn.

O The equations of motion assume that the two cavities are point-like and placed at the
same spot in the ring. The bunch starts at the exit of the accelerating cavity and in order

» drifts along the ring (first equation of motion); Synchrotron radiation

> loses energy by synchrotron radiation;

» receives the energy-kick from the cavity-kicker;

> receives the energy-kicks (accelerating and HOM-induced) from the accelerating » Small bug in the Fortran code: the
cavity. kicker voltage applied to the last bunch

is wrong if the first bucket is empty.



Small amplitude synchrotron frequency with SR and FB (1/3)

L We neglect collective effects and we assume that
» dpsp = 1;
» the feedback-kicker system acts with no delay;
» T, is small relative to Ty.

L The discrete equations of motion can be made continuous as

: : Ug eVrpiick (Ap) evrf
Ap = 1) 6 =— 1+26)+ + A
P = Wy EdT, ( ) E.T, E.T, oS Ao
L Deriving again with respect to time
. wrroUy WrrdoeVepkick(AQ)  wrrageVy
Ap = ——(1+26) + A
?= g, (T EoTo BTy 0

U Expanding around A@¢r we have

! (cos Apgg — sin Apgg @)

W, ranU ) W, rAneVrpri w,raneV
Gy = — rf@o 0<1+2 Po >_|_ rf&o FBkwk(Q%)_l_ rf@o€Vy

EoTy WyrrAo EoTy EoTo



Small amplitude synchrotron frequency with SR and FB (2/3)
O Simplifying and rearranging the terms we obtain

20y _wrfaoeVFBkick(‘pO) wrfaoeVrf
E T, 70 E,T, E,T,

@Yo + sin Apsg o =0

L We assume that the feedback shifts ¢, by —m/2 as desired.
» This requires that no saturation has to occur in the feedback, i.e.

* The input of the ADC is always in the range [—Vmax,ADc» Vmax,ADC]-

* The input of the DAC is always in the range [—(2™bitpAac—1 — 1) 2™bitpac-1)

> Grouping all the feedback gains in one expression, we have * Note 1: although A should have rad
units, in this case A is dimensionless

|
!
|
@o(t) = Asin(wgot + ¢4) | since @, derives from sin(¢,) = @
le Note 2: if dpsr > 1 then, at least in
4 |
!
!
!

first approximation, the FPGA term
should be divided by dpsr (Atpsr =
Phase detection ADC FPGA DAC

dpsr Tp in the convolution)

n .
27bitADC — 1 grpealso 9pac
2Mpit,pAc—1

1 :
cos(a)sot + ¢1) = —w_gFBtotfpo(t)

Up
Vegkick () = _AT_ |Zb|gmgpgcgaglga2
0 s0O

2 Vmax,ADC 2TO

n .
270t ADC — 1 grpealso  9pac

Qb
gFBtot_T_Olzblgmgpgcgaglgaz W e 2T, ZPipacd

» where grpior > 0 is the total gain of
the feedback in volt units




Small amplitude synchrotron frequency with SR and FB (3/3)

L The differential equation becomes

Qo =0

+
EoTo

. 2Uy  WrfQoePrpeot) . = WrrAo€VyrsinA@gp
Qo T ot
EyTy EyTywsg

L As expected, the feedback affects the damping-rate of the bunch oscillations. This rate becomes

2
. ot Uy  mhfgapegrpeor
rSRFB — ““r,SR r FB —
EoT Egwg

d On the contrary, the feedback doesn’t affect the frequency of the oscillations

Ws0,SRFB = Ws0,SR
L The solution of the differential equation is

()DO(t) — Ae_ar’SRFBtCOS((USO,SRt + B)

Q If, for instance, ¢,(0) = 0 and §(0) = § then

O)rfaog

Po(t) = e~ %rSRFB tSin(wso,SR t)

Ws0,SR
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FPGA: DAFNE example (1/5)

O Assuming U, = 8.88 keV, E, =510 MeV, Vrf =130 kV and ay = 0.018, then 1/Q, = 106.95.

O In DAFNE dpgp can vary from 1 to 32, whereas N, can vary from 1 to 16.
» We assume that the maximum number of taps is used, i.e. N¢,, = 16.
» In principle the optimal dpsr can be either 6 or 7 since dpgr = 1/(Ntast) = 6.68.

0 We do single-bunch simulations without intensity effects to find which dp sy leads to the most efficient feedback-response.
» At turn 0 the bunch-phase is displaced by 0.1 rad with respect to A@sr. 100000 turns are simulated.

dpsr = 6: filter with N4, = 16 and first 16 samples of ny,4pc  dpgp = 7: filter with N4, = 16 and first 16 samples of n,4p¢

(no feedback-correction applied to the bunch) (no feedback-correction applied to the bunch)
10086 | | & ® & | T 10{ § e e | [ i e ¢ (00
e L+ T ® i — L 4 : R — Loe 1
te e |[Atpsg=6To | | ? eV e | Atpsr=TTo | Y,
os | e ® L i L e T T T 1% — — os YL P T T T T —
j—ry A e e e A L — UK R 2 R T A R 20 =,
— e | I * Ll e i i b e — NN S S S S A N S A S T A B S
S L T e A R A R S T R S R R Q 2 00 ¢ F i ¢ 4 4 i €& bbb bbb b0 Q
= R T L A R A 2 O I = Y I e I
I T A S O A A A s Soos L be bbbl
IR T Y A T O N A M 00 T U S A S N N S R A O
ki I N N S S S A O 20 A N . SO 2O G WL U T O T T O O A . 2O YO S O A
0 20 0 80 0 20 40 80 100

40 6 60
Turn [1] Turn [1]
» When dpsr = 6, thenn,,pc and fgg; cover less than one synchrotron period (Nig,dpsr = 96 < 1/Q5).

» When dpsr = 7, then n,,pc and fpg; cover more than one synchrotron period (Nygpdpsp = 112 > 1/Q).



|F (frir)| [a.u.]

Phase of F(fr;z) [rad]
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FPGA: DAFNE example (2/5)

L We compare the frequency-response of the filter when dpsr = 6 and dpgr = 7.

dpsr = 6: frequency response of the filter

25 50 75 100 125 150 175 200

Frequency [kHz]

75 100 125

Frequency [kHz]

dpsr = 7: frequency response of the filter

|F (frir)| [a.u.]

0 25 50 75 100 125 150 175 200

Frequency [kHz]

Phase of F(fr;z) [rad]

75 100 125 ‘ 175 200

Frequency [kHz]

> ¢y, = wsoTo(1+dpsr/2) is equal to 0.235 rad when d s = 6, 0.264 rad when dpgp = 7.
» The modulus frequency-response around f5q is lower when dpgp = 7.
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FPGA: DAFNE example (3/5)

U We analyse the evolution of n, 4 and n,:p:4 Without applying the feedback-correction to the bunch.
» The linear interpolations between consecutive points are plotted only to facilitate the visualization.
» The decay of the oscillations is due to synchrotron radiation.

dpsp = 6:Nyapc and 1,ppga dpsr = 7:Nyapc and Nyppey
40 40
— 20 =L 20 =L
& S & AL
Q 0 o Q 0 G
< ol < Q,
S S S S
S —-20 o i~ =20 ~
—40 -40
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Turn [1] Turn [1]
Zoom 1 (0-150 turns) Zoom 2 (850-1000 turns) Zoom 1 (0-150 turns) Zoom 2 (850-1000 turns)
60 60 60 60 60 60
-+ <_¢2 40 0
40 40 40 40 40 40
— 20 20 < T 2 20 = T g 20 < T 20 20 —
2 o Rt 2 0 RS 2 o o S 8 o RS
=) Iy 3 Y 3 a =) &
S 20 S S 20 S S _20 S S 20 S
e -20 o i~ -20 o < -0 o < -20 &
=40 -40 -40 _40 -40 —40 -40 _40
» —»> <—q)2
-60 60 -60 L -60 P -60
0 25 50 75 100 125 150 850 875 900 925 950 975 1000 0 25 50 75 100 125 150 850 875 900 925 950 975 1000
Turn [1] Turn [1] Turn [1] Turn [1]

> The shaded regions cover the first N, — 1 =15 samples of 1, 4. Here 71,54 is in transient regime (hold-buffer not full yet).
» The n,rp;4 amplitude is lower when dsr = 7. This is due to the lower modulus of the frequency-response around f.



FPGA: DAFNE example (4/5)

O We analyse the evolution of 1,45, "orpca and Vegrick When the feedback-correction is applied to the bunch.

dDSF = 6: evolution of Noapcr MoFPGA and VFBkiCk
I 1.0 o4
' g’ |40
— I 0.4 oo
= | : |20
K_) 99500 99600 99700 99800 99900 ].(]00_0%‘4
Q 0
3 |
-20 =20
= : Zoom
: (99500-100000 turns) | —40
0 .20000 40000 60000 80000 100000
Turn [1]
200 700
150 100
— Zoom .
100 4
2 (0-10000 turns) | |.
2~ 50
O [2%% 2000 4000 6000 8000 10000
sy 0
ﬁ _50 100 :
Zoom
-100 L -
—150 (0'500 turnS) 100
200, I
_2000 20000 40000 60000 80000 100000
Turn [1]

Norpga (1]

VeBkick [V]

dDSF = 7: evolution of Noapcr» MoFPGA and VFBkiCk
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(99500-100000 turns)

Norpga 1]

200

Ot == = = -

2000

40000

60000
Turn [1]

80000 100

150
100
50

—50
—100
—150

—200/

Zoom

200

(0-10000 turns)

72000 2000 4000 6000 8000 10000

Zoom
(0-500 turns)

—

200

100 I

=100

~200, 100 200 300 400 500]

20000 40000

60000

Turn [1]

80000

100000

» When dpsr = 6, faster exponential decay of n,4pc (black and orange dashed lines) due to the larger amplitude of n,rpc4 and Vegrick -
> At the end of the simulations, n,4pc takes 0 and 1 values, whereas n,gp¢4 is sinusoidal like with |n gpcal < 0.4.

» In this example gp4c = 0.5, therefore Vegrick =0 if [norpcal < 2, and this occurs after about 10000 turns.
» There is a transient period of about 100 turns for Vegrick-
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FPGA: DAFNE example (5/5)

L We analyse the evolution of the bunch-phase Ap when the feedback-correction is applied to the bunch.

dpsr = 6 dpsp =7

1.60 1.60
— 1.55 1.55
U | |
S ©
2= 150 ®© 150
S
<] 145 3‘ 1.45

1.40 20000 40000 60000 80000 100000 1.407 5 20000 40000 60000 80000 100000

Turn [1] Turn [1]
1.60.);— > Here the envelope is not exponential Zoom 160 i Here the envelope is not exponential | Zoom

due to the transient period of Vigyick

A [rad]

g

H due to the transient period of Vgpyick

li

» The simulated damping-rates are o, = 1443 1/sifdpsp = 6, a,, = 12701 /sif dpsr = 7.
» The analytical damping-rates are a, srpp = 1473 1/sif dpsp = 6, - sppp = 1270 1/s if dpsp = 7 (good agreements with simulations).
* The analytical damping-rate assuming dpsr = 1is a; srrp = 8569 1/s (@ sgp = 53 1/s, a pp = 8516 1/s).

U This example shows that d,sr = 6 should be preferred to d,sr = 7 (an equal a,- is obtained by increasing gp4c by 14% when dpsr = 7).
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Cavity kicker in DAFNE: introduction

The active element of the longitudinal feedback-system is the cavity-kicker.
» One kicker per DAFNE ring.

The kicker is a special ‘overdamped’ pill-box cavity:
» The pill-box cavity is 72 mm long and has a diameter of 200 mm (the
diameter of the beam-pipe is 88 mm).

A large bandwidth is obtained by loading the pill-box cavity with 6 ridged
waveguides followed by broadband transitions to standard coaxial cables.
» The 6 waveguides are placed symmetrically on the pill box, 120° apart from
each other.

3 waveguides (ports) are used to inject power into the kicker, the other 3 are
terminated onto 50 () termination loads.

» Thanks to the symmetry of the waveguides and the fact that the power A. Gallo
dissipated on the loads is much larger than the one dissipated on the cavity (1995)
walls, the system is in theory perfectly matched at the resonant frequency
(zero reflected power by the input ports).

There is no need to tune the kicker in operation due to the large bandwidth and
no need to cool the kicker since most of the power is dissipated on the loads.

The strong waveguide-coupling leads also, as a by-product, to a significant
damping of all the kicker HOMs.




Kicker parameters (1/3)

0 The kicker must be able to damp the coupled-bunch instabilities due to the HOMs (mostly those of the accelerating RF system).

O It was shown that, in the presence of coupled-bunch instabilities, the beam-spectrum lines which can be excited are situated at

fl,m,u = (IN, — mp)fo — Mfs nom

> wherel € (—o0, +00), m € (—o0,+0) is the oscillation mode and u = 0, ..., Nj, is the coupled-bunch mode.

L We suppose that the machine is full, i.e. N, = h, and that m = 1, since the dipolar mode is usually the most critical for coupled-bunch
instabilities. This leads to

fl,/,t = lfrf — ufo — fs,Hom
> with fs yom < fo (in DAFNE they differ by about factor 100).

O To be able to damp every coupled-bunch mode, it is sufficient that the kicker bandwidth covers for each 1 at least one line f; 7.
» We want to find the minimum bandwidth able to do this: larger bandwidths would unnecessarily lower the kicker shunt
impedance and this, as shown later, would decrease the available kicker-voltage for a given amplifier power.

O Neglecting in the analysis f; yop Which is relatively small, and considering that [ can be positive and negative, it can be easily verified
that the minimum required bandwidth Afgyw min is f,
) _rf
AfBW,min_ 7
» as long as the resonant frequency is placed at
0.25 frf or (p £ 0.25)f,¢ p=>1
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Kicker parameters (2/3)

O In DAFNE the following resonant frequency was chosen

fp = 3.25f,; = 1198 MHz

» Since the pillbox cavity is operated in the TM;,
fundamental mode, the diameter of the pill box cavity
can be estimated as

2.405c¢
dpillbox = 7 ~ 200 mm
T
O The constraints on the kicker bandwidth Afgy, and the
quality factor Q are given by

AfBW,min
> In DAFNE the measured and simulated kicker
bandwidth and quality factor are

Afgy ~ 220 MHz Q ~ 5.4

» Since each waveguide covers 11% of the available cavity
surface, the number of waveguides could be increased
to 8 leading to a larger bandwidth.

* This was not done since the constraints are already
satisfied (with some margin) using 6 waveguides.

Kicker shunt-impedance reproduced in simulation with some spectrum

Ry [Q]

Ry [©]

lines (see next slide for the definition of R ), fs nom = 30 kHz

I T I I 1111 |
600 Bandwidth Bandwidth
400 covers at least covers at least
[ n=0,..60 || n=60,..,119
200
0
-0.5 0.0 0.5

Frequency [GHz]

Zoom 1 3frf 3.25f,r 3.5fyf
600 Rs,s (fr) f4’0
s00l % _ _ RN N !
200 | T ——
o/ fazo [f30 + faeol | fa30
1.0 1.1 1.2 1.3 1.4
Frequency [GHz]
Zoom 2 ~3.5f,; —3.25f,; —3fy
600~Rs,s(fr) | | ! —2,60
2
0= === il pa e P*Y —————— B
200 __— . . . .
ol f-390| tf-360 + f-301| f-290
~1.4 -13 —1.2 —1.1 -1.0

Frequency [GHZz]
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Kicker parameters (3/3)

O The frequency-dependent kicker shunt-impedance R ;(f) is defined as Shunt-impedance obtained from an
. L 2 electromagnetic simulation of the kicker model
V. 1 2 - zZ_ 800 — -
R, s(f) = | ;I(Df” _ T JLEZ(Z)eJ[anC ¢z(z)]dz ;-——I———|——-—7:.\ A. Gallo |
fw fw /=3 70 Rs,s (fr) / : \\ (1995) E
] ) i
> where V,, Pr,, and L are respectively the kicker gap-voltage = R / : \
phasor, the forward-power at the kicker input and the gap length; Ty 500 7 1
» where E, and ¢, are respectively the amplitude and phase of the ot 200 / i \
longitudinal electric-field evaluated on the beam axis and — ___:______\
expressed as a phasor: ] Af pw ! N\
EZ (Zl t) — Re{EZ(Z)e][ant_d)Z(Z)]} ZOOIOOlOl . .105(l) - .110;)l | IILS;). . .IZEOE). . .lZSlO. . .130l0l . .135.0I | I1400

Frequency [MHz]

Q R, (f) was computed by integrating on the beam-axis the E-field

SO ST o , , O It turnsout that R, .(f) = 2 Re[Z(f)], where Z is the
distribution given by a 3D electromagnetic simulation of the kicker. '

beam-coupling impedance of the kicker.
» The kicker, in addition to providing the voltage-
correction to each bunch, contributes as a
resonant impedance with parameters

Q Simulations, and also measurement, showed that R ;(f;-) = 750 (.
» The maximum power provided by the kicker amplifiers is 600 W.
» One 200 W power-amplifier for each input-waveguide.

> The available gap-voltage when the kicker-generator works at f; is fr =325f,f Q=54 R;=R;(f,)/2=375Q
» This impedance, not included in the Fortran code
V . = |V = |2P¢,R ~ 950V ! !

waxiicr = |V ()] \/ FwRss (fr) was added in the new Python code.
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Kicker coupling-impedance in the code (1/3)

 As shown, the HOMs shunt-impedances were rescaled by an exponential factor to consider the Gaussian profile of the bunches.
» We show now that this technique can’t be properly used for the kicker fundamental-mode due to its relatively small Q.

O We consider the parameters of the kicker fundamental-mode f,. = 3.25f,.r, @ = 5.4, R; = 375 ) and a Gaussian profile of rms ;.

O The kicker wake-potential induced by the Gaussian profile at distance z = ct from its centre can be computed analytically as
_ I [(r2-w)of-rt| . .
Wy (t) = —R, e 2 {Re[erfc(4)](w,, cos B + I'sin B) 4+ Im[erfc(A)](I cos B — w,, sin B)} t € (—oo, +)
n

» where erfc is the complementary error function and

0, W o7 —t + jw,of
[=— ~ — Wy, = /wrz—f‘zza)r A=— JOn0t B = Tw,0f — wyt
20 11 V20,

» This formula is obtained through profile and wake-function convolution using algebraic routines from the Mathematica software.
» This formula is valid for every resonator impedance.
e Aplot of W, has already been shown to verify that the HOM shunt-impedance rescaling was possible.

L As concerns the kicker impedance, we want to compare W; with two rescaled wake-functions:
» W,: the rescaling is done by using the exponential factor already adopted for the HOMs;
» Wj: the rescaling factor is such that W5 (0) = W, (0).

W,(t) = e_wTZJW” (t) Ws(t) = ]\jlv/:(((()))) w, (t) where  wy(t) = —[sgn(t) + 1] Rswy e_(zv_(gt cos(w,t) — Or sin(w,t)

20 2Qwn
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Kicker coupling-impedance in the code (2/3)

L W, decays to zero after essentially 3 RF periods.
O At 0 ns the amplitudes of W; and W, differ by 7%.

Wake potentials and bunch profile Zoom 2 After roughly 0.2 ns:

O We show the three potentials for the DAFNE case, using g; = 20 mm.

! I I W, 195 » there is a time-shift of 2.7 ps between W, and W,;
_ 300 N : [ _ T 1 » the amplitudes of W, and W, are the same.
E 200 : | 15 E —220 1.90 O At 0 ns the W, and W35 amplitudes coincide by construction.
Zm 102 : : | %—225 7% W3l e After roughly 0.2 ns:
S 100 I H Vs S > there is a time-shift of 2.7 ps between W, and W5;
N | I | a : . o
% 200 ! | L %,_235 1.80 » the amplitudes of W; and W; differ by 7%.
~ ~300/ | ' I ~
= ~400 : : } 1 = a0 W17 d As for the beam dynamics, we expect that the
_500 : : 1 o —245 1.70 approximation using W, is stronger than the one using W5.
° Time [ns] 8 10 e [nS]1 le—s » Error using W,: always 15 V/nC;
- 1 . (o) o)
Zoom 1 Zoom 3 » Worst-case error using W5: 7% of 150 V/nC + 7% of 25
I 355 2.7 ps V/nC =12 V/nC.
300 6 350 6.35 > If the bunch distances are t, (e.g. in stable

conditions), the error using Ws is just 7% of 10 V/nC.
Indeed the bunch sees zero potential from the last
6,25 bunch due to the fact that w, = w, = 3.25 w,.

6.30

~100 3
—200 2

[79%

Wll WZI W3 [V/nC]
Wl; WZ; W3 [V/nC]
) w
s

300 120 6.20 O W, and W5 are among the best possible fits for W .
400 1 » In any case the constant time-shifts can’t be
_ 0 325 compensated changing the resonator parameters.
0066 64 —62 00 02 04 0.35 0.40 0.4 : '
' ' “imens] ' Time [ns] » This proves that no resonator can properly fit ;.

6.15
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Kicker coupling-impedance in the code (3/3)

L Being the resonator-fits unprecise, the kicker-impedance contribution was added in the energy equation of motion using directly W;.

(n) +1) NHOM (n+1)
6(n+1) 5(n) UO (1 n 26(11)) eVFBlek k n eVrf CoS A‘Pk Z [V(n+1) LV ] n kaker k
EO k EO EO EO k,j,RES k,j,IND EO

» where the kicker induced-voltage is given by the sum of the instantaneous voltage and the voltage induced by the last 3 bunches

Vk(Ecg,k Q, (Wl(O) + Wy ([A(p(nﬂ) A(p(nﬂ)]/wrf) + Wy ([A(p(nH) A(p(nﬂ)]/wrf) + Wy ([A(pmﬂ) A(p(nﬂ)]/a)rf))

(n+1)

* Here the phases aren’t meant mod 2m, i.e. ¢ (A(p ("+1))

— Ap /Wy is the distance between the bunches k and k — i.
* Asshown, the kicker induced-voltage decays after 3 RF periods, so the contributions from the last 3 bunches are enough.

O Since the kicker induced-voltage isn’t negligible, it was also necessary to add the kicker-impedance in the beam-matching routine.
» This was done by simply adding the resonator W5 to the HOMs during the matching procedure.

L DAFNE example with 105 contiguous bunches,
I, = 15 mA, HOMs + kicker impedances during
tracking, feedback off, bunch k starts at Apgop k-
» Although it’s an approximation, the
matching with HOMs + W5 provides a
negligible initial oscillation-amplitude for all
bunches (as the number 80 here shown).

Oscillations of bunch 80, Oscillations of bunch 80, Oscillations of bunch 80,
matching with just HOMs matching with HOMs+W, matching with HOMs+W 3

1.490

=
n
N

1.489
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w
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‘= 1.487
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=
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B1.486
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¢ 1.485
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» The matching with HOMs + W, provides less Initial amplitude
20 mrad 1423 1 mrad 0.03 mrad

satisfying results, as expected from the — ] 1 . . il
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Kicker correction-voltage

L We now describe the second voltage-contribution of the kicker, i.e. the voltage-corrections given to the bunches.

O The final part of the feedback block-diagram shown earlier can be expanded (and simplified) as

RF generator

(it produces a sine wave with
frequency f, = 3.25f, ¢, phase
@, =0 and amplitude 1 V)

DAC (it provides the values of the ideal correction-voltages)

L The DAC provides the values Vpgyick Of the voltages which should be given to the bunches to have optimal corrections.

O The generator produces a sine wave with frequency f, = 3.25f,.¢, which is the resonant frequency of the kicker.
> If this signal is equal to 0 at t = 0, then a bunch crossing the kicker at t = t,.r sees the maximum of the sine wave, as desired.
> However, a second bunch crossing the kicker at t = 2t,.r sees zero voltage and therefore no correction is applied to that bunch.
» To solve this problem, the QPSK (Quadrature Phase-Shift Keying) modulation is used to shift the signal by 90° every t,.f.

O The mixer multiplies the signal coming from the QPSK with the values Vpgy;cx provided by the DAC.
» The resulting signal is a piece-wise sinusoidal signal with amplitudes given by the values Vigyick-

O The cavity-kicker, being a resonator with its filling time, modifies the signal coming from the mixer.
» Because of this, even if everything is perfectly synchronized, the bunches can see just an approximation of the ideal kicks Veggick-
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Example: voltage signhal from generator to mixer

O Let’s suppose that the bunches 1, 2, 3 and 4 circulate in DAFNE (t,.; = 2.71 ns).

» At acertain turn n the values Vipiicx Of the ideal correction-voltages are 2, -0.5, -2.5, 4 respectively for the bunches 1, 2, 3 and 4.
> The kicker is crossed by the bunch i at it,f, i = 1, ..., 4.

O The mixer-signal is given by the QPSK-signal, which never changes along the turns, multiplied with the DAC signal, which changes every dpsz turns.
» The voltage from the mixer is discontinuous at the times which are multiple of ¢, .
» As shown later, the voltage-signal from the kicker is continuous at all times and bunches arriving slightly late can still get a proper correction.

Voltage from the generator Signal from the DAC at turn n
1.0 4
2. 0.5 = ,
Q S
+ E O o o e i e ———————————————————————————
-0.5
= =
-1.0
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time [ns] Time [ns]
Voltage from the QPSK Voltage from the mixer at turn n
1.0 4
2. 05 2 2
Q Q ]
@ 0.0 - - & O-W KAAA RN -\-
= =
2-05 Q-2
—-1.0 -4

6 12 0 2 4 6
Time [ns] Time [ns]
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Kicker correction-voltage in the code (1/6)

O The cavity-kicker is modelled as a parallel RLC resonant circuit. This allows to take into account the finite filling-time of the kicker.

O The kicker is excited by the circulating beam-current ij,(t) and by the kicker RF-generator 1 (t).

» The generator has angular frequency w, = 27 f, and is amplitude-modulated with the Vigyicx Values coming from the DAC.
» The generator has inner resistance equal to the shunt impedance of the kicker divided by the coupling factor

Pext — ‘External’ power lost through the waveguides (power-couplers).
Pyau —* Ohmic power-losses due to the non-perfectly conductive walls of the kicker.

Bc =
» As observed earlier, we assume that the generator-kicker system is perfectly matched when the generator works at f,, therefore 5. = 1.

O Since we expect that the bunches cross the kicker at times kt, ¢, after the passage of the bunch k — 1 at (k — 1)t,f the generator-amplitude
Vegkick k-1 suddenly changes to the value Vppick k Pertaining to the bunch k. The QPSK shifts the generator-phase by 90° at times kt,.f.

—— e — i m o) =

— t € [(k — Dtyp, ktrg|
1. I ! k=12,
: L0 il EICRTID WG ER
@ 12k, / cL 1 CT [ _ =1
: I |
I V(t) [ I | Unknown  V(1):voltage across the capacitance at time t
Cavity-kicker Beam

O In the following derivation we neglect the beam current (i, (t) = 0) since the corresponding (induced) voltage was already considered.



Kicker correction-voltage in the code (2/6)

O The generator-voltage in the time interval (k — 1)t < t < kt,f is given by

Vg(t) = VFBkick,k Sin((‘)et + (pe)

» where we consider the more general case with ¢, # 0.

O Applying the Kirchhoff’s law for currents, we have

V) 1

t av(t) V,(t) Vepwi
+—j V(s)ds +C ()z g()z FBkick.k
Ry, LJ,

dt R, R,

sin(w.t + @,)

L Deriving one time
1

~ 2CR,

V + 2TV + w?V = F,, cos(w,t + @) r w, =—  Fx = 2TweVigrick i

U The associated homogenous differential equation is

/11,2=—Fij/wr2—F2=—Fijwn Wy, = /wﬁ—[‘z

V,(t) = e "t [C; cos(w,t) + C; sin(wy,t)]
> where the constant C; and C, depend on V(0) = V, and V(0) = V.

O Its eigenvalues are

L Its solution is



Kicker correction-voltage in the code (3/6)

L The forcing term of the inhomogeneous equation is

Fi cos(wet + @) = Re{Fyel(@ett@e)}]

L Therefore we find a particular solution of the type

Vp(t) — Re{Xej(“)e“"pe)}

» where X is a complex constant.
Q Inserting Fj,e/(@et+®e) gnd Xel(@et+®e) into the inhomogeneous differential equation we obtain
—Xw? + 2TXw,j + w?X = F

O Solving for X

o022
_ 2TweVepkickk  VrBkickx —  FBRickk|Y\o, T w,) T _
X=— 2 - = 2 = Vrgkickk(A — jB)
Wy — We + ere] Q (& — &) + i 2 Wy We ’
we wy) ) P \o, "w,) T1
» where 0 (& B &)
0 = Wr _ We Wy B = 1
2T w w 2 - w W 2
2 (%r _ We 2 (Pr _ De
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Kicker correction-voltage in the code (4/6)

L Substituting

Vo (t) = Vigkick kRe{(A — jB)e/@et*®e)} = Vi, 1k [A cos(wet + @) + B sin(wet + ¢;)]
O Therefore all the solutions of the inhomogeneous differential equation are given by
V(t) = e [C; cos(wy,t) + C, sin(w,t)] + Veskick kA cos(wet + @) + B sin(wet + ¢,)]
O C; is determined by

Vo = C1 + Vekick k(A cos @, + B sing,) ‘ C1 = Vo — Vegkick,k (A cos ¢, + B sin ¢,)

O C, is determined by

I./0 = _Fcl + Czwn + VFBkick,kwe (B COS Qe — Asin (pe)

1 . I I'Vegki VEBKick kW
CZ — VO +— VO _ ~ VFBkickk (A cos @, + B sin (Pe) __ 'FBkick,k™e
Wn Wn Wn Wn

(B cos @, — Asing,)



Kicker correction-voltage in the code (5/6)

O Substituting we finally obtain

sin(wy,t) .
= Vo} + Vekick xS (t)

[
V(t) =e Tt {[cos(wnt) + w—sin(wnt) Vo +

n n
> where

f(t) = Acos(wet + @,.) + Bsin(w,t + ¢,) +

(T'A + w,B) cos ¢, + (I'B — w,A) sin ¢,

Wn

—e~ It {(A cos @, + B sin ¢,) cos(w,t) + sin(wnt)}

U Deriving V(t) we obtain

. w2 r . .
V(t) =e Tt {—w—rsin(wnt) Vo + |cos(w,t) — w—sin(wnt) VO} + Vegrickxf ()

n n
> where

f (t) = —Aw, sin(w,t + ¢,) + Bw, cos(w,t + @,) +

(w?A + Tw,B) cos ¢, + (w?B — Tw,A) sin ¢,
wn

e It {we (Asing@, — B cos ¢,) cos(w,t) + sin(wnt)}

134



135

Kicker correction-voltage in the code (6/6)

Q Similar to what done for the RLC circuit for the HOMs discussed earlier, in the code V and V are computed using the matrix expression

VO = V[(k — 1)t7‘f]l VO = V[(k — 1)trf]

Wy 1. —
cos(w,t) + — sin(w,, t —SIin(wy,t
V(t) ~Lry (@nt) 2Qwy (nt) Wy, (@nt) Vo f(®)
; =e 20 2 o |+ VeBkickx | 0<t<tr
V(t) w?’ . w‘r‘ . VO f(t)
——sin(w,t) cos(wy,t) — ——sin(w,t) L I
Wn, 2 Wn
\ ] It oscillates with time and accounts for the generator-

It decays exponentially with time and accounts for the emptying-process of the kicker.  voltage and the filling-process of the kicker.

O If the RF generator is perfectly synchronized with the synchronous arrival times of the bunches, then ¢, = 0 and

A+ w,B for large t
— sin(a)nt)} — A cos(w,t) + B sin(w,t) # sin(w,t)
n

f(t) = Acos(wet) + B sin(w,t) — e 1t {A cos(wy,t) +

A fw, =w, = 3.25wrf, as it occurs when the QPSK is active and there are no frequency errors, then 4 = 0, B = 1 and

W, COS + I'sin forlarge t
f(t) = sin(w,t + @,) — eIt {sin ¥, cos(w,t) + — Pe Pe sin(wnt)} — sin(w,t + ¢,) # sin(w,t)
" _3.25m
Q If oo = 0 and w, = w, = 3.25w, (ideal case), then ~e Q (sincew, = w,)

i _rt We . l_rt We l

f(t) = sin(wet) — e Ftw—sm(wnt) ‘ VFBkick,kf(trf) = VeBkickk — VrBrick k€ wa—sm(a)ntrf)

I ;:'ll' ; t l d [ . J
, illing-process term decaying Desired voltase-kick

Vo () Veprictex exponentially with time ETed VOIageXIcK  Error term due to filling-process
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Example continued: voltage signal from mixer to kicker

0 We assume that ¢, = 0 and w, = w, = 3.25w,¢. The voltage from the mixer and the actual kicker-voltage are given respectively by

Voltage from the mixer at turnn Kicker voltage at turn 1
N 4 VEBkick,1 VeBkicka=>")
— — ~
> 2 S 2
% g
o o
> 2 =2 Vesrick1f (0 VFBkick/; s
FBkick,1 ’
4 4 d VEBkick,3
0 2 12 0 2 4 6 8 10 12
Time [ns] Time [ns]

» The voltage from the mixer coincides with the amplitude-modulated generator voltage V, (t) defined for the kicker circuit-model.
» The kicker-voltage is a continuous function of time, as opposed to the mixer-voltage which is discontinuous at kt,.s.

» The kicker-voltages at t,.¢, 3t,.r and 4t are visibly lower than the corresponding Vegyck k-

> In this example, being at turn 1, there isn’t residual voltage in the kicker at t = 0, therefore V(t) = Vgpgick,1f (t) for0 <t < t,.¢.

O At least for times Kicker voltage at turn n (¢, = m/4) Kicker voltage atturnn (Iwr — wel/(3 ZSwa) = 5%)
close to kt,s, a = 2 = '
frequency error of @ o A\ [ ~A N[\
5% is essentially % z MAVAAVAVAA A SNV VA ‘ E j VA A
equivalent to a shift >, S .
0 2
of the phase by /4. ° ’ * Time [ns] " T|me [ns]
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Kicker-voltage evaluation for bunches

O The code takes into account the fact that bunches perform synchrotron oscillations around their corresponding synchronous phases.
» The times kt,.r, when the QPSK acts, correspond to the Aggg of the different buckets: a bunch arriving at kt,. s has phase A@gg.

O Given w,, w,, ¢, and Q, the matrix equation previously derived can be expressed in functional and compact form as

1
cos(w,t) + sin(w,t) —sin(wy,t)
V(t) st (@nt) 2Q Wy (n Wn (n Vo, k-1 f(®) :
' =€ 2 . + VeBkick k = p(t, VeBkick,k» Vo,k—1/ VO,k—l)
V(t) Wy | Vok-1 f( )
— —sin(wy,t) cos(w,t) — sin(w,t)
Wy, 2Q n

> where Vo1 = V[(k — 1)trf], Vok—1 = V[(k - 1)trf], 0 <t <ty and p is the ‘propagation’ function.

O If the bunch k is in advance with respect to Apsr (A@, < A@sr), then the kicker-voltage seen by the bunch k is given by

Apy — Apgp
b =t e + <t
1° element . rf Wy f rf

V(ti) = p(ti, Vepkicki Vo-1 Vok—1)
O If the bunch k is late with respect to Apsr (A@y > A@sr), then we need first to update the initial conditions and then compute V (t,)

A, — A
£, = P Psr >0
1° element Wy f

Vo . .
v = p(trf; VEeBkickkr Vo k-1, VO,k—l) V(ty) = P(tk: VEeBkickk+1, Vo ks VO,k)
0,k

O If there are empty buckets between two bunches, then the initial conditions must be updated iteratively before computing V (t).
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Example continued: kicker-voltage seen by bunches

O We consider again the case ¢, = 0, w, = w, = 3.25w, s and we assume that the four bunches traverse the kicker respectively at
times t; (in advance), 2t + t; (late), 3t,.f + t5 (late), 3¢, + t4 (in advance), with 0 < t; < t;f.

Kicker voltage at turn 1 > Being the first turn, the kicker residual-voltage is zeroat t = 0

V(0)\ (Voo\ (O
() =) =)

N

N

» V(ty) can be computes as

Voltage [V]
o

| |
1 1 1
: : : : ror — B
I I I I . 1 SR
—4 £q! 12, p+L; | 3t ptty! V(t) = p(te, Veskick,1 Vo,0r Vo,o)| . b =bypt——
0 2 4 6 10 12 1 rf
Time [ns]
» To compute V(t,) we need to update the initial conditions twice
VO,l . VO,Z . . A(pz — ACPSR
< - > = p(trf Veskicin Voo Vo) ( - = p(trs, Veskick,2 Vo1, Vo1) V(ty) = p(ta, Veskicks Vo Vo) t, =
Vo1 Vo,2 1° Wy f
» To compute V(t3) and V(t,) we need to update the initial conditions one time more
v V(ts) = p(ts, Vepkick,a V0,3:V0,3)|10 V(ts) = p(ts Vrpkick,a Vo3 Vo,3) Lo
0,3 :
S = p(trfr VEBkick,3 V0,2, Vo,z) A, — A Ao, — A
<V0’3> £y = P3 ©Osr ty =ty + Z! Psr

Wy f wrf
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Another example: residual voltage and kicker efficiency (1/3)

o
O Let’s suppose that At turn n
» 120 bunches in DAFNE perform coupled-bunch motion with u = 30; l 1,5,... (0,3) (n = 30)
» the phase-shift between consecutive bunches is A¢3, = 1 /2;
> the oscillation-amplitudes Ap and & are the same for all the bunches - _
« atturnn, the bunches 1, 5, 9, ... have coordinates (0,5), the bunches 4,8,... (psp-A@, 0) 2,6,...(@sptA@, 0)
2,6, 10, ... have coordinates (psp+ A/?p, 0) etc.; @ >
* the feedback ideal-corrections are Vppgick,(15,..) = =2V, A¢ mod 2m
VFBkick,(2,6,...) =0V, VFBkick,(3,7,...) =2V, VFBkick,(4,8,...) =0V.
T 3,7,...(0,— &)
Kicker voltage at turn n (u = 30)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
o

- O We assume that Ag and & are small so that each bunch k
sees essentially the corresponding V (kt, ).
» The bunches 1, 5, ... see -1.733 V instead of -2 V.
* Error 14.3%.
» The bunches 2, 6, ... see -0.05 V instead of 0 V.
* Error0.05V.
» The bunches 3, 7, ... see 1.733 V instead of 2 V.
* Error 14.3%.
ookl L d bl L | » The bunches 4, 8, ... see 0.05 V instead of 0 V.

5 10 15 20 25 30 35 40 * Error0.05 V.
Time [ns]

Voltage [V]
-
o U o wu o wu
%
T
. — ——
E
:_-_;

-
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Another example: residual voltage and kicker efficiency (2/3)

O Let’s now suppose that
» the 120 bunches perform coupled-bunch oscillations with u = 0 (A¢, = 0) and that at turn n the coordinates of all bunches are (0,6);

> the feedback ideal-corrections are all Veggickx = —2 V.
Kicker voltage at turn n (u = 0)
At turn n ° e e e e e e e e e
(k=0 1 1,2,...(0, 3) 1.5
ottt
a1 i
I

I |
N
o w

O We assume again that Ag are & are small so that each bunch k sees the corresponding V(ktyr).
» All the bunches see -1.70 V instead of -2 V.
e Error 16.2% (instead of 14.3% obtained for u = 30).

U This example indicates that the kicker is more efficient (smaller differences between ideal and actual kicks) when u = 30. Why?



Another example: residual voltage and kicker efficiency (3/3)

O First explanation (frequency domain): the resonant frequency of

the kicker is 3.25f,.¢, therefore the shunt-impedance (kicker-
efficiency) has its maximum at 3.25f,.¢.

» As already seen, if we consider negative frequencies,
-3.25f corresponds to u = 30, so we expect a better
kicker-efficiency for u = 30.

> R s decreases as the distance from the resonant frequency
increases, so we expect a worse kicker-efficiency for u = 0.

( Second explanation (time domain): let’s suppose that f(t) = 0

after the bunch 9 traverses the kicker, so that we can examine the
evolution of the residual voltage as a function of time.

I sin(w,t) .
Vies(t) = e~ {lcos(wnt) + —sin(w,t) [ Vo + (—")VO}
Wn, W,
~ Vye Tt cos(w,t)

» V..s is zero when the bunches 10 and 12 cross the kicker,
whereas V.. is a local maximum when the bunch 11 arrives.

* wu=30: agreements with Vrggick, (10,12)=0, VrBrick,11=2-

* u=0:disagreements with Veggick (10,11,12) = -2-

Kicker shunt-impedance

~3.5f,; —3.25f, —3fus
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o0 Rss(fr)
'—'400.___2__. —
m:‘zoo—/ l _ ! —
0 f—3,90 'f—3,60 l f—3,0' f—2,90
-1.4 —-1.3 —-1.2 -1.1 —-1.0

Frequency [GHz]

Residual voltage after the bunch 9 transit, u=30 (top), u=0 (bottom)

=

Voltage [V]
o

~0, it AGREES mayx, it AGREES

/ With Vipgickao | With Vipkicka1

~0, it AGREES /¢
with Viprick,12

24 26 28 _ 30 32 34
9 Time [ns]
T e e S ——————— e —————————  ————
> ~0, it DISAGREES' max, it DISAGREES
— 1 . .
o Y With Vipiciiio | ywith Vipkici1a
© 0= = —
5, ~0, it DISAGREES
, with Vepick,12
24 26 28 32 34
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Equations of motion in the code: RF+SR+HOM+FB+BBZ

O Including the actual corrections given by the kicker, the equations of motion become

Ap V= g + 2mhay 8y
(n+1) 75 (n+1) Nhom (n+1)
6(n+1) . 5(n) B ﬂ (1 n 25(11)) n eVFB,k n eVTf cos A‘:Dkn n i [V(n+1) TV, ] n ericker,k n eVbe,k
ko 77k E, “ E, E, Eg £y LksRES = TRIID E, E,
]:

» where VF(chl) is the actual voltage provided by the kicker to the bunch k at turn

(n+1) . .
(n+1). Aswesaw, Vg, depend on Kicker (correction
* theideal voltage-correction Vlgga-ck . evaluated at turn n; +impedance)

* the kicker parameters w,, Q and R ;

* the frequency w, and phase ¢, of the kicker-generator;

* the arrival time of the bunch k atturnn + 1, or Ago,gnﬂ).

Accelerating cavity
(RF + HOMs)

O The effects of broad-band impedances which don’t couple consecutive bunches can be
simply included in the energy equation of motion as instantaneous voltages Vy; k.
» Usually these impedances (e.g. resistive wall) are due to non-resonant devices and
are spread all along the ring.
> Vppzx depend on the bunch charge Q.
* If all the charges are equal, then I/, is constant for all bunches and all turns.

Synchrotron radiation +
broad-band impedances



Example 1: coupled-bunch instability damped by the kicker (1/2)

O We assume the DAFNE parameters U, = 8.88 keV, E; = 510 MeV, Vrf =130 kV and ay = 0.018.

O Moreover we assume that
» three equally-spaced bunches with I, = 15 mA, g, = 10 mm circulate in the machine.

e At turn O the bunches are displaced by 0.25 mrad with respect to A@yop (equal for all the bunches due to symmetry).
» an HOM excites the coupled-bunch mode u = 1, Ap; = 21/3.

* R, =4000Q, Q =40000;

* Aninstability is obtained if f,, = (31 — 2)fy + f50, L > 1. We choose [ = 100, therefore f,. = 915.5 MHz.
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O We first simulate the three bunches without the feedback correction for 200000 turns. The kicker impedance is added to the HOM.
» The oscillation-amplitudes are essentially the same for the three bunches.

* The grow-rate computed analytically is 247.4 1/s which is in very good agreement with the one computed numerically.

» As expected, the phase changes by 120° for consecutive bunches.

Phase evolution of bunch 1 and grow-rate from the exponential fit

2.5

N
o

=
(=}

Phase mod 2mr [rad]
'_I
(8]

o
w

0 25000 50000 75000 100000 125000 150000 175000 200000
Turn [1]

Zoom on the phase evolutions of the three bunches

49600 49800 50000 50200 50400
Turn [1]
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Example 1: coupled-bunch instability damped by the kicker (2/2)

O We then include the voltage corrections of the kicker, first assuming that the bunches see the ideal kicks Vigp;ck k-
» The feedback acts only from turn 40000 onwards and produces essentially the same damping behaviour for the three bunches.
*  Nigp =16, dpgr = 6. The total feedback gain isn’t too high, so that enough phase oscillations can be used to perform a proper fit.
» The analytical damping rate of the feedback is 4536 1/s.
* The total analytical damping rate is (4536-247) 1/s = 4289 1/s, which is in very good agreement with the numerical one.

O As expected, the damping rate decreases when the bunches see the real voltage-corrections, which in general are lower than the ideal ones.

Phase evolution of bunch 1 and grow-rate from the exponential fit. Voltage kicks for the bunch 1.
1.5000 40
5 Ideal kicks
® 1.4975/ _
= > 20,
3 g 5 Ll l | |
£ 1.4925 = 1 1 | |
0
[}
] . o T _ ]
@ 14900 The bunch sees ideal kicks =20
* 14875 | _aol
0 25000 50000 75000 100000 125000 150000 175000 200000 39500 40000 40500 41000 41500 42000 42500 43000 43500 44000
Turn [1] Turn [1]
1.5000 1 40
— Real kicks
® 1.4975 a,. =3706—
= S N 20
& 1.4950 =
© U 0
£ 1.4925 2
 1.4900 & 20
2 The bunch sees real kicks
1.4875 20
0 25000 50000 75000 100000 125000 150000 175000 200000 39500 40000 40500 41000 41500 42000 42500 43000 43500 44000

Turn [1] Turn [1]



Example 2: coupled-bunch instability damped by the feedback (1/2)145

L As a second example we use operational/expected parameters for a DAFNE typical run.
» Bunch current, length and peak RF voltage are taken from 2014 measurements.

Main beam and machine parameters

120

Harmonic number h
Ring circumference C,
Mom. compaction factor a,
Nominal energy E,
Revolution frequency f
RF frequency f ¢

Synchr. radiation energy loss U

Peak RF voltage V¢
Zero-amplitude synchr. freq.

Beam filling pattern

RMS bunch length o,

Bunch current I,

97.587 m
0.018
510 MeV
3.07 MHz
368.65 MHz
8.88 keV
130 kv
28.72 kHz

105 contiguous
bunches

19 mm

19.5 mA

Re(Z) [Q]

Some important feedback parameters

ADC number of bits ny;; apc

Max. ADC voltage V4 apnc

Number of taps N,

Down sampling factor dpgr

Kicker resonant frequency f .

Kicker quality factor Q

Kicker shunt impedance R (f;)

Max. kicker voltage V y axkick

200 mV

3.

16
6

25frf
5.45

750 Q)

950V

Beam-coupling impedances (HOMs + kicker)

1000
800
600
400

200

frf

HOMs

AJ Kicker |

0 200

400

600 800
Frequency [MHz]

1000

1200

1400

Measurements of bunch Iength VS mtensnty

C. Milardi | - -

N

N

o

| We choose
for instance
this pointin
simulations

@
T

N
T

o
T

0
T

N
T

RMS bunch length [cm]

e- 130kV
e- 168kV |

w
T

1 i 1 i i
u) 5 10 15 20 25 30

Bunch current [mA]

Parameters of waveguide-damped HOMs

-l-

1 1120

2 797 105 210
3 1024 81 90
4 1121 90 300
5 1176 54 90
6 1201 36 180
7 1369 340 170
8 1432 550 550



Example 2: coupled-bunch instability damped by the feedback (2/2)146

. . L 100000 turns are simulated, the maximum running time is just 16 minutes.
Min, mean and max bunch Phase evolution for

phase along 100000 turns the bunch 105 0

1

The simulation outcomes depend on the bunches initial conditions.
> Here the bunches startin (A@yop ,0), so very small initial
displacements due to non-perfect matching routine.

w
o
w
o

N
wu
N
w

) =

£20 £20

IS s IS Ls O Without feedback all the bunches are unstable and the maximum oscillation
© i)

2 2 amplitude is essentially an increasing function of the bunch number.

] HO 2 L0 » The oscillation amplitude of the most unstable bunch (105) is half

£05 £0.5

bucket at turn 17000, then non-linearities damp the growth.

o
o
o
o

~ half bucket
50 40 €0 80 100 0 20000 40000 60000 80000 100000 = With feedback the oscillations are damped for all the bunches.

o

Bunch number [1] Turn (1] > The feedback responds differently with different bunches.
Min, mean and max bunch Phase evolution for Phase evolution for Kicker voltage evolution for
phase along 100000 turns the bunch 105 the bunch 1 the bunches 1 and 105
. o - 10000 - - - ——— 4
1.500 The mean corresponds 1481z Very small initial 1.500 Larger initial " Much more
1495 | | assentiallv to A P 148120 oscillations damped | __, . oscillations damped 7501 Vmaxkick | voltage is needed
B yto APHom k- B us11s after 500 turns. g after 600 turns. 00 for bunch 1 than
21490 = E1.496 > 250 bunch 105.
o~ ™~ 3
T 5 1.48110 3 S,
% 1480 © 1.48105 % g —-250
£ P £1.492 -
~ La7s 9 1.48100 * jzz .
1.490 =750) — :
1470 1.48095 | | | | | | PN . (.17 A B W S
0 20 40 60 80 100 0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000

Bunch number [1] Turn [1] Turn [1] Turn [1]
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Conclusions

O The new Python code is ready to be used for longitudinal beam-dynamics simulations of the DAFNE accelerator.
» The current version is able to simulate coupled-bunch instabilities and the effects of the bunch-by-bunch feedback.
» Some important improvements to the code can still be done (see next slide).

O This presentation covered in detail all the features of the code.
» The theoretical principles required to fully understand the code were explained in depth.
» Numerous examples with plots and animations were provided to demonstrate the code capabilities.

O Several benchmarks between simulations and analytical formulas were performed to prove the code reliability.
» In particular we found good agreements concerning grow-rates of coupled-bunch instabilities and feedback damping-rates.

L Some additional functionalities were added to the new code, for instance
» Computation of the synchronous phases taking into account the beam-induced voltages. This allows for instance
e the matching of the beam with respect to the induced voltages;
* the feedback compensation of the synchronous-phase shifts due to induced-voltages.
» Inclusion of the cavity-kicker beam-coupling impedance in simulation.

0 Some new studies were performed, for example
» Accurate models of the signal manipulations performed by the feedback-system (pickup, comb generator, mixer, ...).
* In particular, measurements of the comb-generator transfer-function were needed to properly model the bursts generation.
» Optimized design of the FPGA sinusoidal filter and determination of the optimal down-sampling-factor.

O Preliminary simulations of DAFNE operational scenarios were performed confirming the importance of the feedback for beam stability.
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Suggested next steps

L The work presented here isn’t definitive, in particular the following next steps can be done.

O Implementation in the Python code of the RF feedback for the compensation of beam-loading in the accelerating cavity.
» This feedback is required to reduce the significant beam-coupling impedance of the fundamental mode.
» This feedback is already implemented in the Fortran code and its effects have already been studied in simulation in the past.
e Simulations without this feedback assume that the beam-loading is perfectly compensated.

L Benchmarks between simulations and beam measurements taken during the next 2021 DAFNE run.
» This would confirm that the models and assumptions used in the code are accurate enough.

d Extension of the code to represent each bunch with millions of

macroparticles so that more realistic simulations can be performed. Feedback-timing versus bunch-passage in the kicker

» The effects of arbitrary beam-coupling impedances could be studied. < 17— Optimal bunch phasing \——— gptimal bunch
> Other types of instabilities, already observed in measurements, could o o7s £ . Lordeoein b B N s R
be seen also in simulation, for instance B sk N
* Microwave: it’s caused by short-range wakefields with wave- S 02s 13
lengths much shorter than the bunch length. It leads to bunch- g
lengthening and beam-quality degradation. < ¢
 Longitudinal quadrupole (g-pole): it’s probably caused by the ks R T A
broadband machine-impedance and can be cured delaying the = 051 A }D:ra;go' r
kicker correction signal with respect to the bunch passage. % -0.75 e’; al. (2003)
» However multi-bunch simulations with 105 bunches are cumbersome. = | L |

-1260 -840 -420 O 420 840 1260

* The code must be optimized and parallelized following for -2520 -2100 -1680
Time [ps]

instance the example of the CERN BLonD code.
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Computation of the decay rate of an oscillating function (1/3)

L Python is used to evaluate the grow-rate of an oscillating increasing or decreasing function
» The first used routine scipy.signal.find_peaks is able to find all the local maxima of a given signal.
» The second used routine scipy.optimize.curve_fit is able to fit the local maxima with an exponential function.

+1le4d

L Example: our original signal y(x) is made of samples from Zzzz 10¢,,,[0], ¥, [0]) Original signal
Y(x) = 0.004e~11* cos(10x) + 10000  x € [0,10] oo |« o [11, ¥, [1]) with local
0.001, maxima detected

» The envelope traversing the local maxima of Y (x) has equation y
0.000-

L(x) = AeB* + C = 0.004e"11* + 10000 ~0.001
L We assume that Y (x) and L(x) aren’t known. The goal is to find the o005 - : : : : =
decay rate of the signal, i.e. the value B =-1.1. X

[ The first step is to find the local maxima of y(x) with the find_peaks routine. The output arrays are x,,, and y,, (length N).
> A check has to be done on (x[0], y[0]) which can belong to the envelope or not depending on the specific case.
« Ify[0] > y[1] and y[0] > y,,[1], then (x[0], y[0]) belongs to the envelope (as in our example).

O The second step is to fit the points (x,,[i], y,,[i]) with the curve_fit routine, aiming at finding A, B and C of L(x).
» The exponential function to be used for the fit is

M(x) = ae?® + ¢

 where a, b and c are the three parameters to be determined.



Computation of the decay rate of an oscillating function (2/3)

U The curve_fit routine needs as input the initial guesses for a, b and ¢, which we call a,, by and cy,.
» If these guesses are too far from A, B and C, then the routine provides unacceptable results.
» First method to find ay, by and cy:
* ¢y = (y), where (y) is the mean of the y array. Indeed, for large x, L(x) = C and also L(x) = (y).
* agand by are easily found solving the system

In ym[o] — Co

Ym[0] = ageboxmlo] 4 ¢ . )
by = Ag = Ol —cn)e 0Xm[0]
{ym[l] = aoeboXm[l] + Co » 0 xm[O] . xm[l] 0 (:Vm[ ] 0)

» Second method to find ay, by and ¢ (from Jacquelin J. “Regressions et equations integrals”, 2014):
* More general method which doesn’t need the y array but only x,,, and y,,,.

Sl =O,k=2,...,N

1) i 3) by =D[10] z(ym 1] = Y [0D) Gtk = 1] = x3u 0]
Sk = Sk—l + E(ym[k - 1] + ym[k - 2])(xm[k - 1] - xm[k - 2])

N
N N -1
(ymlk — ¥mlODS
> ol =11 = [0D? > (ol = 11 = 2[0S, Z ‘
2) D = k=1 k=1
N N e _ YmlO] = yml1]
D Gomlk = 1] = xm[0DS D5 2 {ym[ol ~doe T Co gy 40T oGl D)
= k=1 Yml1] = aoeboxm[l] + Co o = V., [0] — aoeboxm[O]
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Computation of the decay rate of an oscillating function (3/3)

O Aiming at finding 4 = 0.004, B = —1.1, C = 10000, the curve_fit routine provides as results

> 15t method: a, = 3.996- 1073, b, = —1.111, ¢, = 1.000 - 10* » a=23998-10"3, b =—-1.106, c = 1.000 - 10*

> 2" method: ay = 1.105 - 1073, by = —0.949, ¢, = 1.000 - 10* » a=3.998-107° b = —1.102, c = 1.000 - 10*

O Both methods provide initial guesses relatively close to 4, B and C.

» This allows the curve_fit routine to work properly and provide results very close to A, B and C.

O Note that the envelope L(x) doesn’t cross the local maxima but it crosses points at the right of them.
» The fit, which tends to be close to the local maxima, is below the envelope. This explains why a is slightly smaller than A.

0.004

0.003

0.002

0.001

0.000

—0.001

—0.002

—0.003

+1e4

Original signal
Local maxima
Envelope

Fit (15 method)

1e—5+1..0000002e4

Zoom on
(Xm[1], ym[1])

1e;5+1.0000001e4

Zoom on
(xm[2], ym[2])

1.23 1.24 125 1.26 1.27 1.28
X
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Python code: download and installation of the Anaconda distribution

O The open-source Anaconda Python distribution with its Spyder editor can be used. The following instructions are for Windows 10, 64
bit.

J Go to https://www.anaconda.com/products/individual.

O In the ‘Anaconda Installers’ section, in the “Windows’ column, click on '64-Bit Graphical Installer’ and download the executable of
around 500 MB.

O During the installation procedure
> Select the ‘Destination Folder’, e.g. ‘ProgramData\Anaconda3’.
» In ‘Advanced Options’, mark only ‘Register Anaconda...” and click Install.

2 Anaconda3 2020.07 (64-bit) Setup — X - Anaconda3 2020.07 (64-bit) Setup — X
. Choose Install Location Advanced Installation Options
n a C | J AN ACONDA Choose the folder in which to install Anaconda3 2020.07 (64-bit). ) ANACONDA Customize how Anaconda integrates with Windows

Setup will install Anaconda3 2020.07 (64-bit) in the following folder. To install in a different Advanced Options
folder, dick Browse and select another folder. Click Next to continue.
[JAdd Anaconda3 to the system PATH environment variable

Not recommended. Instead, open Anaconda3 with the Windows Start
menu and select "Anaconda (64-bit)". This "add to PATH" option makes
Anaconda get found before previously installed software, but may

. s cause problems requiring you to uninstall and reinstall Anaconda.
Windows sm MacOS
Destination Folder Register Anaconda3 as the system Python 3.8
This will allow other programs, such as Python Tools for Visual Studio
| Browse... PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatically
detect Anaconda as the primary Python 3.8 on the system.
Space required: 2,7GB
. . . Space available: 313.8G8
64-Bit Graphical Installer (466 MB) | 64-Bit Gra|

32-Bit Graphical Installer (397 MB) 64-Bit Cor < Back Next > Cancel <Back Cancel



https://www.anaconda.com/products/individual

Python code: creation of a new Spyder project and import

O After the Anaconda installation, the Spyder editor is available.

O Search for Spyder in your PC typing ‘Spyder (Anaconda 3)’ into the search box.
» When found, you can also pin it to the Taskbar with a right click for an easier access.

O Open Spyder and go to ‘Projects -> New Project...”.
» Mark ‘Existing directory’.

» Click on the folder icon in the field ‘Location’ and select the ‘python_code’ folder.
* The ‘python_code’ folder can be anywhere.

» Leave ‘Empty project’ in the ‘Project type’ field and click on Create.

O All the files of the Python code are now accessible inside Spyder from the Management panel on the left
> In general Python files can be easily run clicking on the green-triangle icon.

& Create new project ? X File Edit Search Source Run Debug

O Mew directory @ Existing directory D b B[E'] EE @ @I'
Project name

hd ﬂ python_code

Location

Button to run
LNF\muItibunch_cndekfo rtran_and_python_codes\python_code |

Python files

& analysis
Project type | Empty project

& saved main files

%“ functions.py \

& main.py Management panel




Python code: structure

O The folder ‘analysis’ contains several Python files useful to perform analyses and
computations.
» Example of file: signal manipulations from the longitudinal pick-up to the mixer.
» Each file can be run independently of the others.
» All these files are like ‘add-ons’ with respect to the main code: they aren’t essential
to launch simulations with the main code and they don’t affect the main code.

O The folder ‘saved_main_files’ contains main-files which the user saved in order to be able
to relaunch the corresponding simulations later on.
» Example of saved main-file: simulation of a certain coupled-bunch instability for
three equally-spaced bunches in DAFNE.

O The file ‘functions.py’ contains several essential routines which are called and used in the
main files and also in the files contained in the ‘analysis’ folder.
» Examples of functions: generation of beam matched with collective effects,
computation of kicker voltage-corrections and of voltages due to the HOMs.
» All these functions aren’t supposed to be run directly.

O The file ‘main.py’ is the main-file which should be run to perform a simulation.
» Once a simulation is well set up, the user can decide to copy this file into the
‘saved_main_files’ folder and rename the copied file with a more significant name.
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v ﬁ python_code

v I analysis

i@ check_wake_potential.py

@ comb_generator.py

@ exponential_fitpy

i@ fourier_squareWave.py

f@ fpga_sineFilter.py

i@ kicker_correction_voltagel.py
6@ kicker_correction_voltage2.py
@ mixer_lowPass.py

2 plot_cos.py

@ plot_exp.py

@ plot_ HOM_V_i_evolutions.py
@ plot_impedances.py

@ spectrum_dipole_osc.py

@ spectrum_lines.py

i@ transferIMPbutton_toneBurst.py

v I saved_main_files

@ main_growRateHOM_kicker.py
@ main_growRateHOM.py
@ main_tilted_ellipses.py

@ functions.py

» The input-parameters for the simulation should be specified directly in this main-file. ~™—~—, @& main.py

» This main-file directly provides all the simulation outputs.



Python code: example of input-parameters in the main file

O Essentially four types of input-parameters must be set in the main file:

» Machine parameters: harmonic number, circumference, momentum compaction, nominal energy, peak RF voltage, ...

» Beam properties: filling scheme, bunch charge and standard-deviation, initial displacements with respect to the synchronous phases.

» Impedance parameters: boolean variables to include HOMs and kicker impedances in simulation, parameters of the HOMs, possibility to
match with collective effects either the entire beam or all the bunches except one for injection-transient studies, ...

» Bunch-by-bunch feedback parameters: boolean variable to turn the feedback on, how many turns to wait for the feedback action,
different gains, computation of optimal filter coefficients, possibility to apply the ideal or the real voltage-corrections to the bunches, ...

### Machine

h =120 # [1] Ha
Cring = 97.587 #
alpha = 0.018 #

EG = 518eb # [¢
Ue = 8.88e3 # [|
# se

V_max = 1.3e5 #
n_turn = 10000 #

### Beam properties
configuration_beam = 2 # filled buckets contains the indices of
if configuration_beam == 1: # 30 equally-spaced bunches minus ti}
filled buckets = np.arange(1,h,4)
filled buckets = np.delete(filled buckets, [1])
elit configuration beam == 2: # typical DAFNE filling pattern (]
tilled buckets = np.arange(1,106)
elift configuration _beam == 3: # 30 equally-spaced bunches (1,5,4
filled buckets = np.arange(1,h,4)
elif configuration_beam == 4:
tilled buckets = np.arange(1,h,4)
filled _buckets = np.insert(filled_buckets, [1,38], [2,128])
elif configuration_beam == 5:
filled buckets = np.arange(1,h,4)
filled buckets = np.insert(filled buckets, [1,38], [2,128])
tilled _buckets = np.delete(filled_buckets, [@])
elift configuration_beam == 6: # one bunch (1)
filled buckets = np.arange(1,2)
elif configuration beam == 7: # 4 equally-spaced bunches (1,31,¢
filled buckets = np.arange(1,h,30)
current_per_bunch = 15e-3 # [A] current per bunch
sigma_z = 18.8e-3 # [m] std of the Gaussian profile, needed only
positions PhaseShifts wrt phiS = np.array([1]) # which bunches 1
PhaseShifts wrt_phiS = np.array([@]) # [rad] phase shifts for ti
positions_deltaShifts wrt © = np.array([]) # which bunches to dd
deltaShifts_wrt_0 = np.array([]) # [1] delta shifts for these bi

##H#t Impedance parameters

HOM induced voltage = True
include kicker impedance = True
if HOM induced wvoltage:

table modes = np.array([[ 745.7, 16, 24000, 70], 1
[ 796.8, 0.5, 4000d, 210],
[1823.6, 0.9, 230e8, 90],
[1121.1, 0.3, 12000, 300],
[1175.9, 0.6, 5000, 98],
[1201.5, 0.2, 90ea, 18],
[1369.0, 2.0, 5000, 170],
7, 1.8

[1431.7, 1.8, 4000, 550]])
HOM initially unloaded = False # if False, it compul
overwrite phiSR_with phiHOM = True # if True, the 1
bunch_to neglect in _matching = [] # Leave [] if vo
number_iterations = 100 # number of iterations for 1
# Parameters for the evaluation of the analytical H
compute_grow_rate HOM = True # Boolean to evaluate

mu = @

lmax = 1600
index _bunch = 8
gmax = 16066

11 = -66

overwrite fsn _with fs0 = False

### Feedback with cavity-kich
feedback = False # boolean fc
ntfb = 1 # number of turns aj

zh = ©.43 # [Ohm] abs of butd
gp = 1 # [1] attenuation-levd
gc = .25 # [1] attenuation-|
ga = 2e2 # [1] gain of the af

ga2 = 1 # [1] gain of the amy
gm = @.5 # [1] mixer conversi
gl = 6 # [1] harmonic of the
dphcou = @ # [rad] initial cf
pccoup = @ # [¥] coupling fad
dphlo = @ # [rad] phase erroi
compensate_dphHOM = False # |
percnoi = @ # [&] noise coef
vmaxadc = .2 # [V] maximum 1
nbitadc = 8 # number of bits
downsampling = "auto' # optid
if downsampling == 'auto’:
nc = 16 # number of taps
if downsampling == "manual’:
nc = 16 # number of taps
dsf = 6 # down sampling i
phi_2 = @ # phase offset
gdsp = 8.1 # FIR gain in the
gdac = 0.5 # DAC gain
nbitdac = 8 # number of bits
kicker_bandwidth = 228e6 # [H
fres fRF = 3.25 # [1] kicker
kicker_max_Rss = 758 # [Ohm]
max_ampl power = 688 # [W] md
kickextRF = 3.25 # [1] kickel
kicker_Rss = 750 # [Ohm] kic
phi_e = @ # [rad] kicker-gend
true_kick = False # hoolean 1
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Fortran code: download of Code Blocks

L The open-source Code Blocks can be used as editor. The following instructions are for Windows 10, 64 bit.

1 Go to http://www.codeblocks.org/, click on ‘Downloads’, then on ‘Download the binary release’.

!l Code:Blocks X +
< C ¥ @® Nonsicuro | codeblocks.org
i App emails various songs_kar songs_text useful # DSSIMULIA.. sslils  § LHC_goniometer -... & Guide | 1000

COde: :B Iocks Code::Blocks - The IDE with all the features you n

Home Features Downloads Forums Wiki

Main The open source, cross platform, free C, C++ and F«

Features Downloads Forums Wiki

Main Downloads
+ Home There are different ways to download and install Code::Blocks on your computer:
s Features
* Screenshots » Download the binary release

CO de: :B |0 CKs Code::Blocks - The ID.

1 We need a version which contains the compiler MinGW, i.e.
‘codeblocks-20.03mingw-setup.exe’.

O Click on FossHUB and download the ‘Code Blocks Windows 64 bit
(including compiler)’ version.

DOWNLOAD
B0 Windows XP / Vista /7 | 8.x / 10: Code Blocks Windows 64 bit (including compiler)
oy
File Date Download from

codeblocks-20.03-setup.exe 29 Mar 2020 FgEsHUB or Sourceforge.net
codeblocks-20.03-setup-nonadmin exe 28 Mar 2020 FgesHUB or Sourceforge.net
codeblocks-20.03-nosetup zip 29 Mar 2020 FgesHUB or Sourceforge.net
codeblocks-20.03mingw-setup.exe 29 Mar 2020 FdssHUB or Sourceforge.net
codeblocks-20.03mingw-nosetup.zip 29 Mar 2020 FossHUB or Sourceforge.net
codeblocks-20.03-32bit-setup exe 02 Apr 2020 FossHUB or Sourceforge.net
codeblocks-20.03-32bit-setup-nonadmin.exe 02 Apr 2020 FossHUB or Sourceforge.net
codeblocks-20.03-32bit-nosstup zip 02 Apr 2020 FossHUB or Sourceforge.net
codeblocks-20.03mingw-32bit-setup.exe 02 Apr 2020 FossHUB or Sourceforge.net

codeblocks-20.03mingw-32bit-nosetup.zip 02 Apr 2020 FossHUB or Sourceforge.net


http://www.codeblocks.org/
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Fortran code: installation of Code Blocks

d Now we need to install Code Blocks. Click on the downloaded executable of around 150 MB.
Q If possible, install all the components (Full).
O Choose the destination folder (Program Files is OK)

L Open Code Blocks at the end of the installation.

{, Code:Blocks Installation — e (" Code:Blocks Installation — b4

o C is Choose Install Location @ Code:Blocks Installation -
Choose which features of CodeBlocks you want to install. Choose the folder in which to install CodeBlocks. st
ing
5 Please wait while CodeBlocks is being installed.
Check the components you want to install and uncheck the components you don't want to Setup will install CodeBlocks in the following folder._To inst;ll in a different folder, dick Browse
install. Click Next to continue. and select another folder. Click Install to start the installation. Create shortcut: C:\Users\Giovanni\AppData\Roaming\Microsoft\Windows\Start Menu\Prograi
Select the type of install: Full: All plugins, all tools, just everything v Extract: 336 -
Or, select the optional Default i Extract. |386: (.7 CodenBlocks Installation
[} &H-|v ault insta :
components you wish to - [¥] Contrib Plugins Extract: i386pe
install: T Extract: i386pe
e C::B CBP2Make L Do you want to run Code::Blocks now?
C::B Share Confi Destination Folder =xtract: 3360
--|v| C::B Share Config Output folder: ¢
el bl [ #H - :
C::BLauncher :\Program Files\CodeBlocks Browse... Output folder: ¢
--[¥] MinGW Compiler Suite Created uninst |I| No
— Output folder: 4 - — ) ~ EMenu\...
Description Create shortcut: C:\Users\Giovanni\AppData'RoamingMicrosoft \Windows\Start Men...

Space required: 531.5 MB : ; Space required: 531.5MB
. Space available: 319.1G8

< Back Next > Cancel

< Back Next > Cancel < Back Cancel
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Fortran code: setting of the GNU GCC compiler

O Inside Code Blocks, go to ‘Settings -> Compiler...".

O Choose ‘GNU GCC Compiler’ in ‘Selected compiler’.

U Go to ‘Toolchain executables’.

O In ‘Compiler’s installation directory’, type the path of the ‘MinGW’ subfolder present in the Code Blocks installation directory.

O Click on ‘Auto-detect’. A window appears reporting that the ‘GNU GCC Compiler’ has been found. Click OK.

Compiler settings [m] x
Global compiler settings Selected compiler
Selected compiler =
ﬁ ARG . GNU GCC Compiler ~
Set as default Copy Rename Delete Reset defaults - —
Global compiler Set as default Copy Rename Delete Reset defaults
settings

Compiler settings Linker settings Search directories Toolchain executables Custom variables Build o] * | *

Compiler's installation directory - - - - - - - - - 4
g_ Compiler settings Linker settings Search directories Toolchain executables Custom variables Build o
fciProgrom s codesioasiving |
"bin" sub-directory of this path, or in any offilariadaiios

- . NOTE: All programs must exist either in the "bi
Profiler settings

Compiler's installation directory
Program Files  Additional Paths

\ .

J}—% C compiler: ‘ gccexe ‘
'S

?’5 E C++ compiler ‘g++exe ‘ .

‘ C\Program Files\CodeBlocks\MinGW .. | Auto-detect

MNOTE AL nennrame miet aviet sithar in the "hin” aiih-dirartnne af thie nath grn any of the "Additional

Batch builds Linker for dynamic libs: ‘g++‘exe COdebIOCkS.EJ(e X
Linker for static libs: ‘ arexe PI"OgrE
Debugger GDB/CDB debugger : Default b c o Auto-detected installation path of "GNU GCC Compiler”
I con - - ; .
Resource compiler: [ windres.exe B in "C\Program Files\CodeBlocks\MinGW |
Make program: ‘ mingw32-make.exe ‘
C++ |
Linke |
[
lLinkar far ctatics like [ |

OK Cancel




Fortran code: setting of the GNU Fortran compiler

1 Choose ‘GNU Fortran Compiler’ in ‘Selected compiler’.

O Save the applied changes when asked.

[ Go to ‘Toolchain executables’.
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O In ‘Compiler’s installation directory’, type the path of the ‘MinGW’ subfolder present in the Code Blocks installation directory.

O Click on ‘Auto-detect’. A window appears reporting that the ‘GNU Fortran Compiler’ has been found. Click OK and again OK.

Selected compiler
GNU Fortran Compiler

Set as default

Compiler settings Linker settings Search directories Toolchain executables Custom variables Build o]

Compiler's installation directory

Copy Rename

Delete

CA\Pr| Compiler change with changed settings
NCOTE
| Youhave changed some settings. Do you
Progra want these settings saved ?
C com| i
Yes :will apply the changes
Crt1d Mo :will undo the changes
Cancel : will revert your compiler change.
Linker
i Yes
Linker

Mo Cancel

X

. | Auto-detect

or in any of the "Additional

L R

Reset default:

Global compiler settings
Selected compiler
GNU Fortran Compiler

Set as default Copy Rename

Compiler's installation directory

Reset defaults

Compiler settings  Linker settings Search directories Toolchain executables Custom variables Buildo * | !

C:\Program Files\CodeBlocks\MinGW

‘ | Auto-detect

NOTE: All programs must exist either in the "bin" sub-directory of this path, or in any o

Program Files Additional Paths

C compiler: | x86_64-wb4-mingw32-gfortran.exe

C++ compiler: |x86,647w647minng}gfumah.exe

Linker for dynamic libs: | %86_64-w64-mingw32-gfortran.exe

Linker for static libs: | ar.exe
Debugger: GDB/CDB debugger : Default
Resource compiler: | windres.exe

Make program: | mingw32-make.exe

Selected compiler

GNMU Fortran Compiler

Set as default

Delete

Compiler settings Linker settings Search directories Toolchain executables Custom

Compiler's installation directory

‘ CA\Program Files\CodeBlocks\MinGW

MNOTE AL nennrame muict avict sither in the "hin" cuh-directane of thic nath o

in any

codeblocks.exe
Prog

C++4

Link

>

c 0 Auto-detected installation path of "GNU Fortran Compiler”
o in "C:\Program Files\CodeBlacks\MinGW"




Fortran code: creation of a new project

O Inside Code Blocks, go to ‘File -> New -> Project...’

O In ‘Category’ select Fortran and click on Fortran application.

O In the ‘Fortran application” window,

» choose the name of the project in ‘Project title’, e.g. ‘fortran_code’.
» choose the folder where to store the project and click Next.

» In ‘Compiler’ select ‘GNU Fortran Compiler’ and mark ‘Create “Debug” configuration’. Click on Finish.

ools Tools+ Plugins DoxyBlocks Settings Help

Biip BEFLE LG uno BE

BERYLd | &= = £ cF am x

e BRBBRIEE <|EED

New from template

Projects Category: Fortran v Go
Build targets

User templates Fortran DLL For‘trap F_or‘tran
application library

View as

O List

TIP: Try right-clicking an item
2| Cecc
1. Select a wizard type first on the left

2. Select a specific wizard from the main window (filter by categories if needed)
3. Press Go

Files @ @ @ Cancel
Custom ; :

@ Large icons

1

Fortran application

B Console

Please select the folder where you want the new project
to be created as well as its title.

Project title:
| for‘tran_code| |

Folder to create project in:
| Diuser_name\work ‘

Project filename:
| fortran_code.cop |

Resulting filename:

|D:\user_name\work\fartran_code\for‘[raﬂ_code.cbp |

< Back Next = Cancel

X

Fortran application

B} Console

X

Please select the compiler to use and which configurations
you want enabled in your project.

Compiler:

GNU Fortran Compiler ~

Create "Debug” configuration:

"Debug” options
Output dir.:

| bin\Debug, |

Objects output dir.: | obj\Debug\ |

[[]Create "Release” configuration: = Release

"Release” options

Qutput dir.: bin\Release\

Objects output dir.. | obj\Release\,

< Back
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Fortran code: import, build-targets and simulation run

1. Copy all the files from the folder ‘fortran_code_original’ into
the folder ‘fortran_code’ just created.
» Delete the file main.f90 from the folder ‘fortran_code’.

2. Inside Code Blocks, in the Management panel -> Projects,
» Right click on main.f90 and ‘Remove file from project’.
» Right click on ‘fortran_code’ and ‘Add files recursively...".
» Select the folder ‘fortran_code’.
» Select all the files and click OK.

h [fortran_code] - CodenBlocks 20.03
File Edit View Search Project Build De

TR LI YR BRIQC

Management x

Name Date modified Type Size Projects  Files FSymbols Resources
| bunch2.inp 11/01/2000 11:10 NP File Kl 0 Workspace

| cav-mac2.inp 11/01/2000 11:10 NP File Kl _E fortran_code

] fback2.inp 30/03/2010 14:12 NP File ke | i bunchinp
| fbeam2.f 11/01/2000 11:10 F File 2k | cav-mace.np
| feedback2 f 30/03/2010 13:57 F File ke | ;;0“4-2;”

| finit2f 11/01/2000 11:10 F File ke | eame.

- R N (R feedback?.f

2 fortran_code.cbp 11/09/2020 10:31 project file 1KB .

s N finit2.f
d kickl.dat R 219 KB )

e e e = kick1.dat
a kick2.dat (f d ’ f |d 211KB oo

----- kickZ.dat

ortran_code’ folder o

e N SN kick3.dat

| libcem.f T8/0172000 1843 F File 7kB L libcern.f
d ph1.dat 31/03/2010 1314 DAT File 185K ph1.dat
d ph2.dat 31/03/2010 13:14 DAT File 185kB | L. oh2.dat
d ph3.dat 31/03/2010 13:14 DAT File 185KB | . oh3.dat
d phspi.dat 31/03/2010 13:14 DAT File 24k | e phsp1.dat
d phsp2.dat 31/03/2010 13:14 DAT File 24KB | e phsp2.dat
d phsp3.dat 31/03/2010 13:14 DAT File 24KB | e phsp3.dat

] rffb2.f 11/01/2000 11:10 F File 2kB | e rffb2.f

] rffo2.inp 11/01/2000 11:10 NP File 1KB rffb2.inp

) simul2f 30/03/2010 14:08 F File 9k | simul2.f

| simul2.out 31/03/2010 13:14 OUT File k8| simul2.out

3. Inside Code Blocks, in the Management panel -> Projects,
» Right click on ‘fortran_code’ and ‘Properties...".
» Go to the tab ‘Build targets’.
» In the ‘Build target files’ part, select only ‘simul2.f’.
» Click OK.

4. Open ‘simul2.f’ from the Workspace in the Management
panel and click on the icon ‘Build and run’.

Project/targets options

Project settings Build targets Build scripts Notes  C/C++ parser options Debugger EditorConfig options EnvwVars options Fortr| * | *

Build targets

Add

Re-order...

Build options...

Create project
from target...

Virtual targets...

Dependencies...

Selected build target options

Platforms:

Type:

Qutput filename:

All

Console application ~
Pause when execution ends
Create import librany
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