
Multi-bunch longitudinal beam-
dynamics code for the DAFNE rings

14/12/2020 Seminar, LNF, Frascati

D. Quartullo

Acknowledgements: S. Caschera, G. Franzini, A. Gallo, 
A. Ghigo, M. Migliorati, C. Milardi, D. Pellegrini, M. Zobov 



2

Introduction (1/2)
❑ DAFNE is an electron-positron collider in operation at LNF for physics experiments since 1999.

➢ It is composed of two rings, one per type of beam, and operates with (usually) 105 bunches at 510 MeV nominal energy.

❑ Due to the high circulating beam-current and the presence of HOMs in the RF accelerating cavity, longitudinal coupled-bunch 
instabilities can severely limit the performance of the machine.
➢ These instabilities grow exponentially with time and can lead to losses of entire bunches in a few thousands of turns.

❑ A significant damping of the HOMs was achieved in the 1990s by opening slots onto the cavity-surface and conveying 
(coupling) the HOMs fields out of the cavity with waveguides terminated onto 50 Ω external loads.
➢ This solution, although important, couldn’t prevent the occurrence of coupled-bunch instabilities at high beam-currents.

❑ Therefore a bunch-by-bunch longitudinal feedback was installed in each DAFNE ring and became operational since 1998.
➢ The active element of this feedback is a broadband cavity-kicker which provides voltage corrections to the bunches.
➢ This feedback system strongly contributed to the achievement of the 1.4 A – 2.4 A beam currents available today.

❑ In the 1990s, M. Migliorati developed for his PhD thesis a Fortran code able to simulate the longitudinal beam-dynamics of 
DAFNE bunches in the presence of synchrotron radiation, HOMs induced-voltage and feedback corrections.
➢ Each bunch is represented by just one macroparticle, therefore only oscillations of the bunches centroids can be studied.

• However this type of oscillations is the main issue as concerns the coupled-bunch instabilities.
➢ The code accurately models the HOM induced-voltages, the complete bunch-by-bunch feedback system and even the 

additional RF feedback able to counteract the beam-loading voltage in the accelerating cavity.
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❑ The studies performed with the Fortran code provided useful indications for stable machine operation, such as expected grow 
rates of coupled-bunch instabilities and optimal feedback parameters to counteract them.
➢ The code was rarely used after the 1990s and in particular it was never benchmarked with measurements.

❑ The code is relatively fast and easy-to-use. This recently motivated the desire to make it usable again, both for accelerator 
physicists and operators who can use it in (almost) real time to better understand the beam-dynamics under observation.
➢ The code is modular and can be easily customized, therefore it can also be applied to other accelerators.

❑ Recently, the Fortran code was rewritten entirely in Python, which is an open-source high-level programming language.
➢ Pros of using Python: less lines of code for a given task, better code-readability, easier production of data and plots.
➢ Cons of using Python: execution speed. However this can be solved by converting the most time-consuming Python 

routines into the C++ language and embedding them into the Python code (as done e.g. for the CERN BLonD code).

❑ During the code conversion from Fortran to Python, some routines were generalized or improved, some minor bugs were 
fixed and new functionalities were added.

❑ Three types of content are included in this presentation.
➢ Essential theoretical concepts, which are needed to understand the principles behind the code, are covered in detail. 

• Complete derivations are presented to make the presentation as self-contained as possible.
➢ Several important code-routines are described and explained in depth.
➢ The code-capabilities are illustrated by numerous examples.
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Single particle equations of motion: energy equation (1/5)

❑ We call 𝑙𝑔𝑎𝑝 the length of the RF cavity. 

❑ We assume that the particle traverses the RF gap along its central axis.

❑ We assume that the electric field Ԧ𝜉(s) seen by the particle in the RF gap is purely longitudinal and given by

➢ where መ𝜉 is the design amplitude of the electric field;

➢ 𝜔𝑟𝑓 and 𝜑𝑟𝑓 are respectively the RF angular frequency and phase of Ԧ𝜉;

➢ v is the particle speed assumed constant during the passage (in DAFNE v ≈ c).

RF cavity 𝒍𝒈𝒂𝒑

Ԧ𝜉(s) = መ𝜉sin 𝜔𝑟𝑓
𝑠

𝑣
+ 𝜑𝑟𝑓 𝑠 ∈ −

𝑙𝑔𝑎𝑝

2
,
𝑙𝑔𝑎𝑝

2
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❑ Let’s assume that the circulating particle has charge 𝑒.

❑ The energy gain of the particle after it has crossed the gap one time is

❑ Therefore

➢ where the peak RF voltage and the transit time factor are given by

∆𝐸𝑔𝑎𝑖𝑛= 𝑒න
−
𝑙𝑔𝑎𝑝
2

𝑙𝑔𝑎𝑝
2

Ԧ𝜉(𝑠) ∙ 𝑑𝑠 = 𝑒 መ𝜉 න
−
𝑙gap
2

𝑙gap
2

sin
𝜔rf

𝑐
𝑠 + 𝜑rf 𝑑𝑠 = 𝑒 መ𝜉 sin𝜑rfන

−
𝑙gap
2

𝑙gap
2

cos
𝜔rf

𝑐
𝑠 𝑑𝑠 =

2𝑒 መ𝜉𝑐 sin𝜑rf
𝜔rf

sin
𝜔rf𝑙gap

2𝑐

∆𝐸𝑔𝑎𝑖𝑛= 𝑒෡Vrf sinφrf

෡Vrf = መ𝜉𝑙gapTa 𝑇𝑎 =

sin
𝜔rf𝑙gap
2𝑐

𝜔rf𝑙gap
2𝑐

0 < 𝑇𝑎 <1

6

Single particle equations of motion: energy equation (2/5)



❑ We suppose that the nominal energy 𝐸0 is constant, i.e. no acceleration, such as in the DAFNE case (𝐸0=510MeV).

❑ From 𝐸0 we compute the reference revolution period 𝑇0. We use 𝑇0 to define the external clock

❑ We call 𝑡(𝑛) the 𝑛𝑡ℎ arrival-time of the particle at the RF cavity (supposed point-like).

❑ We define the particle arrival time with respect to the reference clock as

𝑡𝑟𝑒𝑓
(𝑛)

= 𝑛𝑇0 𝑛 = 0,…

0 𝑻𝟎 𝟐𝑻𝟎 𝟑𝑻𝟎

Absolute time𝒕𝒓𝒆𝒇
(𝟎)

𝒕𝒓𝒆𝒇
(𝟏)

𝒕𝒓𝒆𝒇
(𝟐)

𝒕𝒓𝒆𝒇
(𝟑)

𝒕(𝟎) 𝒕(𝟏) 𝒕(𝟐)

∆𝒕(𝟎) ∆𝒕(𝟏) ∆𝒕(𝟐)

∆𝑡(𝑛)= 𝑡(𝑛) − 𝑡𝑟𝑒𝑓
(𝑛) 𝑛 = 0,…
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❑ The energy gain of the particle at the crossing time 𝑡(𝑛) is 

➢ where

∆𝐸𝑔𝑎𝑖𝑛 𝑛
= 𝑒෡Vrf sin φrf(𝑡

(𝑛))

φrf 𝑡
𝑛 = න

0

𝑡 𝑛

𝜔𝑟𝑓 𝜏 𝑑𝜏 + φoffset = න
0

𝑡𝑟𝑒𝑓
(𝑛)

𝜔𝑟𝑓 𝜏 𝑑𝜏 + න
𝑡
𝑟𝑒𝑓
(𝑛)

𝑡𝑟𝑒𝑓
(𝑛)

+∆𝑡(𝑛)

𝜔𝑟𝑓 𝜏 𝑑𝜏 + φoffset

= ෍

𝑖=0

𝑛−1

𝜔𝑟𝑓
(𝑖) 𝑇0 +𝜔𝑟𝑓

(𝑛)∆𝑡(𝑛) + φoffset = 𝜔𝑟𝑓
(𝑛)∆𝑡(𝑛) + φrf

➢ This is multiple of 2𝜋, and therefore irrelevant, only if 

𝜔𝑟𝑓
(𝑖) = 2𝜋ℎ𝑓0 (ℎ is the harmonic number).

• This condition isn’t satisfied e.g. when beam-based 
LLRF loops, such as phase and radial loops, modify the 
RF frequency to damp the bunch oscillations.  

➢ It can represent e.g. constant phase offsets or 
the injection of RF noise in the RF cavity for 
controlled emittance blow-up.
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❑ In DAFNE, supposing 𝜔𝑟𝑓
(𝑖) = 2𝜋ℎ𝑓0, we have

❑ Choosing φoffset = 𝜋/2, we have

❑ After crossing the cavity, the particle energy is

❑ Defining

❑ we obtain the energy equation of motion

φrf 𝑡
𝑛 = 𝜔𝑟𝑓∆𝑡

(𝑛) + φoffset

∆𝐸𝑔𝑎𝑖𝑛 𝑛
= 𝑒෡Vrf cos 𝜔𝑟𝑓∆𝑡

(𝑛)

𝐸(𝑛+1) = 𝐸(𝑛) + 𝑒෡Vrf cos 𝜔𝑟𝑓∆𝑡
(𝑛)

∆𝐸(𝑛)= 𝐸(𝑛) − 𝐸0

∆𝐸(𝑛+1)= ∆𝐸(𝑛) + 𝑒෡Vrf cos 𝜔𝑟𝑓∆𝑡
(𝑛)
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❑ Using the definitions given previously we can write

➢ where 𝑓0 is the nominal revolution frequency and 𝑓 𝑛 is the particle revolution frequency.

❑ It can be proven that

➢ where

• 𝑝0(𝐸0) and 𝛽0(𝐸0) are respectively the nominal momentum and relativistic beta;

• ∆𝑝 𝑛 = 𝑝 𝑛 - 𝑝0, ∆𝐸 𝑛 = 𝐸 𝑛 - 𝐸0;

• 𝑝 𝑛 and 𝐸 𝑛 are respectively the momentum and energy of the circulating particle.

∆𝑡(𝑛+1)= ∆𝑡(𝑛) + 𝑡(𝑛+1) − 𝑡(𝑛) − 𝑇0 = ∆𝑡 𝑛 +
1

𝑓 𝑛
−
1

𝑓0
= ∆𝑡 𝑛 +

1

𝑓0

𝑓0

𝑓 𝑛
− 1 = ∆𝑡 𝑛 +

1

𝑓0

1

1 +
𝑓 𝑛 − 𝑓0

𝑓0

− 1

𝑓 𝑛 − 𝑓0
𝑓0

= −𝜂 𝛿 𝑛

𝛿 𝑛 =
∆𝑝 𝑛

𝑝0
=
∆𝐸 𝑛

𝛽0
2𝐸0

≈
∆𝐸 𝑛

𝐸0

In DAFNE 
𝛽0(510 MeV) = 0.999999498 ≈ 1 

Single particle equations of motion: time equation (1/4)
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❑ From the previous slide

➢ where the 𝜂𝑖 are called the slippage factors. 

❑ The slippage factors are defined through the momentum compaction factors 𝛼𝑖, which are constant numbers for a given 
machine and depend on the optics.
➢ For instance

➢ where 𝛾0 is the nominal relativistic gamma.

❑ The 𝛾0 such that 𝜂0 = 0 is called transition gamma 

❑ In DAFNE 𝛼0 = 0.018, 𝛾0 = 998 and 𝛾𝑡𝑟 = 7.45. Since 𝛾0 > 𝛾𝑡𝑟 the beam is ‘above transition energy’.

𝜂 𝛿 = (𝜂0 + 𝜂1𝛿 + 𝜂2𝛿
2 +⋯)𝛿

𝜂0 = 𝛼0 −
1

𝛾0
2

𝛾𝑡𝑟 =
1

𝛼0
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❑ When 𝛾0 ≫ 𝛾𝑡𝑟, one can take just the first term of the 𝜂 𝛿 expansion, i.e.

➢ In DAFNE, since 𝛾0 ≫ 𝛾𝑡𝑟, 

➢ Therefore

• A particle with 𝐸 > 𝐸0 has 𝑓 < 𝑓0. Indeed above transition energy the particle speed is essentially equal to the 
light speed and more energy corresponds to more mass and inertia, forcing the particle to travel on a longer orbit.

❑ Therefore

𝜂 𝛿 = (𝜂0 + 𝜂1𝛿 + 𝜂2𝛿
2 +⋯)𝛿 ≈ 𝜂0𝛿

𝜂0 = 𝛼0 −
1

𝛾0
2 = 0.018 − 10−6 ≈ 𝛼0

𝑓 𝑛 − 𝑓0
𝑓0

= −𝛼0𝛿
𝑛

∆𝑡(𝑛+1)= ∆𝑡 𝑛 +
1

𝑓0

1

1 +
𝑓 𝑛 − 𝑓0

𝑓0

− 1 ≈ ∆𝑡 𝑛 +
1

𝑓0

1

1 − 𝛼0𝛿
𝑛
− 1
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❑ Since 𝛼0𝛿
𝑛 ≪ 1 then

❑ Therefore the time equation of motion is

❑ To summarize, the two equations of motion are

➢ The particle-tracking starts at the exit of the accelerating cavity.
• The particle drifts along the ring, then it receives an energy-kick by the cavity, then it drifts along the ring with 

the new energy, etc.

∆𝑡(𝑛+1)≈ ∆𝑡 𝑛 +
1

𝑓0

1

1 − 𝛼0𝛿
𝑛
− 1 ≈ ∆𝑡 𝑛 + 𝑇0𝛼0𝛿

𝑛

∆𝑡(𝑛+1)= ∆𝑡 𝑛 + 𝑇0𝛼0𝛿
𝑛

∆𝑡(𝑛+1)= ∆𝑡 𝑛 +
𝑇0𝛼0
𝐸0

∆𝐸(𝑛)

∆𝐸(𝑛+1)= ∆𝐸(𝑛) + 𝑒 ෠𝑉𝑟𝑓 cos 𝜔𝑟𝑓∆𝑡
(𝑛+1)

Particle-drift along the ring

RF voltage-kick to particle
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Equations of motion in the code (only RF)
❑ Using the coordinates

❑ the equations of motion become

❑ In the code each bunch is described by only one macroparticle.
➢ The above equations imply that the evolution of each bunch is independent from the evolutions of the other bunches.

• As shown later, each bunch is tracked in the code with a more complicated version of these equations.

∆𝜑(𝑛+1)= ∆𝜑 𝑛 + 2𝜋ℎ𝛼0𝛿
(𝑛)

𝛿(𝑛+1) = 𝛿(𝑛) +
𝑒 ෠𝑉𝑟𝑓 cos ∆𝜑

(𝑛+1)

𝐸0

∆𝜑(𝑛)= 𝜔𝑟𝑓∆𝑡
(𝑛)

𝛿 𝑛 =
∆𝐸 𝑛

𝐸0

𝐽 𝑀 =

𝜕 ∆𝜑 𝑛+1

𝜕 ∆𝜑 𝑛

𝜕 ∆𝜑 𝑛+1

𝜕 𝛿(𝑛)

𝜕 𝛿(𝑛+1)

𝜕 ∆𝜑 𝑛

𝜕 𝛿(𝑛+1)

𝜕 𝛿(𝑛)

= 1∆𝜑 𝑛

𝛿(𝑛)
𝑀 ∆𝜑 𝑛+1

𝛿(𝑛+1)
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❑ These equations of motion can be seen as a map 𝑀
between coordinates at consecutive turns. 

❑ It can be easily verified that the Jacobian of 𝑀 is one, i.e. 

➢ This implies that the phase-space area enclosed by the 
bunch (particle) trajectory is preserved over time.



❑ Let’s assume that a particle with charge 𝑒 and relativistic factor 𝛾 follows a curved trajectory with bending radius 𝜌 𝑠 . 
➢ It can be proven that the power lost by synchrotron radiation (SR) is given by 

• where 𝜀0 is the free-space permittivity.

❑ If the particle is on the nominal orbit then

➢ where 𝜌0 is the bending radius corresponding to the nominal orbit.

❑ If the lattice is isomagnetic, i.e. if 𝜌0(𝑠) ≡ 𝜌0, the SR energy-loss per turn for a particle on the nominal orbit is

❑ What is the SR energy-loss 𝑈 for a particle with energy different from 𝐸0? 

Synchrotron radiation (1/6)

𝑃(𝑠) =
2

3

𝑒2𝑐

4𝜋𝜀0

𝛾4

𝜌2(𝑠)

𝑈0 = ර𝑃0 𝑡 𝑑𝑡 =
2

3

𝑒2𝑐

4𝜋𝜀0

𝛾0
4

𝜌0
2

2𝜋𝜌0
𝑐

=
𝑒2

3𝜀0

𝛾0
4

𝜌0
=

𝑒2

3𝜀0𝑚𝑒
4𝑐8

𝐸0
4

𝜌0

𝑃0(𝑠) =
2

3

𝑒2𝑐

4𝜋𝜀0

𝛾0
4

𝜌0
2(𝑠)
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Synchrotron radiation (2/6)
❑ From the following drawing, we can derive the relations

❑ We know from transverse beam-dynamics that the horizontal displacement of an off-energy particle can be written as

➢ where 𝐷𝑥(𝑠) is the dispersion function of the lattice.

❑ Therefore

𝑑𝑙

(𝜌0 + 𝑥)
=
𝑑𝑠

𝜌0

𝑑𝑙

𝑑𝑠
= 1 +

𝑥

𝜌0

Nominal trajectory

Generic trajectory

𝑥(𝑠) = 𝐷𝑥(𝑠)
∆𝐸

𝐸0

𝑑𝑙

𝑑𝑠
= 1 +

𝐷𝑥
𝜌0

∆𝐸

𝐸0

(∆𝑬 = 𝟎)

(∆𝑬 ≠ 𝟎)

𝜌0
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Synchrotron radiation (3/6)
❑ The energy-loss per turn for the off-energy particle is the integral of the radiated power around the off-energy orbit

❑ Equating the magnetic Lorentz-force acting on the particle with the centripetal force we derive the magnetic rigidity formula

➢ where 𝐵 is the dipolar magnetic field bending the particle.

❑ The following proportionality relations can be deduced

❑ Therefore 𝑃(𝑠) can be written as a function of energy and transverse displacements

➢ 𝑃0(𝑠) is the power radiated at the position s of the design orbit, where the dipolar field is 𝐵0(𝑠).

𝑈 ∆𝐸 = ර𝑃 𝑡 𝑑𝑡 =
1

𝑐
ර𝑃 𝑙 𝑑𝑙 =

1

𝑐
ර𝑃 𝑠 1 +

𝐷𝑥
𝜌0

∆𝐸

𝐸0
𝑑𝑠

𝐵(𝑠)𝜌(𝑠) =
𝑝

𝑒

𝑃(𝑠) ∝
𝛾4

𝜌2(𝑠)
∝

𝐸4

𝜌2(𝑠)
∝
𝐸2𝑝2

𝜌2(𝑠)
∝ 𝐸2𝐵2(𝑠)

𝑃 ∆𝐸, 𝑥 (𝑠) ∝ 𝐸0 + ∆𝐸 2𝐵2(𝑥)(𝑠) 𝑃 0,0 (𝑠) = 𝑃0(𝑠) ∝ 𝐸0
2𝐵0

2(𝑠)
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𝑒𝑣𝐵 =
𝑚𝑣2

𝜌



Synchrotron radiation (4/6)
❑ Expanding 𝑃 ∆𝐸, 𝑥 linearly we have 

❑ Therefore, keeping only the linear terms in ∆𝐸,

❑ Expanding also 𝑈 ∆𝐸 linearly we have

❑ Since the integral of 𝑃0(𝑡) is 𝑈0 then 

𝑃 ∆𝐸, 𝑥 = 𝑃 0,0 +
𝜕𝑃

𝜕∆𝐸
0,0 ∆𝐸 +

𝜕𝑃

𝜕𝑥
0,0 𝑥 = 𝑃0 +

2𝑃0
𝐸0

∆𝐸 +
2𝑃0
𝐵0

𝑑𝐵

𝑑𝑥
0 𝑥

𝑈 ∆𝐸 =
1

𝑐
ර𝑃(𝑠) 1 +

𝐷𝑥
𝜌0

∆𝐸

𝐸0
𝑑𝑠 =

1

𝑐
ර 𝑃0 +

2𝑃0
𝐸0

∆𝐸 +
2𝑃0
𝐵0

𝑑𝐵

𝑑𝑥
0 𝐷𝑥

∆𝐸

𝐸0
+ 𝑃0

𝐷𝑥
𝜌0

∆𝐸

𝐸0
𝑑𝑠

𝑈 ∆𝐸 = 𝑈0 +
𝑑𝑈

𝑑 ∆𝐸
0 ∆𝐸 = 𝑈0 +

1

𝑐
ර

2𝑃0
𝐸0

+
2𝑃0
𝐵0𝐸0

𝑑𝐵

𝑑𝑥
0 𝐷𝑥 + 𝑃0

𝐷𝑥
𝜌0𝐸0

𝑑𝑠 ∆𝐸

𝑈 ∆𝐸 = 𝑈0 +
2𝑈0
𝐸0

+
1

𝑐𝐸0
ර

2𝑃0
𝐵0

𝑑𝐵

𝑑𝑥
0 𝐷𝑥 + 𝑃0

𝐷𝑥
𝜌0

𝑑𝑠 ∆𝐸
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Synchrotron radiation (5/6)

❑ We define the focusing parameter for gradient fields as 

❑ Therefore

➢ where 𝐷 is the damping coefficient and, since 𝑃0 ∝ 1/𝜌0
2,

𝑘 =

𝑑𝐵
𝑑𝑥

(0)

𝐵0𝜌0

𝑈 ∆𝐸 = 𝑈0 +
2𝑈0
𝐸0

+
1

𝑐𝐸0
ර

2𝑃0
𝐵0

𝑑𝐵

𝑑𝑥
0 𝐷𝑥 + 𝑃0

𝐷𝑥
𝜌0

𝑑𝑠 ∆𝐸 = 𝑈0 +
2𝑈0
𝐸0

+
1

𝑐𝐸0
ර𝑃0𝐷𝑥 2𝑘𝜌0 +

1

𝜌0
𝑑𝑠 ∆𝐸

= 𝑈0 + 𝐷∆𝐸 = 𝑈0 +
𝑈0
𝐸0

2 + 𝐾 ∆𝐸

𝐾 =
1

𝑐𝑈0
ර𝑃0𝐷𝑥 2𝑘𝜌0 +

1

𝜌0
𝑑𝑠 =

𝑃0𝐷𝑥ׯ 2𝑘𝜌0 +
1
𝜌0

𝑑𝑠

𝑃0𝑑𝑠ׯ
=

𝐷𝑥ׯ
2𝑘
𝜌0

+
1
𝜌0
3 𝑑𝑠

ׯ
1
𝜌0
2 𝑑𝑠
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Synchrotron radiation (6/6)
❑ The quantity K is entirely described by integrals of lattice functions

❑ Contributions to 𝐾 come only from bending magnets and wigglers, where 1/𝜌0 ≠ 0.
➢ For parallel-edged bending magnets 𝑘 ≠ 0 at the entrance and exit of the magnet.

• This exactly compensates the term 1/ 𝜌0
3 above, so that K = 0.

➢ For sector bending magnets 𝑘 = 0 if the focusing isn’t performed by the bending magnets but by dedicated quadrupoles.

❑ In DAFNE there are parallel-edged magnets, sector magnets and wigglers.
➢ Using data from M. Migliorati PhD thesis, 𝐷 = 3.66 × 10−5 and 𝑈0 = 9.3 keV. 

• Assuming 𝐸0 = 510 MeV, we can derive an estimation for 𝐾

➢ Therefore 𝐾 can be neglected in

𝐾 =

𝐷𝑥ׯ
2𝑘
𝜌0

+
1
𝜌0
3 𝑑𝑠

ׯ
1
𝜌0
2 𝑑𝑠

𝐾 =
𝐸0
𝑈0

𝐷 − 2 = 7.1 × 10−3

𝑈 ∆𝐸 = 𝑈0 +
𝑈0
𝐸0

2 + 𝐾 ∆𝐸 ≈ 𝑈0 +
2𝑈0
𝐸0

∆𝐸
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Equations of motion in the code (RF+SR)

❑ Including the synchrotron-radiation effect, the equations of motion become

❑ The Jacobian becomes

➢ The phase-space area enclosed by the bunch (particle) trajectory decreases with time. 
• This is due to the radiation damping, as shown later.

❑ Also these equations of motion are decoupled for the different bunches.
➢ Each bunch can be tracked independently of the others. 

∆𝜑(𝑛+1)= ∆𝜑 𝑛 + 2𝜋ℎ𝛼0𝛿
(𝑛)

𝛿(𝑛+1) = 𝛿(𝑛) −
𝑈0
𝐸0

1 + 2𝛿(𝑛) +
𝑒 ෠𝑉𝑟𝑓 cos ∆𝜑

(𝑛+1)

𝐸0

𝐽 𝑀 =

𝜕 ∆𝜑 𝑛+1

𝜕 ∆𝜑 𝑛

𝜕 ∆𝜑 𝑛+1

𝜕 𝛿(𝑛)

𝜕 𝛿(𝑛+1)

𝜕 ∆𝜑 𝑛

𝜕 𝛿(𝑛+1)

𝜕 𝛿(𝑛)

= 1 −
2𝑈0
𝐸0

∈ 0,1
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❑ The synchronous particle is the ideal particle which travels along the design (central) orbit at each turn.
➢ For this particle 𝛿 = 0 at each turn and the corresponding phase ∆𝜑𝑆𝑅 is called synchronous phase.

➢ The subscript SR indicates that the synchronous phase is evaluated considering the synchrotron radiation.
➢ ∆𝜑𝑠 = ∆𝜑𝑆𝑅(𝑈0=0) = 𝜋/2 = 1.571 rad is the synchronous phase without considering the synchrotron radiation.

Synchronous phase

𝑒 ෠𝑉𝑟𝑓 cos∆𝜑𝑆𝑅

𝐸0
−
𝑈0
𝐸0

= 0 ∆𝜑𝑆𝑅= arccos
𝑈0

𝑒 ෠𝑉𝑟𝑓

∆𝝋𝑺𝑹

0 𝟐𝝅 ❑ ∆𝜑𝑆𝑅 < 𝜋/2, since the corresponding RF voltage must 
be positive in order to compensate for the energy lost 
by synchrotron radiation.

❑ In DAFNE, using 𝑈0 = 8.88 keV and ෠𝑉𝑟𝑓 = 130 kV, we 

have

❑ As shown later, ∆𝜑𝑆𝑅 changes when induced voltages 
are added to the equations of motions.

∆𝜑𝑆𝑅 = 1.502 rad
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∆𝜑 [rad]

co
s
∆
𝜑

[1
]

∆𝝋𝒔= 𝝅/𝟐

𝐜𝐨𝐬 ∆𝝋

Example of difference between ∆𝝋𝒔 and ∆𝝋𝑺𝑹 in DAFNE   



Small-amplitude synchrotron frequency and damping rate (1/3)

∆𝜑(𝑛+1)= ∆𝜑 𝑛 + 2𝜋ℎ𝛼0𝛿
(𝑛)

𝛿(𝑛+1) = 𝛿(𝑛) +
𝑒 ෠𝑉𝑟𝑓 cos ∆𝜑

(𝑛+1)

𝐸0
−
𝑈0
𝐸0

1 + 2𝛿(𝑛)

❑ We first derive the continuous version of the equations of motion assuming that 𝑑𝑡 = 𝑇0 in the derivative.  

ሶ∆𝜑 = 𝜔𝑟𝑓𝛼0𝛿

ሶ𝛿 =
𝑒 ෠𝑉𝑟𝑓

𝐸0𝑇0
cos∆𝜑 −

𝑈0
𝐸0𝑇0

1 + 2𝛿

❑ We expand cos∆𝜑 around ∆𝜑𝑆𝑅 and we assume that the phase displacement 𝜑0 is small.  

❑ Since ሶ∆𝜑 = ሶ𝜑0 we have

❑ And deriving again 

cos ∆𝜑 = cos ∆𝜑𝑆𝑅 + 𝜑0 ≈ cos∆𝜑𝑆𝑅 − sin ∆𝜑𝑆𝑅 𝜑0

ሶ𝜑0 = 𝜔𝑟𝑓𝛼0𝛿 ሶ𝛿 =
𝑒 ෠𝑉𝑟𝑓

𝐸0𝑇0
cos ∆𝜑𝑆𝑅 −

𝑒 ෠𝑉𝑟𝑓

𝐸0𝑇0
sin ∆𝜑𝑆𝑅 𝜑0 −

𝑈0
𝐸0𝑇0

1 + 2𝛿 = −
𝑒 ෠𝑉𝑟𝑓

𝐸0𝑇0
sin ∆𝜑𝑆𝑅 𝜑0 −

2𝑈0
𝐸0𝑇0

𝛿

ሷ𝛿 = −
𝑒 ෠𝑉𝑟𝑓

𝐸0𝑇0
sin ∆𝜑𝑆𝑅 𝜔𝑟𝑓𝛼0𝛿 −

2𝑈0
𝐸0𝑇0

ሶ𝛿
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❑ Therefore

➢ where 𝛼𝑟,𝑆𝑅 and Ω2 are given by

❑ The eigenvalues of this differential equation are

➢ therefore the solution is

❑ 𝛿 decays exponentially oscillating. The small-amplitude damping-rate and synchrotron-frequency are given respectively by

ሷ𝛿 + 2𝛼𝑟,𝑆𝑅 ሶ𝛿 + Ω2𝛿 = 0

𝛼𝑟,𝑆𝑅 =
𝑈0
𝐸0𝑇0

Ω2 =
𝑒 ෠𝑉𝑟𝑓𝜔𝑟𝑓𝛼0

𝐸0𝑇0
sin ∆𝜑𝑆𝑅

𝜆2 + 2𝛼𝑟,𝑆𝑅𝜆 + Ω2 = 0 𝜆1,2 = −𝛼𝑟,𝑆𝑅 ± 𝑗 Ω2 − 𝛼𝑟,𝑆𝑅
2

𝛿 𝑡 = 𝐴𝑒−𝛼𝑟,𝑆𝑅𝑡cos Ω2 − 𝛼𝑟,𝑆𝑅
2 𝑡 + 𝐵

𝛼𝑟,𝑆𝑅 =
𝑈0
𝐸0𝑇0

𝜔𝑠0,𝑆𝑅 =
𝑒 ෠𝑉𝑟𝑓𝜔𝑟𝑓𝛼0

𝐸0𝑇0
sin ∆𝜑𝑆𝑅 − 𝛼𝑟,𝑆𝑅

2 =
𝑒 ෠𝑉𝑟𝑓𝜔𝑟𝑓𝛼0

𝐸0𝑇0
if 𝑈0 = 0
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Small-amplitude synchrotron frequency and damping rate (2/3)

• 𝐴 and 𝐵 are constants 

(= 0 if 𝑈0 = 0, i.e. no damping)

≈ 1> 0



➢ depend on the initial conditions 𝛿 0 and ሶ𝛿 0

❑ If for instance we assume that 𝛿 0 = 0 then

➢ or

➢ therefore, using the relation between ሶ𝛿 0 and 𝜑0(0), we obtain 

cos𝐵 = 0 𝐴 sin 𝐵 = −
ሶ𝛿 0

𝜔𝑠0,𝑆𝑅

𝛿 0 = 𝐴 cos𝐵 ሶ𝛿 0 = −𝛼𝑟,𝑆𝑅𝐴 cos𝐵 − 𝜔𝑠0,𝑆𝑅𝐴 sin𝐵

𝛿 𝑡 = 𝐴𝑒−𝛼𝑟,𝑆𝑅𝑡cos 𝜔𝑠0,𝑆𝑅𝑡 + 𝐵

❑ The constants A and B in

𝐵 = ±
𝜋

2
𝐴 = ∓

ሶ𝛿 0

𝜔𝑠0,𝑆𝑅

25

𝛿 𝑡 =
ሶ𝛿 0

𝜔𝑠0,𝑆𝑅
𝑒−𝛼𝑟,𝑆𝑅𝑡sin 𝜔𝑠0,𝑆𝑅𝑡 = −

𝑒 ෠𝑉𝑟𝑓 sin ∆𝜑𝑆𝑅 𝜑0(0)

𝐸0𝑇0𝜔𝑠0,𝑆𝑅
𝑒−𝛼𝑟,𝑆𝑅𝑡sin 𝜔𝑠0,𝑆𝑅𝑡

Small-amplitude synchrotron frequency and damping rate (3/3)



Comparison between simulation and analytical formula (1/2)
❑ Comparison between 𝛿 evolutions from single-bunch simulation (𝛿𝑠𝑖𝑚) and analytical formula (𝛿𝑎𝑛).
❑ Used parameters: 

➢ 𝑈0 = 9.3 keV, 𝐸0 = 510 MeV, ෠𝑉𝑟𝑓 = 260 kV, 𝛼0 = 0.02;

➢ 𝜑0 0 = 10−10 rad, 𝛿 0 = 0;
➢ 200000 turns are simulated.

𝜹𝒔𝒊𝒎
𝜹𝒂𝒏

𝜹𝒔𝒊𝒎 − 𝜹𝒂𝒏

❑ The two curves have the same amplitude of oscillations (exponential envelope).
➢ However the phase-difference between the two curves can be large.

• The curves are out of phase by almost 𝜋/2 at 15 ms. 

❑ This phase-difference comes from the fact that the equations of motion in the code 
are discrete while the analytical formula is continuous.
➢ The equations of motion are correct, the analytical formula is an approximation.
➢ As shown later, the phase-space orbits associated to the equations of motion are 

tilted ellipses, while the analytical formula provides non-tilted ellipses.

❑ For example, the error can decrease by just decreasing 𝛼0.
➢ 𝑓𝑠0,𝑆𝑅 decreases, therefore the discretized curve converges to the smooth one.

Error curve
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Evolution of 𝜹𝒔𝒊𝒎 and 𝜹𝒂𝒏

Zoom

Zoom

Discrete

Zooms

15 ms 

Smooth

Discrete
Smooth



❑ 𝛼0 is decreased from 0.02 to 0.002. 

𝜹𝒔𝒊𝒎
𝜹𝒂𝒏

𝜹𝒔𝒊𝒎 − 𝜹𝒂𝒏

➢ The phase difference is barely visible. The maximum error is reduced from 3 ∙ 10−13 to 4 ∙ 10−14.  

❑ 𝛼0 is decreased from even more, from 0.002 to 0.0002.

𝜹𝒔𝒊𝒎
𝜹𝒂𝒏

𝜹𝒔𝒊𝒎 − 𝜹𝒂𝒏
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Comparison between simulation and analytical formula (2/2)

Evolution of 𝜹𝒔𝒊𝒎 and 𝜹𝒂𝒏 Zoom
Error curve18 ms 

➢ The phase difference isn’t visible anymore. The maximum error is reduced from 4 ∙ 10−14 to 1.2 ∙ 10−14.  

Evolution of 𝜹𝒔𝒊𝒎 and 𝜹𝒂𝒏 Zoom
Error curve17 ms 



❑ We start from the discrete equations of motion

❑ We change variable ∆𝜑 = ∆𝜑𝑆𝑅 + 𝜑0 --> 𝜑0 and we linearly expand cos ∆𝜑 around ∆𝜑𝑆𝑅 for small 𝜑0

Amplitude of motion for small oscillations (1/2)

∆𝜑(𝑛+1)= ∆𝜑 𝑛 + 2𝜋ℎ𝛼0𝛿
(𝑛)

𝛿(𝑛+1) = 𝛿(𝑛) +
𝑒 ෠𝑉𝑟𝑓 cos ∆𝜑

(𝑛+1)

𝐸0
−
𝑈0
𝐸0

1 + 2𝛿(𝑛)

𝜑0
(𝑛+1)

= 𝜑0
(𝑛)

+ 2𝜋ℎ𝛼0𝛿
(𝑛)

𝛿(𝑛+1) = 𝛿(𝑛) +
𝑒 ෠𝑉𝑟𝑓

𝐸0
cos ∆𝜑𝑆𝑅 − sin ∆𝜑𝑆𝑅 𝜑0

(𝑛+1)
−
𝑈0
𝐸0

1 + 2𝛿 𝑛

= 𝛿 𝑛 −
𝑒 ෠𝑉𝑟𝑓 sin ∆𝜑𝑆𝑅

𝐸0
𝜑0

𝑛
+ 2𝜋ℎ𝛼0𝛿

𝑛 −
2𝑈0
𝐸0

𝛿 𝑛

= −
𝑒 ෠𝑉𝑟𝑓 sin ∆𝜑𝑆𝑅

𝐸0
𝜑0

𝑛
+ 1 −

2𝜋ℎ𝛼0𝑒 ෠𝑉𝑟𝑓 sin ∆𝜑𝑆𝑅

𝐸0
−
2𝑈0
𝐸0

𝛿 𝑛
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❑ We can write these two equations in matrix form

❑ The 2x2 matrix can be written as

➢ where

❑ This matrix representation indicates that the phase-space orbits are tilted ellipses with equations

➢ and the amplitude of motion is proportional to

𝜑0
(𝑛+1)

𝛿(𝑛+1)
=

1 2𝜋ℎ𝛼0

−
𝑒 ෠𝑉𝑟𝑓 sin ∆𝜑𝑆𝑅

𝐸0
1 −

2𝜋ℎ𝛼0𝑒 ෠𝑉𝑟𝑓 sin ∆𝜑𝑆𝑅

𝐸0
−
2𝑈0
𝐸0

𝜑0
(𝑛)

𝛿(𝑛)

1 2𝜋ℎ𝛼0

−
𝑒 ෠𝑉𝑟𝑓 sin ∆𝜑𝑆𝑅

𝐸0
1 −

2𝜋ℎ𝛼0𝑒 ෠𝑉𝑟𝑓 sin ∆𝜑𝑆𝑅

𝐸0
−
2𝑈0
𝐸0

=
cos𝜇𝑥 + 𝛼𝑥 sin 𝜇𝑥 𝛽𝑥 sin 𝜇𝑥

−𝛾𝑥 sin 𝜇𝑥 cos 𝜇𝑥 − 𝛼𝑥 sin 𝜇𝑥

cos 𝜇𝑥 = 1 −
𝜋ℎ𝛼0𝑒 ෠𝑉𝑟𝑓 sin ∆𝜑𝑆𝑅

𝐸0
−
𝑈0
𝐸0

sin 𝜇𝑥 = 1 − cos2𝜇𝑥 𝛼𝑥 =
1 − cos 𝜇𝑥
sin 𝜇𝑥

𝛽𝑥 =
2𝜋ℎ𝛼0
sin 𝜇𝑥

𝛾𝑥 =
𝑒 ෠𝑉𝑟𝑓 sin ∆𝜑𝑆𝑅

𝐸0 sin 𝜇𝑥

𝜀 = 𝛾𝑥𝜑0
2 + 2𝛼𝑥𝜑0𝛿 + 𝛽𝑥𝛿

2

𝜀 = 𝛾𝑥𝜑0
2 + 2𝛼𝑥𝜑0𝛿 + 𝛽𝑥𝛿

2
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Amplitude of motion for small oscillations (2/2)

❑ This idea of matrix representation comes from transverse beam dynamics, where 𝜇𝑥 is the phase advance and 𝛼𝑥, 𝛽𝑥, 𝛾𝑥 are the Twiss 
parameters.

• This formula is used in the code to evaluate how 
the bunch amplitude of motion evolves with time.



Example: amplitude of motion for small oscillations
❑ Single-bunch simulations are performed with the code to verify that the bunch-orbits in phase-space are indeed titled ellipses. 

➢ Parameters used in simulations: 𝐸0 = 510 MeV, 𝛼0 = 0.02, 𝜑0 0 = 10−6 rad, ෠𝑉𝑟𝑓 = 260 kV. 

❑ Unrealistically we increase the voltage to ෠𝑉𝑟𝑓 = 26 MV to see better that the ellipses are tilted.

−𝛼𝑥
𝜀

𝛾𝑥
, 𝜀𝛾𝑥

− 𝜀𝛽𝑥, 𝛼𝑥
𝜀

𝛽𝑥

turn 0
turn 12500
turn 25000
turn 50000
turn 100000

𝑼𝟎 = 𝟎 𝐞𝐕
෡𝑽𝒓𝒇 = 260 kV

𝑼𝟎 = 𝟗. 𝟑 𝐤𝐞𝐕
෡𝑽𝒓𝒇 = 260 kV
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Ellipse-point with 
largest 𝜹

Ellipse-point with 
smaller 𝝋𝟎

Simulated bunch at

Non-damped motion, slightly tilted ellipse Damped motion, slightly tilted ellipses

Non-damped motion, very tilted ellipse Damped motion, very tilted ellipses

𝑼𝟎 = 𝟎 𝐞𝐕
෡𝑽𝒓𝒇 = 26 MV

𝑼𝟎 = 𝟗. 𝟑 𝐤𝐞𝐕
෡𝑽𝒓𝒇 = 26 MV

𝜑0[10
−6 rad]

𝜑0[10
−6 rad]

𝜑0[10
−6 rad]

𝜑0[10
−6 rad]

𝛿
[1
0
−
8
]

𝛿
[1
0
−
8
]

𝛿
[1
0
−
8
]

𝛿
[1
0
−
8
]
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Example: bunch profile (delta) performing synchrotron oscillations
❑ Simulation of a Dirac-delta bunch-profile performing synchrotron oscillations in DAFNE.

➢ Used parameters: 𝐸0 = 510 MeV, 𝑈0 = 9.3 keV, ෠𝑉𝑟𝑓 = 130 kV, 𝛼0 = 0.018, initial oscillation-amplitude of 0.1 rad.

➢ From these parameters we derive 𝑓0 = 3.07 MHz, 𝑓𝑅𝐹 = 368.26 MHz and 𝑓𝑠0,𝑆𝑅 = 28.69 kHz.
➢ The inverse of the synchrotron tune Τ1 𝑄𝑠 = 𝑓0/𝑓𝑠0 ≈ 107 corresponds to the number of revolution turns necessary to perform 

one synchrotron period in phase space.
➢ We simulate exactly one synchrotron period.

𝑡𝑅𝐹∆𝑡𝑆𝑅

❑ What is the spectrum of a bunch-profile performing synchrotron oscillations?
➢ Doing numerically a Discrete Fourier Transform (DFT) of the time-domain bunch-profile is computationally expensive.
➢ We can recur to analytical evaluations.

Zoom
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Spectrum of one bunch performing synchrotron oscillations
❑ We need these three general properties, two concerning the Dirac-delta function 𝛿 𝑥 and the last one related to a series-expansion of a 

complex exponential.    

𝛿 𝑥 =
1

2𝜋
න
−∞

+∞

𝑒𝑗𝑥𝑡 𝑑𝑡 ෍

𝑘=−∞

+∞

𝛿 𝑡 − 𝑘𝑇 =
1

𝑇
෍

𝑞=−∞

+∞

𝑒𝑗2𝜋𝑞
𝑡
𝑇 𝑒−𝑗𝑥 cos 𝜃 = ෍

𝑛=−∞

+∞

𝑗−𝑛𝐽𝑛(𝑥)𝑒
𝑗𝑛𝜃

Dirac comb

Period

𝑛-th Bessel function of the first kind

𝜆 𝑡 ∝ ෍

𝑘=−∞

+∞

𝛿 𝑡 − 𝑘𝑇0 − 𝐴𝑠 cos 𝜔𝑠𝑡 ∝ ෍

𝑞=−∞

+∞

𝑒𝑗𝜔0𝑞 𝑡−𝐴𝑠 cos 𝜔𝑠𝑡 = ෍

𝑞=−∞

+∞

𝑒𝑗𝜔0𝑞𝑡 𝑒−𝑗𝜔0𝑞𝐴𝑠 cos 𝜔𝑠𝑡

= ෍

𝑞=−∞

+∞

𝑒𝑗𝜔0𝑞𝑡 ෍

𝑛=−∞

+∞

𝑗−𝑛𝐽𝑛(𝜔0𝑞𝐴𝑠)𝑒
𝑗𝑛𝜔𝑠𝑡 = ෍

𝑞=−∞

+∞

෍

𝑛=−∞

+∞

𝑗−𝑛𝐽𝑛(𝜔0𝑞𝐴𝑠) 𝑒
𝑗 𝑞𝜔0+𝑛𝜔𝑠 𝑡

𝑆 𝜔 = න
−∞

+∞

𝜆 𝑡 𝑒−𝑗𝜔𝑡 𝑑𝑡 ∝ ෍

𝑞=−∞

+∞

෍

𝑛=−∞

+∞

𝑗−𝑛𝐽𝑛(𝜔0𝑞𝐴𝑠)න
−∞

+∞

𝑒𝑗 𝑞𝜔0+𝑛𝜔𝑠−𝜔 𝑡 𝑑𝑡 ∝ ෍

𝑞=−∞

+∞

෍

𝑛=−∞

+∞

𝑗−𝑛𝐽𝑛(𝜔0𝑞𝐴𝑠) 𝛿 𝑞𝜔0 + 𝑛𝜔𝑠 − 𝜔

❑ The bunch-spectrum is therefore discrete and its lines are at 𝜔𝑞,𝑛 = 𝑞𝜔0 + 𝑛𝜔𝑠.

❑ We assume that the bunch-profile is a delta arriving at a given machine-spot at time 𝑡(𝑘) = 𝑘𝑇0 + 𝐴𝑠 cos 𝜔𝑠𝑡
(𝑘) , 𝑘 integer. 

➢ 𝐴𝑠 is the synchrotron-oscillation amplitude, which we assume constant (no synchrotron radiation). 
➢ The bunch current and spectrum can be written as
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Example: spectrum of bunch performing synchrotron oscillations
❑ We consider again the last example, where the simulated bunch-profile was a delta performing synchrotron oscillations.

➢ Parameters: 1/𝑄𝑠 ≈ 107, 𝑓𝑠0,𝑆𝑅 = 28.69 kHz, 𝑓0 = 3.07 MHz, 𝑓𝑟𝑓 = 368.26 MHz, 𝐴𝑠 = 0.1 rad/𝜔𝑅𝐹.

❑ We can use Python to evaluate the bunch spectrum 𝑆 𝑓 ∝ ෍

𝑞=−∞

+∞

෍

𝑛=−∞

+∞

𝑗−𝑛𝐽𝑛(2𝜋𝑓0𝑞𝐴𝑠) 𝛿 𝑞𝑓0 + 𝑛𝑓𝑠0,𝑆𝑅 − 𝑓

𝒒 = −𝟏𝟎𝟎𝟎𝟎,⋯ , 𝟏𝟎𝟎𝟎𝟎
𝒏 = −𝟑,⋯ , 𝟑

𝒏 = 𝟎
𝒏 = 𝟏
𝒏 = 𝟐
𝒏 = 𝟑

❑ Given a frequency in 0, 𝑓∗ , the spectrum-amplitudes strongly decrease as 𝑛 increases.

➢ As an example, the zoom shows that the spectrum-amplitudes for 𝑛 = 3 are essentially zero in the range 4𝑓𝑟𝑓, 6𝑓𝑟𝑓 .

𝒇∗

𝑆
[a

.u
.]

𝑆
[a

.u
.]

Zoom𝟒𝒇𝒓𝒇 𝟔𝒇𝒓𝒇Bunch spectrum versus frequency 

The spectrum is 
discrete, although it 
looks continuous.
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❑ If 𝛽=1, each HOM of the accelerating cavity can be treated as a parallel RLC circuit driven by a point charge current.

➢ 𝑖𝑏(𝑡) charges the capacitance with the charge 𝑄𝑏 at 𝑡 = 0. 

➢ This leads to a voltage across the capacitance.

➢ Applying the Kirchhoff’s law to the currents flowing across the three branches of the circuit

➢ Deriving

HOM induced voltage (derivation)

𝑹𝒔

𝑳

𝒊𝒃 𝒕 = 𝑸𝒃𝜹(𝒕) (𝜹 is the Dirac delta function)
𝑹𝒔: shunt impedance
L: inductance
C: capacitance
𝑽(𝒕): voltage across the capacitance at time t
𝒊(𝒕): current in the inductance at time t

𝑪

𝒊(𝒕)

𝒊𝒃(𝒕) 𝑽(𝒕)

𝑉(𝑡)

𝑅𝑠
+
1

𝐿
න
0

𝑡

𝑉 𝑠 𝑑𝑠 + 𝐶
𝑑𝑉(𝑡)

𝑑𝑡
= 0

ሷ𝑉 + 2Γ ሶ𝑉 + 𝜔𝑟
2𝑉 = 0 Γ =

1

2𝐶𝑅𝑠
𝜔𝑟 =

1

𝐶𝐿
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HOM induced voltage (derivation)

➢ The eigenvalues are

➢ The solution of the differential equation gives free oscillations of the kind

➢ 𝜔𝑟 and 𝑄 are respectively the angular resonant frequency and the quality factor of the HOM.

❑ The current in the inductance satisfies the equation

➢ direct verification shows that 𝑖 𝑡 is of the kind

𝜆1,2 = −Γ ± 𝑗 𝜔𝑟
2 − Γ2 = −

𝜔𝑟
2𝑄

± 𝑗𝜔𝑛

𝑉 𝑡 = 𝑒
−
𝜔𝑟
2𝑄𝑡 𝐴1 cos 𝜔𝑛𝑡 + 𝐵1 sin 𝜔𝑛𝑡

𝑄 =
𝜔𝑟
2Γ

𝑖 𝑡 = 𝑒
−
𝜔𝑟
2𝑄𝑡 𝐴2 cos 𝜔𝑛𝑡 + 𝐵2 sin 𝜔𝑛𝑡

𝜔𝑛 = 𝜔𝑟
2 − Γ2

𝑉 𝑡 = 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
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HOM induced voltage (derivation)
❑ We need to find the constants 𝐴1, 𝐵1, 𝐴2 and 𝐵2.

➢ 𝐴1 and 𝐴2 are immediately computed

➢ As for 𝐵2

➢ As for 𝐵1

❑ The solution is therefore

𝑉 0 = 𝑉0

𝑖 0 = 𝑖0

𝐴1 = 𝑉0

𝐴2 = 𝑖0

𝑉0 = 𝐿
𝑑𝑖

𝑑𝑡
0 = −

𝐿𝜔𝑟
2𝑄

𝑖0 + 𝐿𝜔𝑛𝐵2 𝐵2 =
1

𝐿𝜔𝑛
𝑉0 +

𝜔𝑟
2𝑄𝜔𝑛

𝑖0 =
𝜔𝑟𝑄

𝑅𝑠𝜔𝑛
𝑉0 +

𝜔𝑟
2𝑄𝜔𝑛

𝑖0

−
𝑉0
𝑅𝑠

− 𝑖0 = 𝐶
𝑑𝑉

𝑑𝑡
0 = −

𝐶𝜔𝑟
2𝑄

𝑉0 + 𝐶𝜔𝑛𝐵1 𝐵1 =

𝐶𝜔𝑟
2𝑄 −

1
𝑅𝑠

𝐶𝜔𝑛
𝑉0 −

1

𝐶𝜔𝑛
𝑖0 = −

𝜔𝑟
2𝑄𝜔𝑛

𝑉0 −
𝑅𝑠𝜔𝑟
𝑄𝜔𝑛

𝑖0

𝑉 𝑡 = 𝑒
−
𝜔𝑟
2𝑄𝑡 𝑉0 cos 𝜔𝑛𝑡 + −

𝜔𝑟
2𝑄𝜔𝑛

𝑉0 −
𝑅𝑠𝜔𝑟
𝑄𝜔𝑛

𝑖0 sin 𝜔𝑛𝑡 = 𝑒
−
𝜔𝑟
2𝑄𝑡 cos 𝜔𝑛𝑡 −

𝜔𝑟
2𝑄𝜔𝑛

sin 𝜔𝑛𝑡 𝑉0 −
𝑅𝑠𝜔𝑟
𝑄𝜔𝑛

sin 𝜔𝑛𝑡 𝑖0

𝑖 𝑡 = 𝑒
−
𝜔𝑟
2𝑄𝑡 𝑖0 cos 𝜔𝑛𝑡 +

𝜔𝑟𝑄

𝑅𝑠𝜔𝑛
𝑉0 +

𝜔𝑟
2𝑄𝜔𝑛

𝑖0 sin 𝜔𝑛𝑡 = 𝑒
−
𝜔𝑟
2𝑄𝑡

𝜔𝑟𝑄

𝑅𝑠𝜔𝑛
sin 𝜔𝑛𝑡 𝑉0 + cos 𝜔𝑛𝑡 +

𝜔𝑟
2𝑄𝜔𝑛

sin 𝜔𝑛𝑡 𝑖0
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HOM induced voltage (derivation)
❑ In matrix form

❑ Let’s suppose that the HOM is unloaded at t = 0−, i.e. 𝑉 0− = 0 and 𝑖 0− = 0.

➢ Let’s suppose that a charge 𝑄𝑏 crosses the accelerating cavity at t=0. The charge induces the voltage ∆𝑉 on the HOM

➢ According to the beam-loading theorem, the energy change of the particle due to the voltage induced by itself is

➢ The bunch therefore loses energy due to the HOM.

➢ The current does not change at t=0 and therefore 𝑉0 = ∆𝑉, 𝑖0 = 0.

𝑉 𝑡

𝑖 𝑡
= 𝑒

−
𝜔𝑟
2𝑄𝑡

cos 𝜔𝑛𝑡 −
𝜔𝑟

2𝑄𝜔𝑛
sin 𝜔𝑛𝑡 −

𝑅𝑠𝜔𝑟
𝑄𝜔𝑛

sin 𝜔𝑛𝑡

𝜔𝑟𝑄

𝑅𝑠𝜔𝑛
sin 𝜔𝑛𝑡 cos 𝜔𝑛𝑡 +

𝜔𝑟
2𝑄𝜔𝑛

sin 𝜔𝑛𝑡

𝑉0
𝑖0

= 𝑒
−
𝜔𝑟
2𝑄𝑡

𝐴11(𝑡) 𝐴12(𝑡)
𝐴21(𝑡) 𝐴22(𝑡)

𝑉0
𝑖0

= 𝑊(𝑡)
𝑉0
𝑖0

∆𝑉 = −
𝑄𝑏
𝐶
= −

𝑅𝑠𝜔𝑟
𝑄

𝑄𝑏

∆𝐸 = 𝑄𝑏
∆𝑉

2
= −

𝑅𝑠𝜔𝑟
2𝑄

𝑄𝑏
2 < 0
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HOM induced voltage (derivation)
❑ Let’s suppose that a second charge 𝑄𝑏 crosses the accelerating cavity at 𝑡 = 𝑡1 > 0.

➢ The voltage and current of the HOM at 𝑡 = 𝑡1 are

➢ The voltage seen by the particle at 𝑡 = 𝑡1 is

❑ Let’s suppose that a third charge 𝑄𝑏 crosses the accelerating cavity at 𝑡 = 𝑡2 > 𝑡1.

➢ The voltage and current of the HOM at 𝑡 = 𝑡2 are

➢ The voltage seen by the particle at 𝑡 = 𝑡2 is

❑ And so on for the other charges…

𝑉 𝑡1
𝑖 𝑡1

= 𝑊 𝑡1
𝑉0
𝑖0

+
∆𝑉

0

𝑊 𝑡∗
𝑉0
𝑖0 𝑓𝑖𝑟𝑠𝑡 𝑟𝑜𝑤

+
∆𝑉

2

𝑉 𝑡2
𝑖 𝑡2

= 𝑊 𝑡2 − 𝑡1
𝑉 𝑡1
𝑖 𝑡1

+
∆𝑉

0

𝑊 𝑡2 − 𝑡1
𝑉 𝑡1
𝑖 𝑡1 𝑓𝑖𝑟𝑠𝑡 𝑟𝑜𝑤

+
∆𝑉

2
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❑ Note 1:
➢ The voltage of the HOM is discontinuous at the times 

of passage of the charges
➢ The current of the HOM is continuous everywhere 

but not differentiable at the times of passage of the 
charges

➢ Example on the right: DAFNE case, one HOM.

HOM induced voltage (notes)

𝑉(𝑡) = 𝐿
𝑑𝑖(𝑡)

𝑑𝑡

𝒕𝑹𝑭 𝟐𝒕𝑹𝑭 𝟑𝒕𝑹𝑭 𝟒𝒕𝑹𝑭 𝟓𝒕𝑹𝑭𝟎

𝑽(𝒕)
𝒊(𝒕)

❑ Note 2: propagation property of the matrix. If 𝑡1 and 𝑡2 are positive, then

➢ This property is useful to keep track of the HOM voltage and current as bunches travers the cavity at different times.

𝑉(𝑡1 + 𝑡2)

𝑖(𝑡1 + 𝑡2)
= 𝑒

−
𝜔𝑟
2𝑄

(𝑡1+𝑡2) 𝐴11(𝑡1 + 𝑡2) 𝐴12(𝑡1 + 𝑡2)
𝐴21(𝑡1 + 𝑡2) 𝐴22(𝑡1 + 𝑡2)

𝑉(0)

𝑖(0)
= 𝑒

−
𝜔𝑟
2𝑄

𝑡2 𝐴11(𝑡2) 𝐴12(𝑡2)
𝐴21(𝑡2) 𝐴22(𝑡2)

𝑉(𝑡1)

𝑖(𝑡1)

= 𝑒
−
𝜔𝑟
2𝑄𝑡2

𝐴11(𝑡2) 𝐴12(𝑡2)
𝐴21(𝑡2) 𝐴22(𝑡2)

𝑒
−
𝜔𝑟
2𝑄𝑡1

𝐴11(𝑡1) 𝐴12(𝑡1)
𝐴21(𝑡1) 𝐴22(𝑡1)

𝑉(0)

𝑖(0)
= 𝑒

−
𝜔𝑟
2𝑄(𝑡1+𝑡2)

𝐴11(𝑡2) 𝐴12(𝑡2)
𝐴21(𝑡2) 𝐴22(𝑡2)

𝐴11(𝑡1) 𝐴12(𝑡1)
𝐴21(𝑡1) 𝐴22(𝑡1)

𝑉(0)

𝑖(0)
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HOM induced voltage (notes)

❑ Note 4: if the HOM is unloaded and a charge 𝑄𝑏 passes through the accelerating cavity at 𝑡 = 0, then, before the passage of 
the second charge, we have

➢ This 𝑉 𝑡 expression is the well-known one. Why we need to also consider the HOM current and the matrix propagation?
• If the matrix is not used, then another method is to consider the first row of the expansion in Note 3, i.e. to add the 

freely oscillating voltages produced by the previous charges. This is inefficient as the number of charges increases. 
• Another possibility is to save into memory the future voltage as the sum of the past and current voltages. A voltage 

decay-time must be defined (first approximation) and interpolations are needed (second approximation).

𝑉 𝑡

𝑖 𝑡
= 𝑊(𝑡)

∆𝑉

0
𝑉 𝑡 = −𝑄𝑏

𝑅𝑠𝜔𝑟
𝑄

𝑒
−
𝜔𝑟
2𝑄𝑡 cos 𝜔𝑛𝑡 −

𝜔𝑟
2𝑄𝜔𝑛

sin 𝜔𝑛𝑡

❑ Note 5: if we have more HOMs, then each HOM is treated separately, i.e. the traversing charge drives separately each HOM.
➢ Since we suppose that the HOMs are in series, the traversing charge sees the sum of the HOM voltages.

❑ Note 3: if the HOM voltage and current are freely oscillating at 𝑡 < 𝑡1 due to the passage of the first bunch at 𝑡 = 0 and if 
the second bunch 𝑄𝑏 arrives at time 𝑡1, then, using Note 2,

➢ The voltage and current at time 𝑡1 + 𝑡2 can be decomposed as sum of two free oscillations: the first comes from the 
first bunch (free oscillation for 𝑡1 + 𝑡2), the second comes from the second bunch (free oscillation for 𝑡2).

➢ This can be generalized to the passage of more than two bunches.

𝑉(𝑡1 + 𝑡2)

𝑖(𝑡1 + 𝑡2)
= 𝑒

−
𝜔𝑟
2𝑄

𝑡2 𝐴11(𝑡2) 𝐴12(𝑡2)
𝐴21(𝑡2) 𝐴22(𝑡2)

𝑉 𝑡1
− + ∆𝑉

𝑖(𝑡1
−)

= 𝑒
−
𝜔𝑟
2𝑄

(𝑡1+𝑡2) 𝐴11(𝑡1 + 𝑡2) 𝐴12(𝑡1 + 𝑡2)
𝐴21(𝑡1 + 𝑡2) 𝐴22(𝑡1 + 𝑡2)

∆𝑉

0
+ 𝑒

−
𝜔𝑟
2𝑄

𝑡2 𝐴11(𝑡2) 𝐴12(𝑡2)
𝐴21(𝑡2) 𝐴22(𝑡2)

∆𝑉

0

contribution from first bunch contribution from second bunch
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Equations of motion in the code (RF+SR+HOM)
❑ The equations of motion for the bunch 𝑘 (𝑘 = 1, … ,𝑁𝑏) become

➢ where 𝑁𝐻𝑂𝑀 is the number of HOMs,

➢ where 𝑉𝑘,𝑗,𝑅𝐸𝑆
𝑛+1

is the residual voltage present in the HOM 𝑗 and which the bunch 𝑘 sees at turn 𝑛 + 1

• 𝑘 = 2, … ,𝑁𝑏

∆𝝋𝒌
(𝒏+𝟏)

= ∆𝝋𝒌
(𝒏)

+ 𝟐𝝅𝒉𝜶𝟎𝜹𝒌
(𝒏)

𝜹𝒌
(𝒏+𝟏)

= 𝜹𝒌
(𝒏)

−
𝑼𝟎

𝑬𝟎
𝟏 + 𝟐𝜹𝒌

(𝒏)
+
𝒆෡𝑽𝒓𝒇 𝐜𝐨𝐬 ∆𝝋𝒌

(𝒏+𝟏)

𝑬𝟎
+

𝒆

𝑬𝟎
෍

𝒋=𝟏

𝑵𝑯𝑶𝑴

𝑽𝒌,𝒋,𝑹𝑬𝑺
𝒏+𝟏

+ 𝑽𝒌,𝒋,𝑰𝑵𝑫

𝑉𝑘,𝑗,𝑅𝐸𝑆
𝑛+1

= 𝑊𝑗 ҧ𝑡𝑘−1,𝑘
(𝑛+1)

𝑉𝑘−1,𝑗,𝑅𝐸𝑆
𝑛+1

+ ∆𝑉𝑘−1,𝑗

𝑖𝑘−1,𝑗,𝑅𝐸𝑆
𝑛+1

ҧ𝑡𝑘−1,𝑘
(𝑛+1)

=
∆𝜑𝑘

(𝑛+1)
− ∆𝜑𝑘−1

(𝑛+1)

𝜔𝑟𝑓
+ 𝑇𝑟𝑓𝑑𝑘−1,𝑘 ∆𝑉𝑘−1,𝑗= −

𝑅𝑠,𝑗𝜔𝑟,𝑗

𝑄𝑗
𝑄𝑏,𝑘−1

voltage induced by 
the charge 𝑘 − 1
on the HOM 𝑗

time distance between 
the bunches 𝑘 − 1 and 𝑘
(𝑑𝑘−1,𝑘 is the distance in 
buckets)
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Equations of motion in the code (RF+SR+HOM)

• 𝑘 = 1

𝑉1,𝑗,𝑅𝐸𝑆
𝑛+1

= 𝑊𝑗 ҧ𝑡𝑁𝑏,1
(𝑛+1)

𝑉𝑁𝑏,𝑗,𝑅𝐸𝑆
𝑛+1

+ ∆𝑉𝑁𝑏,𝑗

𝑖𝑁𝑏,𝑗,𝑅𝐸𝑆
𝑛+1

ҧ𝑡𝑁𝑏,1
(𝑛+1)

=
∆𝜑1

(𝑛+1)
− ∆𝜑𝑁𝑏

(𝑛)

𝜔𝑟𝑓
+ 𝑇𝑟𝑓𝑑𝑁𝑏,1

∆𝑉𝑁𝑏,𝑗= −
𝑅𝑠,𝑗𝜔𝑟,𝑗

𝑄𝑗
𝑄𝑏,𝑁𝑏

voltage induced by 
the charge 𝑁𝑏 on 
the HOM 𝑗

time distance between the 
bunches 𝑁𝑏 and 1, at turn n
and n+1 respectively (𝑑𝑁𝑏,1
is the distance in buckets)

➢ where 𝑉𝑘,𝑗,𝐼𝑁𝐷 derives from the beam loading theorem: the charge k sees half of the voltage that the charge itself induces 

on the HOM j

∆𝝋𝒌
(𝒏+𝟏)

= ∆𝝋𝒌
(𝒏)

+ 𝟐𝝅𝒉𝜶𝟎𝜹𝒌
(𝒏)

𝑉𝑘,𝑗,𝐼𝑁𝐷 =
∆𝑉𝑘,𝑗

2
= −

𝑅𝑠,𝑗𝜔𝑟,𝑗

2𝑄𝑗
𝑄𝑏,𝑘

𝜹𝒌
(𝒏+𝟏)

= 𝜹𝒌
(𝒏)

−
𝑼𝟎

𝑬𝟎
𝟏 + 𝟐𝜹𝒌

(𝒏)
+
𝒆෡𝑽𝒓𝒇 𝐜𝐨𝐬 ∆𝝋𝒌

(𝒏+𝟏)

𝑬𝟎
+

𝒆

𝑬𝟎
෍

𝒋=𝟏

𝑵𝑯𝑶𝑴

𝑽𝒌,𝒋,𝑹𝑬𝑺
𝒏+𝟏

+ 𝑽𝒌,𝒋,𝑰𝑵𝑫
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Synchronous phase considering also the HOMs
❑ Imposing 𝛿𝑘

(𝑛)
= 𝛿𝑘

(𝑛+1)
= 0, the synchronous phase ∆𝜑𝐻𝑂𝑀,𝑘 is the solution of

➢ if all the HOM voltages are zero, i.e. 𝑉𝑘,𝑗,𝑅𝐸𝑆
𝑛+1

= 𝑉𝑘,𝑗,𝐼𝑁𝐷 = 0, then

∆𝜑𝐻𝑂𝑀,𝑘= ∆𝜑𝑆𝑅= cos−1
𝑈0

𝑒 ෠𝑉𝑟𝑓

➢ if all the HOM residual voltages are zero, i.e. 𝑉𝑘,𝑗,𝑅𝐸𝑆
𝑛+1

= 0, then

• note that 𝑉𝑘,𝑗,𝐼𝑁𝐷 < 0, indeed the RF cavities must now compensate for 𝑈0 plus the energy lost by the particle due 

to the beam loading theorem

➢ we need an iterative procedure to find ∆𝜑𝐻𝑂𝑀,𝑘 in the general case, see below.

0 = −
𝑈0
𝐸0

+
𝑒 ෠𝑉𝑟𝑓 cos ∆𝜑𝐻𝑂𝑀,𝑘

𝐸0
+

𝑒

𝐸0
෍

𝑗=1

𝑁𝐻𝑂𝑀

𝑉𝑘,𝑗,𝑅𝐸𝑆
𝑛+1

+ 𝑉𝑘,𝑗,𝐼𝑁𝐷

∆𝜑𝐻𝑂𝑀,𝑘= cos−1
𝑈0 − 𝑒σ𝑗=1

𝑁𝐻𝑂𝑀𝑉𝑘,𝑗,𝐼𝑁𝐷

𝑒 ෠𝑉𝑟𝑓
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❑ In the code the HOMs can be either ‘unloaded’ or ‘loaded’.

➢ Unloaded: the HOM residual voltage and current are both zero at the start of the simulation.
• Useful to study transient effects, however in this case the injection process has to be simulated as well.

➢ Loaded: the HOM voltage and current satisfy a stationarity condition, as if the bunches were already circulating for a 
long time in the ring at the start of the simulation.
• Useful to neglect the injection and transient phases, allowing at the same time perturbative studies where the 

bunches are positioned close to their synchronous phases in phase-space.

❑ Stationarity condition for a loaded HOM: 
➢ When a charge traverses the RF cavity, the induced ∆𝑉 must compensate the decay of V(t) during the previous period 

𝑇0, while the current must remain constant. Normalizing with respect to 𝑄𝑏, this condition reads

❑ Solving with respect to 𝑉(𝑡0)/𝑄𝑏 and 𝑖(𝑡0)/𝑄𝑏, we obtain

HOM initial conditions (unloaded vs loaded)

𝑉 𝑡0 /𝑄𝑏
𝑖(𝑡0)/𝑄𝑏

= 𝑒
−
𝜔𝑟
2𝑄𝑇0

𝐴11(𝑇0) 𝐴12(𝑇0)
𝐴21(𝑇0) 𝐴22(𝑇0)

𝑉(𝑡0)/𝑄𝑏
𝑖(𝑡0)/𝑄𝑏

+
∆𝑉/𝑄𝑏
0

𝑖 𝑡0
𝑄𝑏

=
𝐴21(𝑇0)

𝑒Γ𝑇0 − 𝐴22(𝑇0)
ത𝑎𝑉(𝑇0) = ത𝑎𝑖(𝑇0)

𝑉 𝑡0
𝑄𝑏

=
−𝑅𝑠𝜔𝑟/𝑄

1 − 𝐴11 𝑇0 +
𝐴12(𝑇0)𝐴21(𝑇0)
𝑒Γ𝑇0 − 𝐴22(𝑇0)

/𝑒Γ𝑇0
= ത𝑎𝑉(𝑇0)
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HOM initial conditions (unloaded vs loaded)
❑ In order to start the tracking of the bunches in the code, we need 

➢ The initial phases ∆𝝋𝒌
(𝟎)

of the bunches

➢ The energy-deviations 𝜹𝒌
(𝟎)

of the bunches

➢ The residual voltage 𝑽𝟏,𝒋,𝑹𝑬𝑺
𝟎

and current 𝒊𝟏,𝒋,𝑹𝑬𝑺
𝟎

of the 𝑗𝑡ℎ HOM when the first bunch traverses the RF cavity.

❑ Case of unloaded HOM. 

➢ The Fortran code allows to set the initial phases of the bunches to values close to ∆𝜑𝑆𝑅= cos−1(𝑈0/ ෠𝑉𝑟𝑓)

➢ The Fortran code allows to set the initial energy-deviations of the bunches to values close to 0

➢ The residual voltage and current are 0 for the first bunch at turn 0

➢ NOTE 1: if intensity effects are large, then the difference between ∆𝜑𝐻𝑂𝑀,𝑘 and ∆𝜑𝑆𝑅 is large, therefore the bunches 
close to (∆𝜑𝑆𝑅,0) are far from their equilibrium positions and can display unwanted large initial dipole oscillations.

➢ NOTE 2: even if bunches are at (∆𝜑𝐻𝑂𝑀,𝑘,0), dipole oscillations are still visible since the HOM is unloaded and ∆𝜑𝐻𝑂𝑀,𝑘
assumes that the HOM is loaded. However these dipole oscillations are lower than the ones obtained when the bunches 
are at (∆𝜑𝑆𝑅,0).
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∆𝝋𝒌
(𝟎)
≈ ∆𝝋𝑺𝑹

𝜹𝒌
(𝟎)

≈ 𝟎

𝑽𝟏,𝒋,𝑹𝑬𝑺
𝟎

= 𝒊𝟏,𝒋,𝑹𝑬𝑺
𝟎

= 𝟎
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HOM initial conditions (unloaded vs loaded)
❑ Case of loaded HOM. 

➢ The Fortran code allows to set the initial phases of the bunches to values close to ∆𝜑𝑆𝑅= cos−1(𝑈0/ ෠𝑉𝑟𝑓).

➢ The Fortran code allows to set the initial energy-deviations of the bunches to values close to 0.

➢ In the Fortran code, the residual voltage and current for the first bunch at turn 0 are computed as

• This equation represents the sum of residual voltages and currents generated by the 𝑁𝑏 bunches during the last turn. 
• As desired, this equation implies that the HOM voltage and current are 𝑇0-periodic for each bunch (see below).
• The sum in the equation should be extended to all the previous turns, however the propagation properties of W

listed above and the stationarity condition allow to restrict the sum to just the last revolution period.
• NOTE 1: a strong assumption was made, i.e. that all the bunches are in ∆𝜑𝑆𝑅, with time distances which are multiple 

of 𝑇𝑟𝑓. However the actual equilibrium phases are ∆𝜑𝐻𝑂𝑀,𝑘≠ ∆𝜑𝑆𝑅 and the time distances aren’t multiple of 𝑇𝑟𝑓.

➢ NOTE 2: if intensity effects are large, then the difference between ∆𝜑𝐻𝑂𝑀,𝑘 and ∆𝜑𝑆𝑅 is large, therefore the bunches close 
to (∆𝜑𝑆𝑅,0) are far from their equilibrium positions and can display unwanted large initial dipole oscillations.

𝑽𝟏,𝒋,𝑹𝑬𝑺
𝟎

𝒊𝟏,𝒋,𝑹𝑬𝑺
𝟎 =෍

𝒊=𝟏

𝑵𝒃

𝑾(𝒕𝒊𝟏)
ഥ𝒂𝑽(𝑻𝟎)𝑸𝒃,𝒊

ഥ𝒂𝒊(𝑻𝟎)𝑸𝒃,𝒊

-> 𝒕𝒊𝟏 = 𝑻𝒓𝒇(𝒉 − 𝒅𝟏𝒊) is the time distance between the bunch 

𝑖 at the previous turn and the bunch 1 at the current turn. 
-> 𝒅𝟏𝒊 is the distance in number of buckets between the first 

and the 𝑖th bunches.

∆𝝋𝒌
(𝟎)
≈ ∆𝝋𝑺𝑹

𝜹𝒌
(𝟎)

≈ 𝟎



𝑇0-periodicity of voltage and current for loaded HOMs
❑ By definition, the voltage of a loaded HOM are 𝑇0- periodic if 

there is only one bunch in the ring.
❑ The 𝑇0-periodicity works also for more bunches. 

➢ Example: two bunches on a h=3 ring with one HOM.

t [s]

co
s
𝜔
𝑟
𝑓
𝑡

[1
]

(n-1)𝑻𝟎 n𝑻𝟎

𝑸𝒃,𝟏 𝑸𝒃,𝟏𝑸𝒃,𝟐 𝑸𝒃,𝟐

(n+1)𝑻𝟎

𝑉1
𝑛−1

𝑖1
𝑛−1 =

∆𝑉1
0

+𝑊(𝑇0)
ത𝑎𝑉(𝑇0)𝑄𝑏,1
ത𝑎𝑖(𝑇0)𝑄𝑏,1

=
ത𝑎𝑉(𝑇0)𝑄𝑏,1
ത𝑎𝑖(𝑇0)𝑄𝑏,1

+𝑊 𝑇0 −
2𝜋

𝜔𝑟𝑓

ത𝑎𝑉(𝑇0)𝑄𝑏,2
ത𝑎𝑖(𝑇0)𝑄𝑏,2

𝑉2
𝑛−1

𝑖2
𝑛−1 =

∆𝑉2
0

+𝑊
2𝜋

𝜔𝑟𝑓

𝑉1
𝑛−1

𝑖1
𝑛−1

perturbation from second bunch

=
ത𝑎𝑉(𝑇0)𝑄𝑏,2
ത𝑎𝑖(𝑇0)𝑄𝑏,2

+𝑊
2𝜋

𝜔𝑟𝑓

ത𝑎𝑉(𝑇0)𝑄𝑏,1
ത𝑎𝑖(𝑇0)𝑄𝑏,1

perturbation from first bunch

𝑉1
𝑛

𝑖1
𝑛 =

∆𝑉1
0

+𝑊 𝑇0 −
2𝜋

𝜔𝑟𝑓

𝑉2
𝑛−1

𝑖2
𝑛−1 =

ത𝑎𝑉(𝑇0)𝑄𝑏,1
ത𝑎𝑖(𝑇0)𝑄𝑏,1

+𝑊 𝑇0 −
2𝜋

𝜔𝑟𝑓

ത𝑎𝑉(𝑇0)𝑄𝑏,2
ത𝑎𝑖(𝑇0)𝑄𝑏,2

=
𝑉1

𝑛−1

𝑖1
𝑛−1

+𝑊 𝑇0 −
2𝜋

𝜔𝑟𝑓

ത𝑎𝑉(𝑇0)𝑄𝑏,2
ത𝑎𝑖(𝑇0)𝑄𝑏,2

perturbation from second bunch
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𝑻𝟎- periodicity 
is verified.



Example of simulation using unloaded and loaded HOMs
❑ DAFNE case: 𝐸0 = 510 MeV, 𝑈0 = 9.3 keV, 𝑉𝑟𝑓 = 260 kV, 14 HOMs, 100 bunches with 𝑄𝑏 = 15 nC in buckets 1, 2, …, 100.

❑ The initial phases and energy-deviations are respectively ∆𝝋𝒌
(𝟎)
= ∆𝝋𝑺𝑹 and 𝜹𝒌

(𝟎)
= 𝟎. 

❑ We plot the dipole oscillations for the bunches 1, 50 and 100 along 10000 turns.
❑ We plot the HOM voltages seen by the bunches along 10000 turns.

Unloaded HOMs Loaded HOMs
Bunch 1
Bunch 50
Bunch 100

❑ The dipole oscillations remain 
practically the same when the HOMs 
are loaded.

❑ The voltages seen by the bunches 
when the HOMs are unloaded 
converge rapidly to the voltages seen 
by the bunches when the HOMs are 
loaded. 

❑ We need a better algorithm to 
compute the stationary voltages of 
loaded HOMs.
➢ The stable phases are ∆𝜑𝐻𝑂𝑀,𝑘

and not ∆𝜑𝑆𝑅 and so the time-
distances between bunches are 
not multiple of 𝑇𝑟𝑓.

➢ Finding ∆𝜑𝐻𝑂𝑀,𝑘 allows also to 
position the bunches close to 
their equilibrium points at turn 0.

Bunch 1
Bunch 50
Bunch 100
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Improvement of the loaded-HOM algorithm
∆𝜑𝐻𝑂𝑀,1 = ∆𝜑𝐻𝑂𝑀,2 = ∆𝜑𝑆𝑅

𝑉1,𝑅𝐸𝑆,𝑁𝐸𝑊
0

𝑖1,𝑅𝐸𝑆
0 = 𝑊 𝑡11

ത𝑎𝑉 𝑇0 𝑄𝑏,1
ത𝑎𝑖 𝑇0 𝑄𝑏,1

+𝑊 𝑡21
ത𝑎𝑉 𝑇0 𝑄𝑏,2
ത𝑎𝑖 𝑇0 𝑄𝑏,2

𝑉2,𝑅𝐸𝑆,𝑁𝐸𝑊
0

𝑖2,𝑅𝐸𝑆
0 = 𝑊 𝑡12

𝑉1,𝑅𝐸𝑆,𝑁𝐸𝑊
0

+ ∆𝑉1

𝑖1,𝑅𝐸𝑆
0

𝑡11 = ℎ𝑇𝑟𝑓, 𝑡21 = 𝑇𝑟𝑓 ℎ − 𝑑12 + ∆𝜑𝐻𝑂𝑀,1−∆𝜑𝐻𝑂𝑀,2 /𝜔𝑟𝑓

𝑡12 = 𝑇𝑟𝑓𝑑12 + ∆𝜑𝐻𝑂𝑀,2−∆𝜑𝐻𝑂𝑀,1 /𝜔𝑟𝑓

error = 𝑉1,𝑅𝐸𝑆,𝑁𝐸𝑊
0

− 𝑉1,𝑅𝐸𝑆
0

2
+ 𝑉2,𝑅𝐸𝑆,𝑁𝐸𝑊

0
− 𝑉2,𝑅𝐸𝑆

0
2

∆𝜑𝐻𝑂𝑀,1 = arccos 𝑈0 − ∆𝑉1/2 − 𝑉1,𝑅𝐸𝑆,𝑁𝐸𝑊
0

/𝑉𝑟𝑓

for 𝑗 = 1, …, 𝑛𝑖𝑡𝑒𝑟

return ∆𝜑𝐻𝑂𝑀,1, ∆𝜑𝐻𝑂𝑀,2, 𝑉1,𝑅𝐸𝑆
0

, 𝑖1,𝑅𝐸𝑆
0

, 𝑉2,𝑅𝐸𝑆
0

, 𝑖2,𝑅𝐸𝑆
0

-> First guess for ∆𝝋𝑯𝑶𝑴,𝟏 and ∆𝝋𝑯𝑶𝑴,𝟐

-> 𝒏𝒊𝒕𝒆𝒓 is the chosen number of iterations Compute 
residual 
voltage 
and 
current for 
first bunch 

Compute updated 
values for ∆𝝋𝑯𝑶𝑴,𝟏

and ∆𝝋𝑯𝑶𝑴,𝟐

❑ Example with only two bunches 
and one HOM.

❑ The routine provides as output 

∆𝜑𝐻𝑂𝑀,1, ∆𝜑𝐻𝑂𝑀,2, 𝑉1,𝑅𝐸𝑆
0 , 𝑖1,𝑅𝐸𝑆

0 , 

𝑉2,𝑅𝐸𝑆
0 , 𝑖2,𝑅𝐸𝑆

0 .

❑ The routine is an iterative 
algorithm: at each iteration 𝑗 the 
error is expected to diminish.

❑ The routine is launched one time 
before the main tracking loop.

❑ Idea behind the algorithm:
➢ Guess ∆𝜑𝐻𝑂𝑀,1 and ∆𝜑𝐻𝑂𝑀,2

➢ 𝑉1,𝑅𝐸𝑆
0 and 𝑉2,𝑅𝐸𝑆

0 are 

determined
➢ ∆𝜑𝐻𝑂𝑀,1 and ∆𝜑𝐻𝑂𝑀,2 are 

determined …
❑ The routine can be also used to 

compute ∆𝜑𝐻𝑂𝑀,1 and 
∆𝜑𝐻𝑂𝑀,2 for unloaded HOMs.

❑ The Fortran loaded-HOM routine 
is obtained setting 𝑛𝑖𝑡𝑒𝑟=1 and 
∆𝜑𝐻𝑂𝑀,𝑖 = ∆𝜑𝑆𝑅 for all the bunches.

50

-> First guess for 𝑽𝟏,𝑹𝑬𝑺
𝟎

and 𝑽𝟐,𝑹𝑬𝑺
𝟎

Compute 
residual voltage 
and current for 
second bunch 

-> 𝑳𝟐 norm

∆𝜑𝐻𝑂𝑀,2 = arccos 𝑈0 − ∆𝑉2/2 − 𝑉2,𝑅𝐸𝑆,𝑁𝐸𝑊
0

/𝑉𝑟𝑓

𝑉1,𝑅𝐸𝑆
0

= 𝑉2,𝑅𝐸𝑆
0

= 0

𝑉1,𝑅𝐸𝑆
0

= 𝑉1,𝑅𝐸𝑆,𝑁𝐸𝑊
0

, 𝑉2,𝑅𝐸𝑆
0

= 𝑉2,𝑅𝐸𝑆,𝑁𝐸𝑊
0

-> save voltages to compute error at iter. j+1

-> outputs



Previous simulation using improved routine for loaded HOMs
❑ DAFNE case: 𝐸0 = 510 MeV, 𝑈0 = 9.3 keV, 𝑉𝑟𝑓 = 260 kV, 14 HOMs, 100 bunches with 𝑄𝑏=15 nC in buckets 1, 2, …, 100.

❑ The initial phases and energy-deviations are respectively ∆𝝋𝒌
(𝟎)
= ∆𝝋𝑯𝑶𝑴,𝒌 and 𝜹𝒌

(𝟎)
= 𝟎. 

❑ Unloaded HOMs: 𝑽𝟏,𝒋,𝑹𝑬𝑺
𝟎

= 𝒊𝟏,𝒋,𝑹𝑬𝑺
𝟎

= 𝟎.

➢ As desired, the dipole oscillations are significantly lower than the ones obtained when ∆𝝋𝒌
(𝟎)
= ∆𝝋𝑺𝑹.

❑ Loaded HOMs: 𝑽𝟏,𝒋,𝑹𝑬𝑺
𝟎

and 𝒊𝟏,𝒋,𝑹𝑬𝑺
𝟎

come from the outputs of the improved routine.

➢ As desired, there are no dipole oscillations and the voltages seen by each bunch are constant in time.

Unloaded HOMs (improved routine)

Bunch 1
Bunch 50
Bunch 100
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Loaded HOMs (improved routine) Loaded HOMs (Fortran routine)

Bunch 1
Bunch 50
Bunch 100

Bunch 1
Bunch 50
Bunch 100



Effects of the bunch length on HOM-voltage computations
❑ In the code, each bunch is represented by just one macroparticle. 

❑ How to take into account the actual bunch length 𝜎𝑡 in the HOM voltage calculations?

➢ In the code, the 𝑅𝑠 of each HOM is multiplied by 𝑒−
𝜔𝑟
2𝜎𝑡

2

2 and then computations are done as for a single particle. Why? 

❑ If 𝜆 𝑡 = 𝑄𝑏𝛿𝑑 𝑡 is the longitudinal line-density of a particle-bunch crossing the RF cavity, then the residual voltage in the 
cavity is given by

➢ where 𝑤∥(𝑡) [V/C] is the wakefield of the HOM.

❑ In general, given an arbitrary 𝜆 𝑡 , the residual voltage in the RF cavity is given by the convolution of 𝜆 and 𝑤∥

➢ where 𝜆 𝑡 − 𝜏 is the charge at 𝑡 − 𝜏 which affects the charge at 𝑡. The particles at the head of the bunch have lower 𝑡.
➢ The formula is indeed true if 𝜆 𝑡 = 𝑄𝑏𝛿𝑑 𝑡
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𝑉 𝑡 = −𝑄𝑏
𝑅𝑠𝜔𝑟
𝑄

𝑒
−
𝜔𝑟
2𝑄𝑡 cos 𝜔𝑛𝑡 −

𝜔𝑟
2𝑄𝜔𝑛

sin 𝜔𝑛𝑡 = −𝑄𝑏𝑤∥ 𝑡

𝑉 𝑡 = −𝜆 𝑡 ∗ 𝑤∥ 𝑡 = −න
0

∞

𝜆 𝑡 − 𝜏 𝑤∥ 𝜏 𝑑𝜏

𝑉 𝑡 = −න
0

∞

𝑄𝑏𝛿𝑑 𝑡 − 𝜏 𝑤∥ 𝜏 𝑑𝜏 = −𝑄𝑏𝑤∥ 𝑡

NOTE: 𝑉 𝑡 /𝑄𝑏 is called wake 
function or wake potential



Effects of the bunch length on HOM-voltage computations
❑ Applying the Fourier transform ℱ and using its inverse ℱ−1 we obtain

➢ where 𝑆 is the bunch spectrum and Z is the longitudinal coupling impedance of the HOM

➢ The formula is indeed true if 𝜆 𝑡 = 𝑄𝑏𝛿𝑑 𝑡

➢ If 𝜆 𝑡 is Gaussian, then  
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ℱ 𝑉 = −ℱ 𝜆 ℱ 𝑤∥ = −𝑆(𝜔)𝑍(𝜔) or 𝑉 = −ℱ−1 ℱ 𝜆 ℱ 𝑤∥ = −ℱ−1 𝑆(𝜔)𝑍(𝜔)

𝑍 𝜔 =
𝑅𝑠

1 + 𝑗𝑄
𝜔
𝜔𝑟

−
𝜔𝑟
𝜔

𝑉 𝑡 = −ℱ−1 ℱ 𝜆 ℱ 𝑤∥ = −𝑄𝑏ℱ
−1 ℱ 𝑤∥ = −𝑄𝑏𝑤∥(𝑡)

𝜆 𝑡 =
𝑄𝑏

𝜎𝑡 2𝜋
𝑒
−
𝑡2

2𝜎𝑡
2

𝑆 𝜔 = 𝑄𝑏𝑒
−
𝜔2𝜎𝑡

2

2 𝑉 𝑡 = −ℱ−1 ℱ 𝜆 ℱ 𝑤∥ = −𝑄𝑏ℱ
−1 𝑒−

𝜔2𝜎𝑡
2

2 ℱ 𝑤∥

𝑉 𝑡 = −𝑄𝑏ℱ
−1 𝑒−

𝜔2𝜎𝑡
2

2 ℱ 𝑤∥ ≈ −𝑄𝑏𝑒
−
𝜔𝑟
2𝜎𝑡

2

2 𝑤∥ 𝑡 = −𝑄𝑏
෨𝑅𝑠𝜔𝑟
𝑄

𝑒
−
𝜔𝑟
2𝑄𝑡 cos 𝜔𝑛𝑡 −

𝜔𝑟
2𝑄𝜔𝑛

sin 𝜔𝑛𝑡

Is this approximation ok? 

෨𝑅𝑠 = 𝑒−
𝜔𝑟
2𝜎𝑡

2

2 𝑅𝑠



❑ Let’s check if the following approximation can be done

❑ We take as an example one HOM of the DAFNE RF cavity and we consider a Gaussian bunch with 𝜎𝑧 = 30 mm ( ሚ𝑆 = 𝑆/𝑄𝑏).

ℱ−1 𝑒−
𝜔2𝜎𝑡

2

2 ℱ 𝑤∥ ≈ ℱ−1 𝑒−
𝜔𝑟
2𝜎𝑡

2

2 ℱ 𝑤∥ or     ℱ−1 𝑆(𝜔)𝑍(𝜔) ≈ ℱ−1 𝑆 𝜔𝑟 𝑍 𝜔 or     𝑆(𝜔)𝑍(𝜔) ≈ 𝑆(𝜔𝑟)𝑍(𝜔)

෩𝑺 𝒇
𝐑𝐞 𝒁 𝒇
෩𝑺 𝒇 𝐑𝐞 𝒁 𝒇
෩𝑺 𝒇𝒓
෩𝑺 𝒇𝒓 𝐑𝐞 𝒁 𝒇

𝐙𝐨𝐨𝐦Green and 
magenta lines 
overlap

❑ Close to 𝑓𝑟, ෩𝑺 𝒇 ≈ ෩𝑺 𝒇𝒓 since the HOM bandwidth is small.

❑ Far from 𝑓𝑟 , ෩𝑺 𝒇 significantly differs from  ෩𝑺 𝒇𝒓 , but 𝐑𝐞 𝒁 𝒇 ≈ 0
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Effects of the bunch length on HOM-voltage computations

ሚ 𝑆
[1

]

ሚ 𝑆
[1

]

෩𝑺 𝒇 𝐑𝐞 𝒁 𝒇 ≈ ෩𝑺 𝒇𝒓 𝐑𝐞 𝒁 𝒇

෩𝑺 𝒇 𝐑𝐞 𝒁 𝒇 ≈ ෩𝑺 𝒇𝒓 𝐑𝐞 𝒁 𝒇 ≈ 𝟎



❑ DAFNE example with one 
Gaussian bunch (𝜎𝑧 = 30 
mm) and one HOM:
➢ 𝑄 = 336
➢ 𝑅𝑠 = 307 Ω
➢ 𝜔𝑟 = 7.424 Grad/s

❑ Very good agreement in 0 
and above 𝑻𝒓𝒇 between 

wake from Gaussian bunch 
and wake from single 
charge with correction.

❑ There is significant 
disagreement if the wake 
from single charge is used.

❑ We suppose that the actual 
bunch is Gaussian with a 
constant bunch-length and 
that all the charge is at the 
bunch centre.

Wake from Gaussian bunch
Wake from single charge
Wake from single charge with correction

𝑻𝟎𝟎

𝟎 𝑻𝟎−𝑻𝒓𝒇 𝑻𝒓𝒇 𝑻𝟎- 𝑻𝒓𝒇 𝑻𝟎 + 𝑻𝒓𝒇

𝐙𝐨𝐨𝐦 𝐙𝐨𝐨𝐦
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Effects of the bunch length on HOM-voltage computations

Τ
𝜆
𝑄
𝑏

[1
/n

s]

Τ
𝜆
𝑄
𝑏

[1
/n

s]

Τ
𝜆
𝑄
𝑏

[1
/n

s]

beam-loading 
theorem



❑ Let’s suppose to have 𝑁𝑏 equally-spaced bunches, each with charge 𝑄𝑏, circulating in a ring with circumference 𝐶𝑟.
➢ We assume that each bunch is described by only one macroparticle.

❑ For each bunch 𝑛 = 0,… , 𝑁𝑏 − 1, the continuous equations of motion are

➢ where 𝑉𝑊,𝑛
𝑡𝑜𝑡 is the induced-voltage seen by the bunch 𝑛 and induced by all the charges circulating in the ring.

❑ Deriving and substituting

❑ Changing variable from ∆𝜑𝑛 to 𝜑0,𝑛 = ∆𝜑𝑛 − ∆𝜑𝐻𝑂𝑀,𝑛, and then from 𝜑0,𝑛 to 𝑧0,𝑛 = −𝑐𝜑0,𝑛/𝜔𝑟𝑓, we obtain
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Coupled-bunch instabilities (1/12)

ሶ∆𝜑𝑛 = 𝜔𝑟𝑓𝛼0𝛿𝑛 ሶ𝛿𝑛 = −
𝑈0
𝐸0𝑇0

1 + 2𝛿𝑛 +
𝑒𝑉𝑊,𝑛

𝑡𝑜𝑡

𝐸0𝑇0
+
𝑒 ෠𝑉𝑟𝑓

𝐸0𝑇0
cos ∆𝜑𝑛

ሷ∆𝜑𝑛 = −
𝜔𝑟𝑓𝛼0𝑈0

𝐸0𝑇0
1 + 2

ሶ∆𝜑𝑛
𝜔𝑟𝑓𝛼0

+
𝜔𝑟𝑓𝛼0𝑒𝑉𝑊,𝑛

𝑡𝑜𝑡

𝐸0𝑇0
+
𝜔𝑟𝑓𝛼0𝑒 ෠𝑉𝑟𝑓

𝐸0𝑇0
cos ∆𝜑𝑛

ሷ𝑧0,𝑛 =
𝑐𝛼0𝑈0
𝐸0𝑇0

−
𝐷

𝑇0
ሶ𝑧0,𝑛 −

𝑐𝛼0𝑒𝑉𝑊,𝑛
𝑡𝑜𝑡

𝐸0𝑇0
−
𝑐𝛼0𝑒 ෠𝑉𝑟𝑓

𝐸0𝑇0
cos ∆𝜑𝐻𝑂𝑀,𝑛 −

2𝜋ℎ

𝐶𝑟
𝑧0,𝑛



❑ 𝑉𝑊,𝑛
𝑡𝑜𝑡 can be obtained summing wake-function contributions over all the past revolution turns 𝑞 and over all the bunches ℎ

➢ where 𝑤∥ 𝑧 = 0 for 𝑧 < 0 and the ∆𝜑𝐻𝑂𝑀,ℎ are mod(2𝜋).

❑ The ∆𝜑𝐻𝑂𝑀,ℎ must be all equal due to the symmetrical position of the full buckets in the ring. We call ∆𝜑𝐻𝑂𝑀 the common value.

❑ Therefore, expanding 𝑉𝑊,𝑛
𝑡𝑜𝑡 linearly with respect to the equilibrium positions 𝑧0,ℎ = 𝑧0,𝑛 = 0, we obtain

➢ where
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𝑉𝑊,𝑛
𝑡𝑜𝑡 (𝑡) = −𝑄𝑏 ෍

ℎ=0

𝑁𝑏−1

෍

𝑞=0

+∞

𝑤∥ 𝑞 +
𝑛

𝑁𝑏
−

ℎ

𝑁𝑏
𝐶𝑟 + 𝑧0,ℎ 𝑡 − 𝑞 +

𝑛

𝑁𝑏
−

ℎ

𝑁𝑏
𝑇0 − 𝑧0,𝑛 𝑡 −

𝑐

𝜔𝑟𝑓
∆𝜑𝐻𝑂𝑀,ℎ − ∆𝜑𝐻𝑂𝑀,𝑛

Coupled-bunch instabilities (2/12)

𝑉𝑊,𝑛
𝑡𝑜𝑡 (𝑡) = −𝑄𝑏 ෍

ℎ=0

𝑁𝑏−1

෍

𝑞=0

+∞

𝑤∥ 𝑞 +
𝑛

𝑁𝑏
−

ℎ

𝑁𝑏
𝐶𝑟 +

𝑑𝑤∥
𝑑𝑧

𝑧0,ℎ 𝑡 − 𝑞 +
𝑛

𝑁𝑏
−

ℎ

𝑁𝑏
𝑇0 − 𝑧0,𝑛 𝑡

𝑑𝑤∥
𝑑𝑧

= ቤ
𝑑𝑤∥
𝑑𝑧

𝑞+
𝑛
𝑁𝑏

−
ℎ
𝑁𝑏

𝐶𝑟

෠𝑉𝑟𝑓 cos ∆𝜑𝐻𝑂𝑀 −
2𝜋ℎ

𝐶𝑟
𝑧0,𝑛 = ෠𝑉𝑟𝑓 cos ∆𝜑𝐻𝑂𝑀 +

2𝜋ℎ ෠𝑉𝑟𝑓

𝐶𝑟
sin ∆𝜑𝐻𝑂𝑀 𝑧0,𝑛

❑ We linearly expand the accelerating voltage as well

𝑑𝑤∥(𝑧)

𝑑𝑧
=
𝑅𝑠𝜔𝑟
𝑄

𝑒
−
𝜔𝑟
2𝑄

𝑧
𝑐 −

𝜔𝑟
𝑄𝑐

cos 𝜔𝑛
𝑧

𝑐
+

𝜔𝑟
2

4𝑄2𝑐𝜔𝑛
−
𝜔𝑛
𝑐

sin 𝜔𝑛
𝑧

𝑐
and



❑ Substituting into the differential equation we obtain

❑ Therefore

➢ where, setting for instance 𝑛 = 0 due to the symmetry of the charge distribution, 

➢ and
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Coupled-bunch instabilities (3/12)

ሷ𝑧0,𝑛 =
𝑐𝛼0𝑈0
𝐸0𝑇0

−
𝐷

𝑇0
ሶ𝑧0,𝑛 −

𝑐𝛼0𝑒 ෠𝑉𝑟𝑓

𝐸0𝑇0
cos ∆𝜑𝐻𝑂𝑀 −

2𝜋ℎ𝑐𝛼0𝑒 ෠𝑉𝑟𝑓

𝐶𝑟𝐸0𝑇0
sin ∆𝜑𝐻𝑂𝑀 +

𝑄𝑏𝑐𝛼0𝑒

𝐸0𝑇0
෍

ℎ=0

𝑁𝑏−1

෍

𝑞=0

+∞
𝑑𝑤∥

𝑑𝑧
𝑧0,𝑛

+
𝑄𝑏𝑐𝛼0𝑒

𝐸0𝑇0
෍

ℎ=0

𝑁𝑏−1

෍

𝑞=0

+∞

𝑤∥ 𝑞 +
𝑛

𝑁𝑏
−

ℎ

𝑁𝑏
𝐶𝑟 +

𝑄𝑏𝑐𝛼0𝑒

𝐸0𝑇0
෍

ℎ=0

𝑁𝑏−1

෍

𝑞=0

+∞
𝑑𝑤∥
𝑑𝑧

𝑧0,ℎ 𝑡 − 𝑞 +
𝑛

𝑁𝑏
−

ℎ

𝑁𝑏
𝑇0

ሷ𝑧0,𝑛 +
𝐷

𝑇0
ሶ𝑧0,𝑛 + 𝜔𝑠,𝐻𝑂𝑀

2 𝑧0,𝑛 =
𝑄𝑏𝑐𝛼0𝑒

𝐸0𝑇0
෍

ℎ=0

𝑁𝑏−1

෍

𝑞=0

+∞
𝑑𝑤∥

𝑑𝑧
𝑧0,ℎ 𝑡 − 𝑞 +

𝑛

𝑁𝑏
−

ℎ

𝑁𝑏
𝑇0

𝜔𝑠,𝐻𝑂𝑀
2 =

𝑐𝛼0𝑒

𝐸0𝑇0

2𝜋ℎ ෠𝑉𝑟𝑓

𝐶𝑟
sin ∆𝜑𝐻𝑂𝑀 + 𝑄𝑏 ෍

ℎ=0

𝑁𝑏−1

෍

𝑞=0

+∞

ቤ
𝑑𝑤∥

𝑑𝑧
𝑞−

ℎ
𝑁𝑏

𝐶𝑟

𝑈0 = 𝑒 ෠𝑉𝑟𝑓 cos∆𝜑𝐻𝑂𝑀 − 𝑄𝑏𝑒 ෍

ℎ=0

𝑁𝑏−1

෍

𝑞=0

+∞

𝑤∥ 𝑞 −
ℎ

𝑁𝑏
𝐶𝑟

For 𝑄𝑏 ≈ 0 we obtain the zero-intensity 
zero-amplitude synchrotron frequency 
with synchrotron radiation

𝜔𝑠0,𝑆𝑅
2 =

𝛼0𝜔𝑟𝑓𝑒 ෠𝑉𝑟𝑓

𝐸0𝑇0
sin ∆𝜑𝑆𝑅

This equation can be used to compute 
∆𝜑𝐻𝑂𝑀.
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Coupled-bunch instabilities (4/12)
❑ We have to solve a system of 𝑛 coupled second-order differential equations with the forcing term being a linear combination 

of the solutions themselves computed at different times.

❑ We find a solution of the type

➢ with 𝑎𝑛 and 𝛺 complex quantities to be determined.

❑ Substituting into the differential equation we obtain

➢ where the sum over 𝑞 could be extended for negative values since 𝑤∥ 𝑧 = 0 if 𝑧 < 0.

❑ From the definition of the longitudinal coupling impedance we have

𝑧0,𝑛 𝑡 = 𝑎𝑛𝑒
𝑗𝛺𝑡

𝛺2 −
𝑗𝐷

𝑇0
𝛺 − 𝜔𝑠,𝐻𝑂𝑀

2 𝑎𝑛 = −
𝑄𝑏𝑐𝛼0𝑒

𝐸0𝑇0
෍

ℎ=0

𝑁𝑏−1

𝑎ℎ ෍

𝑞=−∞

+∞

ቤ
𝑑𝑤∥

𝑑𝑧
𝑞+

𝑛
𝑁𝑏

−
ℎ
𝑁𝑏

𝐶𝑟

𝑒
−𝑗𝛺𝑇0 𝑞+

𝑛
𝑁𝑏

−
ℎ
𝑁𝑏

ቤ
𝑑𝑤∥

𝑑𝑧
𝑞+

𝑛
𝑁𝑏

−
ℎ
𝑁𝑏

𝐶𝑟

= −
𝑗

2𝜋𝑐
න
−∞

+∞

𝜔𝑍∥(𝜔)𝑒
−𝑗𝜔𝑇0 𝑞+

𝑛
𝑁𝑏

−
ℎ
𝑁𝑏 𝑑𝜔
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Coupled-bunch instabilities (5/12)
❑ Multiplying by the exponential, summing over 𝑞 and using one property of the delta function, we have

❑ Substituting

❑ Defining

෍

𝑞=−∞

+∞
𝑑𝑤∥
𝑑𝑧

𝑒
−𝑗𝛺𝑇0 𝑞+

𝑛
𝑁𝑏

−
ℎ
𝑁𝑏 = −

𝑗

2𝜋𝑐
න
−∞

+∞

𝜔𝑍∥(𝜔)𝑒
−𝑗 𝜔+𝛺

𝑛
𝑁𝑏

−
ℎ
𝑁𝑏

𝑇0 ෍

𝑞=−∞

+∞

𝑒−𝑗 𝜔+𝛺 𝑞𝑇0 𝑑𝜔

= −
𝑗

𝐶𝑟
෍

𝑝=−∞

+∞

න
−∞

+∞

𝜔𝑍∥(𝜔)𝑒
−𝑗 𝜔+𝛺

𝑛
𝑁𝑏

−
ℎ
𝑁𝑏

𝑇0𝛿 𝜔 + 𝛺 − 𝑝
2𝜋

𝑇0
𝑑𝜔

= −
𝑗

𝐶𝑟
෍

𝑝=−∞

+∞

𝜔0𝑝 − 𝛺 𝑍∥(𝜔0𝑝 − 𝛺)𝑒
−2𝜋𝑗

𝑛
𝑁𝑏

−
ℎ
𝑁𝑏

𝑝

𝛺2 −
𝑗𝐷

𝑇0
𝛺 − 𝜔𝑠,𝐻𝑂𝑀

2 𝑎𝑛 =
𝑗𝑄𝑏𝑐𝛼0𝑒

𝐶𝑟𝐸0𝑇0
෍

ℎ=0

𝑁𝑏−1

𝑎ℎ ෍

𝑝=−∞

+∞

𝜔0𝑝 − 𝛺 𝑍∥(𝜔0𝑝 − 𝛺)𝑒
−2𝜋𝑗

𝑛
𝑁𝑏

−
ℎ
𝑁𝑏

𝑝

𝜆 𝛺 =
1

𝑄𝑏
𝛺2 −

𝑗𝐷

𝑇0
𝛺 − 𝜔𝑠,𝐻𝑂𝑀

2 𝑏𝑛 = 𝑄𝑏𝑎𝑛 𝑀𝑛,ℎ 𝛺 =
𝑗𝑐𝛼0𝑒

𝐶𝑟𝐸0𝑇0
෍

𝑝=−∞

+∞

𝜔0𝑝 − 𝛺 𝑍∥(𝜔0𝑝 − 𝛺)𝑒
−2𝜋𝑗

𝑛
𝑁𝑏

−
ℎ
𝑁𝑏

𝑝
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➢ we obtain the system of linear equations

➢ where we imposed that all the 𝜆 𝛺 are equal, calling ҧ𝜆 the common value.

❑ From linear algebra, we know that this system of equations has 𝑁𝑏 complex eigenvalues ҧ𝜆𝜇, 𝜇 = 0,… , 𝑁𝑏 − 1.

➢ A set of 𝑁𝑏 eigenvectors 𝑏ℎ (ℎ = 0,… , 𝑁𝑏 − 1) is associated to each ҧ𝜆𝜇.

❑ The square matrix 𝑀𝑛,ℎ is said circular since it satisfies the property

❑ Since 𝑀𝑛,ℎ is circular, then the 𝑁𝑏 eigenvalues are given by

ҧ𝜆𝑏𝑛 = ෍

ℎ=0

𝑁𝑏−1

𝑀𝑛,ℎ 𝛺 𝑏ℎ 𝑛 = 0,… , 𝑁𝑏 − 1

𝑀𝑛,ℎ =

𝑀0,0 𝑀0,1 𝑀0,2 ⋯ 𝑀0,𝑁𝑏−1

𝑀1,0 𝑀1,1 𝑀1,2 ⋯ 𝑀1,𝑁𝑏−1

⋮
𝑀𝑁𝑏−1,0

⋮
𝑀𝑁𝑏−1,1

⋮
𝑀𝑁𝑏−1,2

⋱
⋯

⋮
𝑀𝑁𝑏−1,𝑁𝑏−1

=

𝑀0,0 𝑀0,1 𝑀0,2 ⋯ 𝑀0,𝑁𝑏−1

𝑀0,𝑁𝑏−1 𝑀0,0 𝑀0,1 ⋯ 𝑀0,𝑁𝑏−2

⋮
𝑀0,1

⋮
𝑀0,2

⋮
𝑀0,3

⋱
⋯

⋮
𝑀0,0

ҧ𝜆𝜇 = ෍

ℎ=0

𝑁𝑏−1

𝑀0,ℎ 𝛺 𝑒
𝑗
2𝜋
𝑁𝑏

ℎ𝜇
=

𝑗𝑐𝛼0𝑒

𝐶𝑟𝐸0𝑇0
෍

𝑝=−∞

+∞

𝜔0𝑝 − 𝛺 𝑍∥(𝜔0𝑝 − 𝛺) ෍

ℎ=0

𝑁𝑏−1

𝑒
𝑗
2𝜋
𝑁𝑏

ℎ 𝑝+𝜇
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❑ If 𝑝 + 𝜇 is a multiple of 𝑁𝑏 (𝑝 + 𝜇 = 𝑙𝑁𝑏, 𝑙 integer), then the last sum is equal to 𝑁𝑏, otherwise

❑ Therefore the 𝑁𝑏 eigenvalues are

➢ where  𝜇 = 0, … , 𝑁𝑏 − 1 is called coupled-bunch mode.

❑ Given a certain 𝜇, an important property of the corresponding eigenvectors can be obtained from

❑ It follows that

෍

ℎ=0

𝑁𝑏−1

𝑒
𝑗
2𝜋
𝑁𝑏

ℎ 𝑝+𝜇
= ෍

ℎ=0

𝑁𝑏−1

𝑒
𝑗
2𝜋
𝑁𝑏

𝑝+𝜇
ℎ

=
1 − 𝑒𝑗2𝜋 𝑝+𝜇

1 − 𝑒
𝑗
2𝜋
𝑁𝑏

𝑝+𝜇
= 0

ҧ𝜆𝜇 =
𝑗𝑐𝛼0𝑒𝑁𝑏
𝐶𝑟𝐸0𝑇0

෍

𝑙=−∞

+∞

𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝛺 𝑍∥ 𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝛺

෍

ℎ=0

𝑁𝑏−1

𝑒
𝑗
2𝜋
𝑁𝑏

ℎ 𝑝+𝜇
= 𝑁𝑏𝛿𝑝+𝜇,𝑙𝑁𝑏

෍

ℎ=0

𝑁𝑏−1

𝑀0,ℎ𝑒
𝑗
2𝜋
𝑁𝑏

ℎ𝜇
𝑏𝑛
𝜇
= ෍

𝑝=0

𝑁𝑏−1

𝑀𝑛,𝑝𝑏𝑝
𝜇
= ෍

𝑝=0

𝑁𝑏−1

𝑀0,𝑁𝑏−𝑛+𝑝𝑏𝑝
𝜇

𝑛 = 0,… , 𝑁𝑏 − 1

𝑏𝑛
𝜇
= 𝑏0

𝜇
𝑒
𝑗
2𝜋
𝑁𝑏

𝑛𝜇
𝑒
𝑗
2𝜋
𝑁𝑏

ℎ𝜇
𝑏𝑛
𝜇
= 𝑏ℎ+𝑛−𝑁𝑏

𝜇
𝑏𝑛
𝜇
= 𝑏ℎ+𝑛−𝑁𝑏

𝜇
𝑒
−𝑗

2𝜋
𝑁𝑏

ℎ𝜇
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❑ Given 𝜇 = 0,… , 𝑁𝑏 − 1, the solutions of the original differential equation are

➢ where we highlighted the dependency of 𝛺 from 𝜇, since 𝛺 is the solution of

➢ If e.g. 𝜇 = 0, then ∆𝜙0 = 0 and all the bunches oscillate in phase (“0 mode”);
➢ If e.g. 𝜇 = 𝑁𝑏/2 with 𝑁𝑏 even, then ∆𝜙𝑁𝑏/2 = 𝜋 and pairs of consecutive bunches oscillate in antiphase (“𝜋 mode”);

➢ For 𝜇 = 1,… , 𝑁𝑏 − 1, it occurs that ∆𝜙𝑁𝑏−𝜇 = −∆𝜙𝜇 mod(2𝜋).

𝑧0,𝑛
𝜇

𝑡 = 𝑎0
𝜇
𝑒
𝑗 𝛺 𝜇 𝑡+

2𝜋
𝑁𝑏

𝑛𝜇
= 𝑎0

𝜇
𝑒−Im 𝛺 𝜇 𝑡𝑒

𝑗 Re 𝛺 𝜇 𝑡+
2𝜋
𝑁𝑏

𝑛𝜇
𝑛 = 0,… , 𝑁𝑏 − 1

1

𝑄𝑏
𝛺2 −

𝑗𝐷

𝑇0
𝛺 − 𝜔𝑠,𝐻𝑂𝑀

2 =
𝑗𝑐𝛼0𝑒𝑁𝑏
𝐶𝑟𝐸0𝑇0

෍

𝑙=−∞

+∞

𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝛺 𝑍∥ 𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝛺

∆𝜙𝜇 =
2𝜋

𝑁𝑏
𝜇

➢ Example of 
“𝜋 mode” 
scheme for 3 
bunches:

Turn 0 Turn 𝑻𝒔/𝟐

➢ If 𝛺 𝜇 is complex with negative imaginary part, then 𝑧0,𝑛
𝜇

𝑡 grows exponentially in time and the bunch is unstable.

❑ Given 𝜇 = 0,… , 𝑁𝑏 − 1, the phase-shift between consecutive bunches is given by 
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❑ To estimate the grow-rates of the unstable bunches, we assume that 𝛺 ≈ 𝜔𝑠,𝐻𝑂𝑀.

❑ Therefore, rearranging the terms, 

❑ Taking the real and imaginary parts of 𝛺

❑ The imaginary part of the impedance leads only to a shift of the angular frequency of the bunch oscillation. 

❑ Since Re 𝑍∥ ≥ 0 for all frequencies, the bunch instability is caused by the real part of the impedance with 𝑙 ≤ 0.

𝑄𝑏𝜆 𝛺 = 𝛺2 −
𝑗𝐷

𝑇0
𝛺 − 𝜔𝑠,𝐻𝑂𝑀

2 ≈ 2𝜔𝑠,𝐻𝑂𝑀 𝛺 − 𝜔𝑠,𝐻𝑂𝑀 −
𝑗𝐷

𝑇0
𝜔𝑠,𝐻𝑂𝑀 = 2𝜔𝑠,𝐻𝑂𝑀 𝛺 − 𝜔𝑠,𝐻𝑂𝑀 −

𝑗𝐷

2𝑇0

𝛺 = 𝜔𝑠,𝐻𝑂𝑀 +
𝑗𝐷

2𝑇0
+

𝑗𝑐𝛼0𝑒𝑁𝑏𝑄𝑏
2𝐶𝑟𝐸0𝑇0𝜔𝑠,𝐻𝑂𝑀

෍

𝑙=−∞

+∞

𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝜔𝑠,𝐻𝑂𝑀 𝑍∥ 𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝜔𝑠,𝐻𝑂𝑀

Im 𝛺 𝜇 =
𝑈0
𝐸0𝑇0

+
𝑐𝛼0𝑒𝑁𝑏𝑄𝑏

2𝐶𝑟𝐸0𝑇0𝜔𝑠,𝐻𝑂𝑀
෍

𝑙=−∞

+∞

𝑙𝑁𝑏 − 𝜇 𝜔0 −𝜔𝑠,𝐻𝑂𝑀 Re 𝑍∥ 𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝜔𝑠,𝐻𝑂𝑀 = 𝛼𝑟,𝑆𝑅 + 𝛼𝑟,𝐻𝑂𝑀
𝜇

Re 𝛺 𝜇 = 𝜔𝑠,𝐻𝑂𝑀 −
𝑐𝛼0𝑒𝑁𝑏𝑄𝑏

2𝐶𝑟𝐸0𝑇0𝜔𝑠,𝐻𝑂𝑀
෍

𝑙=−∞

+∞

𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝜔𝑠,𝐻𝑂𝑀 Im 𝑍∥ 𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝜔𝑠,𝐻𝑂𝑀 = 𝜔𝑠,𝐻𝑂𝑀 − ∆𝜔 𝜇
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❑ To summarize, for a given 𝜇, we have

❑ The bunches are unstable if and only if

❑ If 𝑍∥ is given by a resonator impedance, then

➢ Therefore we can compute numerically 𝛼𝑟,𝐻𝑂𝑀
𝜇

limiting the sum to indices 𝑙 ∈ −𝑙𝑚𝑎𝑥, 𝑙𝑚𝑎𝑥 , with 𝑙𝑚𝑎𝑥 sufficiently large. 

➢ After having computed ∆𝜑𝐻𝑂𝑀 with the formula shown earlier, 𝜔𝑠,𝐻𝑂𝑀 can be evaluated with

𝑧0,𝑛
𝜇

𝑡 = 𝑎0
𝜇
𝑒
− 𝛼𝑟,𝑆𝑅+𝛼𝑟,𝐻𝑂𝑀

𝜇
𝑡
𝑒
𝑗 𝜔𝑠,𝐻𝑂𝑀−∆𝜔

𝜇 𝑡+
2𝜋
𝑁𝑏

𝑛𝜇

𝛼𝑟,𝐻𝑂𝑀
𝜇

=
𝑐𝛼0𝑒𝑁𝑏𝑄𝑏

2𝐶𝑟𝐸0𝑇0𝜔𝑠,𝐻𝑂𝑀
෍

𝑙=−∞

+∞

𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝜔𝑠,𝐻𝑂𝑀 Re 𝑍∥ 𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝜔𝑠,𝐻𝑂𝑀 < −𝛼𝑟,𝑆𝑅

𝜔Re 𝑍 𝜔 =
𝜔𝑅𝑠

1 + 𝑄2
𝜔
𝜔𝑟

−
𝜔𝑟
𝜔

2 =
𝜔𝑟
2𝑅𝑠𝜔

3

𝜔𝑟
2𝜔2 + 𝑄2 𝜔2 − 𝜔𝑟

2 2

𝜔 →±∞
0

𝜔𝑠,𝐻𝑂𝑀 =
𝑐𝛼0𝑒

𝐸0𝑇0

2𝜋ℎ ෠𝑉𝑟𝑓

𝐶𝑟
sin ∆𝜑𝐻𝑂𝑀 + 𝑄𝑏 ෍

ℎ=0

𝑁𝑏−1

෍

𝑞=0

+∞

ቤ
𝑑𝑤∥

𝑑𝑧
𝑞−

ℎ
𝑁𝑏

𝐶𝑟
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❑ The expression for 𝛼𝑟,𝐻𝑂𝑀
𝜇

assumes that each bunch is represented by just one macroparticle.

➢ This assumption is also done in the macroparticle code and therefore there is consistency.
➢ However, as explained earlier, all the HOM shunt-impedances were rescaled in the code to take into account that bunches have 

a Gaussian profile. 

➢ To have again consistency, we need to correct 𝛼𝑟,𝐻𝑂𝑀
𝜇

assuming that bunches have a Gaussian profile.

• All the steps done previously to arrive at 𝛼𝑟,𝐻𝑂𝑀
𝜇

can be repeated changing

• where 𝑉𝑤(𝑧) is the voltage induced by a Gaussian bunch at a distance 𝑧 from its centre of mass. 

❑ Therefore the 𝛼𝑟,𝐻𝑂𝑀
𝜇

can be corrected as

➢ This expression can be refined even more using a correction factor involving a Bessel function (derivation from Vlasov equation).
• However, the proposed exponential factor is more consistent with the type of shunt-impedance rescaling done in the code.

❑ The assumption that 𝛺 ≈ 𝜔𝑠,𝐻𝑂𝑀 in the argument of 𝑍∥ can be strong since 𝑍∥ varies rapidly with frequency due to the high 𝑄.
➢ If the beam-spectrum couples with 𝑍∥ at essentially just one frequency, then we can solve directly the equation for 𝛺.

𝑒−
𝜔𝑟
2𝜎𝑡

2

2 𝑅𝑠𝑅𝑠

𝑉𝑤(𝑧)𝑤∥(𝑧) or equivalently 𝑍∥(𝜔)𝑒
−
𝜔2𝜎𝑡

2

2𝑍∥(𝜔)

𝛼𝑟,𝐻𝑂𝑀
𝜇

=
𝑐𝛼0𝑒𝑁𝑏𝑄𝑏

2𝐶𝑟𝐸0𝑇0𝜔𝑠,𝐻𝑂𝑀

෍

𝑙=−∞

+∞

𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝜔𝑠,𝐻𝑂𝑀 Re 𝑍∥ 𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝜔𝑠,𝐻𝑂𝑀 𝑒−
𝑙𝑁𝑏−𝜇 𝜔0−𝜔𝑠,𝐻𝑂𝑀

2
𝜎𝑡
2

2



❑ Indeed, calling 𝑙1 the index associated to the unique coupling frequency, the equation to solve is

❑ Assuming that 𝛺 ≪ 𝜔𝑟 and that 𝑞𝜔0 ≈ 𝜔𝑟, the impedance term can be expressed as

❑ Therefore

➢ where the complex constants 𝐵, 𝐶 and 𝐷 are

❑ Rearranging the terms we obtain this quadratic equation in 𝛺

➢ and the desired 𝛺 is the smallest solution in absolute value. The grow-rate is the imaginary part of 𝛺. 
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𝛺 = 𝐴 +
𝑗𝑐𝛼0𝑒𝑁𝑏𝑄𝑏

2𝐶𝑟𝐸0𝑇0𝜔𝑠,𝐻𝑂𝑀
𝑞𝜔0 − 𝛺 𝑍∥ 𝑞𝜔0 − 𝛺 𝑒−

𝑞𝜔0−𝜔𝑠,𝐻𝑂𝑀
2
𝜎𝑡
2

2 𝑞 = 𝑙1𝑁𝑏 − 𝜇𝐴 = 𝜔𝑠,𝐻𝑂𝑀 +
𝑗𝑈0
𝐸0𝑇0

𝑍∥ 𝑞𝜔0 − 𝛺 =
𝑅𝑠

1 + 𝑗𝑄
𝑞𝜔0 − 𝛺

𝜔𝑟
−

𝜔𝑟
𝑞𝜔0 − 𝛺

=
𝑅𝑠

1 + 𝑗𝑄
𝑞𝜔0
𝜔𝑟

−
𝛺
𝜔𝑟

−
𝜔𝑟
𝑞𝜔0

−
𝜔𝑟
2

𝑞2𝜔0
2
𝛺
𝜔𝑟

=
𝑅𝑠

1 + 𝑗𝑄
𝑞𝜔0
𝜔𝑟

−
𝜔𝑟
𝑞𝜔0

−
𝑗𝑄
𝜔𝑟

1 +
𝜔𝑟
2

𝑞2𝜔0
2 𝛺

𝐵 =
𝑗𝑐𝛼0𝑒𝑁𝑏𝑄𝑏𝑅𝑠
2𝐶𝑟𝐸0𝑇0𝜔𝑠,𝐻𝑂𝑀

𝑒−
𝑞𝜔0−𝜔𝑠,𝐻𝑂𝑀

2
𝜎𝑡
2

2

𝛺 = 𝐴 +
𝑗𝑐𝛼0𝑒𝑁𝑏𝑄𝑏

2𝐶𝑟𝐸0𝑇0𝜔𝑠,𝐻𝑂𝑀
𝑞𝜔0 − 𝛺

𝑅𝑠

1 + 𝑗𝑄
𝑞𝜔0
𝜔𝑟

−
𝜔𝑟
𝑞𝜔0

−
𝑗𝑄
𝜔𝑟

1 +
𝜔𝑟
2

𝑞2𝜔0
2 𝛺

𝑒−
𝑞𝜔0−𝜔𝑠,𝐻𝑂𝑀

2
𝜎𝑡
2

2 = 𝐴 +
𝐵 𝑞𝜔0 − 𝛺

𝐶 − 𝐷𝛺

𝐷 =
𝑗𝑄

𝜔𝑟
1 +

𝑓𝑟
2

𝑞2𝑓0
2𝐶 = 1 + 𝑗𝑄

𝑞𝑓0
𝑓𝑟

−
𝑓𝑟
𝑞𝑓0

➢ where

𝐷𝛺2 − 𝐶 + 𝐴𝐷 + 𝐵 𝛺 + 𝐴𝐶 + 𝐵𝑞𝜔0 = 0
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Coupled-bunch oscillations: beam spectrum (1/2)
❑ We fix the coupled-bunch mode 𝜇 and we assume that each bunch-profile is a delta function.

❑ At turn 𝑘, the bunch ℎ arrives at a fixed point of the ring at time 

➢ where we assume that all the bunches have the same oscillation amplitude 𝐴𝑠.

❑ The beam current can be written as 

𝑡(𝑘) = 𝑘𝑇0 + ℎ
𝑇0
𝑁𝑏

+ 𝐴𝑠 cos Re 𝛺 𝜇 𝑡(𝑘) +
2𝜋

𝑁𝑏
ℎ𝜇

𝜆 𝑡 ∝ ෍

𝑘=−∞

+∞

෍

ℎ=0

𝑁𝑏−1

𝛿 𝑡 − 𝑘𝑇0 − ℎ
𝑇0
𝑁𝑏

− 𝐴𝑠 cos Re 𝛺 𝜇 𝑡 +
2𝜋

𝑁𝑏
ℎ𝜇 ∝ ෍

𝑞=−∞

+∞

෍

ℎ=0

𝑁𝑏−1

𝑒𝑗𝑞𝜔0𝑡𝑒
−𝑗𝑞ℎ

2𝜋
𝑁𝑏𝑒

−𝑗𝑞𝜔0𝐴𝑠 cos Re 𝛺 𝜇 𝑡+
2𝜋
𝑁𝑏

ℎ𝜇

= ෍

𝑞=−∞

+∞

෍

ℎ=0

𝑁𝑏−1

𝑒𝑗𝑞𝜔0𝑡𝑒
−𝑗𝑞ℎ

2𝜋
𝑁𝑏 ෍

𝑚=−∞

∞

𝑗−𝑚𝐽𝑚 𝑞𝜔0𝐴𝑠 𝑒
−𝑗𝑚 Re 𝛺 𝜇 𝑡+

2𝜋
𝑁𝑏

ℎ𝜇
= ෍

𝑞=−∞

+∞

෍

𝑚=−∞

∞

𝑗−𝑚𝐽𝑚 𝑞𝜔0𝐴𝑠 𝑒
𝑗𝑡 𝑞𝜔0−𝑚Re 𝛺 𝜇

෍

ℎ=0

𝑁𝑏−1

𝑒
−𝑗ℎ

2𝜋
𝑁𝑏

𝑞+𝑚𝜇

∝ ෍

𝑙=−∞

+∞

෍

𝑚=−∞

∞

𝑗−𝑚𝐽𝑚 𝑙𝑁𝑏 −𝑚𝜇 𝜔0𝐴𝑠 𝑒
𝑗𝑡 𝑙𝑁𝑏−𝑚𝜇 𝜔0−𝑚Re 𝛺 𝜇
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Coupled-bunch oscillations: beam spectrum (2/2)
❑ Therefore the beam spectrum can be written as

𝑆 𝜔 = න
−∞

+∞

𝜆 𝑡 𝑒−𝑗𝜔𝑡 𝑑𝑡 ∝ ෍

𝑙=−∞

+∞

෍

𝑚=−∞

∞

𝑗−𝑚𝐽𝑚 𝑙𝑁𝑏 −𝑚𝜇 𝜔0𝐴𝑠 න
−∞

+∞

𝑒𝑗𝑡 𝑙𝑁𝑏−𝑚𝜇 𝜔0−𝑚Re 𝛺 𝜇 −𝜔 𝑑𝑡

∝ ෍

𝑙=−∞

+∞

෍

𝑚=−∞

∞

𝑗−𝑚𝐽𝑚 𝑙𝑁𝑏 −𝑚𝜇 𝜔0𝐴𝑠 𝛿 𝑙𝑁𝑏 −𝑚𝜇 𝜔0 −𝑚Re 𝛺 𝜇 − 𝜔

❑ The beam spectrum is discrete and its lines are situated at 𝜔 = 𝑙𝑁𝑏 −𝑚𝜇 𝜔0 −𝑚Re 𝛺 𝜇 .

➢ If 𝑁𝑏 = 1, then 𝜇 = 0 and the lines are at 𝜔 = 𝑙𝜔0 −𝑚Re 𝛺 0 ≈ 𝑙𝜔0 −𝑚𝜔𝑠,𝐻𝑂𝑀.

❑ We saw that, for bunches having a delta profile, the grow-rate of the coupled-bunch instability is

➢ The electromagnetic interaction between the different bunches is due to the multiplication of the beam coupling-
impedance 𝑍∥ with the beam spectrum 𝑆 with 𝑚 = 1.
• Only the beam spectrum-lines with 𝑚 = 1 (dipolar motion) are significant to evaluate the coupled-bunch instability.
• This is consistent with the adopted macroparticle model, where each bunch has no internal structure and therefore 

the spectrum lines with 𝑚 ≠ 1 (quadrupolar motion etc.) can’t be excited.

𝛼𝑟,𝐻𝑂𝑀
𝜇

∝ ෍

𝑙=−∞

+∞

𝑙𝑁𝑏 − 𝜇 𝜔0 −𝜔𝑠,𝐻𝑂𝑀 Re 𝑍∥ 𝑙𝑁𝑏 − 𝜇 𝜔0 −𝜔𝑠,𝐻𝑂𝑀 ∝ ෍

𝑙=−∞

+∞

න
−∞

+∞

𝜔Re 𝑍∥ 𝜔 𝛿 𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝜔𝑠,𝐻𝑂𝑀 − 𝜔 𝑑𝜔

∝ ቚ𝑆 𝜔
𝑚=1



❑ 𝛼0 = 0.018, 𝑈0 = 8.88 keV, 𝑉𝑟𝑓 = 130 kV, 𝑓𝑟𝑓 = 369 MHz, 𝑓0 = 3 MHz, 𝑓𝑠0 = 29 kHz. 

❑ 𝑁𝑏 = 4 equally-spaced bunches, bunch-current I𝑏 = 𝑄𝑏/𝑇0 = 15 mA, 𝜎𝑧 = 20 mm.

❑ 4 coupled-modes 𝜇 = 0, 1, 2, 3. The phase between consecutive bunches is ∆𝜙𝜇 =
𝜋

2
𝜇.

❑ One HOM of the accelerating cavity has 𝑓𝑟 = 796.8 MHz, 𝑅𝑠 = 20 kΩ, 𝑄 = 40000.
➢ We want to excite a certain coupled-bunch mode with this HOM.

• 𝑅𝑠 and 𝑄 are always kept constant, whereas 𝑓𝑟 is shifted to obtain the desired 
coupling between beam-spectrum and impedance.

❑ The critical frequencies which can lead to instability are negative and given by

➢ We want to excite only the mode 𝜇1 through the line at 𝑓𝑙1,𝜇1, with 𝑙1 ≤ 0.  

• Since Re 𝑍∥ is symmetric with respect to the axis 𝑓 = 0, and assuming that 𝑓𝑠,𝐻𝑂𝑀 ≈ 𝑓𝑠0, we set 𝑓𝑟 at

➢ 𝑓𝑙2,𝜇2 is the line-frequency closest to 𝑓𝑟 and some coupling could occur, although the 𝑄 is quite large.

• In any case 𝑙2 = 1 − 𝑙1 > 0 and therefore the mode 𝜇2 = 4 − 𝜇1 (mod 4) is damped and not excited.  
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Example for the DAFNE ring: coupled-bunch instability (1/7)
Accelerating cavity

𝑓𝑙,𝜇 = 4𝑙 − 𝜇 𝑓0 − 𝑓𝑠,𝐻𝑂𝑀 𝑙 ≤ 0

−𝑓𝑙1,𝜇1 ≈ 𝑓𝑟 = 4 1 − 𝑙1 − 4 − 𝜇1 𝑓0 + 𝑓𝑠0 = 4𝑙2 − 𝜇2 𝑓0 + 𝑓𝑠0

𝜇 = 0, 1, 2, 3

Scheme of 4 
equally-spaced 

bunches in the ring
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Example for the DAFNE ring: coupled-bunch instability (2/7)
❑ We want to excite 𝜇1 = 0. 

➢ If 𝑙1 = −66, then 𝑓𝑟 = 264𝑓0 + 𝑓𝑠0 = 811.05 MHz.
➢ The high 𝑄 leads to a small coupling (damping) of 𝜇2 = 0.

❑ At turn 0, the four bunches start with different initial conditions.
➢ The maximum oscillation amplitude is 0.3 mrad = 0.13 ps.

Frequency [MHz]

R
e𝑍

∥
[k
Ω

]

𝟐𝟔𝟒𝒇𝟎 𝟐𝟔𝟓𝒇𝟎𝟐𝟔𝟑𝒇𝟎

Zoom

𝒇𝒓

Bunch 1
Bunch 31
Bunch 61
Bunch 91

Phase oscillations of the four bunches along the first 100000 turns

Zoom (0-200 turns) Zoom (14.75k-15k turns)

Real part of the HOM longitudinal impedance

❑ Exponential growth of oscillations in the first roughly 
15000 turns, then convergence to an equilibrium due to 
wake-field/RF-voltage non-linearities and synchrotron 
radiation. 

❑ At equilibrium the four bunches oscillate with roughly the 
same amplitude of 1.32 rad = 570 ps.
➢ The instability is fast and strong.

❑ After a certain transient time and during the exponential 
growth, the bunches oscillate in phase, i.e. ∆𝜙0 = 0.
➢ The bunches aren’t in phase anymore at equilibrium. 

Zoom (99.75k-100k turns)



72

Example for the DAFNE ring: coupled-bunch instability (3/7)
❑ We want to excite 𝜇1 = 1. 

➢ If 𝑙1 = −66, then 𝑓𝑟 = 265𝑓0 + 𝑓𝑠0 = 814.12 MHz.
➢ The high 𝑄 leads to a small coupling (damping) of 𝜇2 = 3.

❑ The initial conditions of the bunches are the same as those chosen for 
𝜇1 = 0 (the maximum oscillation-amplitude is 0.3 mrad = 0.13 ps.)

Frequency [MHz]

R
e𝑍

∥
[k
Ω

]

𝟐𝟔𝟓𝒇𝟎 𝟐𝟔𝟔𝒇𝟎𝟐𝟔𝟒𝒇𝟎

Phase oscillations of the four bunches along the first 100000 turns

Zoom (0-200 turns) Zoom (14.75k-15k turns)

Real part of the HOM longitudinal impedance

❑ Exponential growth of oscillations in the first roughly 
12000 turns, then convergence to an equilibrium due to 
wake-field/RF-voltage non-linearities and synchrotron 
radiation. 

❑ At equilibrium the four bunches oscillate with roughly the 
same amplitude of 1.40 rad = 604 ps.
➢ Instability even faster and stronger than for 𝜇1 = 0.

❑ After a certain transient time, consecutive bunches 
oscillate in quadrature, i.e. ∆𝜙1 = 𝜋/2.
➢ This phase difference isn’t preserved at equilibrium. 

Zoom (99.75k-100k turns)

Bunch 1
Bunch 31
Bunch 61
Bunch 91

Zoom

𝒇𝒓
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Example for the DAFNE ring: coupled-bunch instability (4/7)
❑ We want to excite 𝜇1 = 2. 

➢ If 𝑙1 = −66, then 𝑓𝑟 = 266𝑓0 + 𝑓𝑠0 = 817.19 MHz.
➢ The high 𝑄 leads to a small coupling (damping) of 𝜇2 = 2.

❑ The initial conditions of the bunches are the same as those chosen for 
𝜇1 = 0 (the maximum oscillation-amplitude is 0.3 mrad = 0.13 ps.)

Frequency [MHz]

R
e𝑍

∥
[k
Ω

]

𝟐𝟔𝟔𝒇𝟎 𝟐𝟔𝟕𝒇𝟎𝟐𝟔𝟓𝒇𝟎

Phase oscillations of the four bunches along the first 100000 turns

Zoom (0-200 turns) Zoom (14.75k-15k turns)

Real part of the HOM longitudinal impedance

❑ Exponential growth of oscillations in the first roughly 
15000 turns, then convergence to an equilibrium due to 
wake-field/RF-voltage non-linearities and synchrotron 
radiation. 

❑ At equilibrium the bunches 61 and 91 have the largest 
oscillation amplitude of 1.31 rad = 566 ps.
➢ Instability comparable to that obtained for 𝜇1 = 0.

❑ After a certain transient time and during the exponential 
growth, the bunches oscillate in antiphase, i.e. ∆𝜙2 = 𝜋.
➢ This phase difference isn’t preserved at equilibrium. 

Zoom (99.75k-100k turns)

Bunch 1
Bunch 31
Bunch 61
Bunch 91

Zoom

𝒇𝒓



❑ For each analysed case (𝜇 = 0, 1, 2) we plot the longitudinal phase space for the first 15000 turns.
➢ The oscillation amplitudes grow exponentially (the value-limits on the axes are modified every 5000 turns for better visualization).
➢ All the phases are mod 2𝜋 so that the evolution of the different bunches can be seen on the same bucket. 

❑ After a certain number of turns:
➢ 𝜇 = 0: Consecutive bunches oscillate in phase (∆𝜙0 = 0) and the four bunches are superimposed.
➢ 𝜇 = 1: Consecutive bunches oscillate in quadrature  (∆𝜙1 = 𝜋/2) and the four bunches coincide with vertices of squares.
➢ 𝜇 = 2: Consecutive bunches oscillate in antiphase (∆𝜙2 = 𝜋), bunches 1 and 61 are superimposed, bunches 31 and 91 are superimposed. 
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Example for the DAFNE ring: coupled-bunch instability (5/7)

∆𝜑 mod 2𝜋 [+1.5 rad] 

𝛿
1
0
−
5

𝛿
1
0
−
5

𝛿
1
0
−
5

∆𝜑 mod 2𝜋 [+1.5 rad] ∆𝜑 mod 2𝜋 [+1.5 rad] 

𝝁 = 𝟎 𝝁 = 𝟏 𝝁 = 𝟐
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Example for the DAFNE ring: coupled-bunch instability (6/7)
❑ Finally we compute in simulation the grow-rate of bunch oscillations and compare them with analytical estimations.

➢ As an example we consider the following six cases in simulation.

𝜶𝒓 = 𝟏𝟓𝟖𝟖
𝟏

𝐬

Bunch 1, fit from turn 4k to 15k Bunch 1, fit from turn 0 to 10k 

𝜶𝒓 = 𝟏𝟔𝟒𝟐
𝟏

𝐬

Bunch 1, fit from turn 7k to 15k 

𝜶𝒓 = 𝟏𝟓𝟖𝟗
𝟏

𝐬

Time [s]

∆
𝜑

m
o

d
 2
𝜋

[r
ad

]

Time [s]

∆
𝜑

m
o

d
 2
𝜋

[r
ad

]

Time [s]

∆
𝜑

m
o

d
 2
𝜋

[r
ad

]

Bunch 31, fit from turn 4k to 15k 

𝜶𝒓 = 𝟏𝟓𝟖𝟑
𝟏

𝐬

Time [s]

∆
𝜑

m
o

d
 2
𝜋

[r
ad

]

𝝁 = 𝟎

𝜶𝒓 = 𝟏𝟔𝟑𝟗
𝟏

𝐬

Bunch 31, fit from turn 0 to 10k 

𝜶𝒓 = 𝟏𝟓𝟖𝟒
𝟏

𝐬

Bunch 31, fit from turn 7k to 15k 

Time [s]

∆
𝜑

m
o

d
 2
𝜋

[r
ad

]

Time [s]

∆
𝜑

m
o

d
 2
𝜋

[r
ad

]

𝝁 = 𝟎

𝝁 = 𝟏

𝝁 = 𝟏

𝝁 = 𝟐

𝝁 = 𝟐

➢ As expected from theory, given a certain 𝜇 the grow-rates are practically the same for all the bunches.
➢ As already seen, the largest grow-rate occurs for 𝜇 = 1, whereas the grow-rates for 𝜇 = 0 and 𝜇 = 2 are essentially the same.

❑ The analytical damping-rate due to synchrotron radiation is  𝜶𝒓,𝑺𝑹 = 𝟓𝟑 1/s (≈ 57400 turns). 
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Example for the DAFNE ring: coupled-bunch instability (7/7)
❑ To analytically estimate the total grow-rate (including synchrotron radiation) we use the two formulas discussed earlier

➢ ‘Explicit’ formula

➢ ‘Implicit’ formula

❑ Comparison of 𝛼𝑟 values from simulations and analytical estimations.

𝛺 = 𝐴 +
𝑗𝑐𝛼0𝑒𝑁𝑏𝑄𝑏

2𝐶𝑟𝐸0𝑇0𝜔𝑠,𝐻𝑂𝑀
𝑞𝜔0 − 𝛺 𝑍∥ 𝑞𝜔0 − 𝛺 𝑒−

𝑞𝜔0−𝜔𝑠,𝐻𝑂𝑀
2
𝜎𝑡
2

2

𝛼𝑟 = −
𝑈0
𝐸0𝑇0

−
𝑐𝛼0𝑒𝑁𝑏𝑄𝑏

2𝐶𝑟𝐸0𝑇0𝜔𝑠,𝐻𝑂𝑀
෍

𝑙=−100

+100

𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝜔𝑠,𝐻𝑂𝑀 Re 𝑍∥ 𝑙𝑁𝑏 − 𝜇 𝜔0 − 𝜔𝑠,𝐻𝑂𝑀

𝛼𝑟 = −Im 𝛺

𝜶𝒓 [1/s] for 𝝁 = 𝟎 𝜶𝒓 [1/s] for 𝝁 = 𝟏 𝜶𝒓 [1/s] for 𝝁 = 𝟐

From simulation 1588, 1583 1642, 1639 1589, 1584

Analyt. explicit 1542 (2.8%) 1588 (3.3%) 1542 (2.8%)

Analyt. implicit 1636 (3.1%) 1631 (0.6%) 1635 (3.0%)

➢ The explicit formula confirms that 𝛼𝑟 is 
the largest for 𝜇 = 1 and that 𝛼𝑟 is the 
same for 𝜇 = 0 and 𝜇 = 2.
• These values are lower than those 

found in simulations by just 3%.
➢ The implicit formula provides 

essentially the same 𝛼𝑟 for each 𝜇.
• The maximum discrepancy with 

simulations is just 3%.

➢ The discrepancies between 𝛼𝑟 from simulations and analytical estimations are in %.

➢ Why the implicit formula, expected to be precise, overestimate 𝛼𝑟 if 𝜇 = 0 or 𝜇 = 2?
• If 𝜇1 = 0 then 𝜇2 = 0 and if 𝜇1 = 2 then 𝜇2 = 2, so the implicit formula neglects the line at positive frequencies which 

contributes to a small damping of the mode and to a decrease of 𝛼𝑟. 
• If 𝜇1 = 1 then 𝜇2 = 3, so in this case the neglected damping refers to mode 3 and therefore doesn’t affect the mode 1. 

➢ If the implicit formula has to consider also the line at positive frequencies, then a cubic equation in 𝛺 must be solved.

The 𝛺 with the smallest 
magnitude is considered

It’s safe to set 𝑙 ≤ 100 
since the critical 𝑙 is -66
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Bunch-by-bunch longitudinal feedback
❑ Let’s suppose that

➢ We have only one bunch circulating in the DAFNE ring.
➢ The bunch intensity is very low, so that the induced voltages can be neglected.

➢ The bunch is injected into the ring with a phase error of 0.23 rad with respect to ∆𝜑𝑆𝑅= arccos
𝑈0

𝑒෡𝑉𝑟𝑓
.

❑ Simplifying a lot, the DAFNE bunch-by-bunch longitudinal feedback
➢ measures the last synchrotron oscillation of the bunch phases;
➢ shifts this synchrotron oscillation by - 𝜋/2 to obtain a sinusoidal function in anti-phase with respect to the 𝛿 oscillation.
➢ applies this shifted synchrotron oscillation as an energy correction to the bunch during the next synchrotron oscillation.

Turn [1]

P
h

as
e 

[r
ad

]

0.1

0.0

-0.1

Phase [rad]

𝛿
[%

]

❑ The particle performs 
synchrotron oscillations in 
phase space.

❑ The phase and energy 
oscillations are sinusoidal 
functions with initial phases 
which differ by 𝜋/2.

❑ How to actively damp these 
phase and energy oscillations?

𝛿
[%

]
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Bunch-by-bunch longitudinal feedback in DAFNE
❑ The energy correction is provided by a so-called kicker, which can be an RF cavity, as in DAFNE, or a stripline structure.

❑ Here is a simplified scheme of the bunch-by-bunch longitudinal feedback used in DAFNE.
➢ When multiple bunches circulate in the ring, the feedback acts on each bunch independently from the other bunches.

Longitudinal pickup 
(wide-band between 4𝑓𝑟𝑓 and 6𝑓𝑟𝑓)

Cavity-kicker

Comb-filter generator
(used to minimize the noise 
and tuned at 4𝑓𝑟𝑓 or 6𝑓𝑟𝑓)

Local oscillator (LO)
(signal at 4𝑓𝑟𝑓 or 6𝑓𝑟𝑓 and 

in quadrature with respect 
to the bunch-signal) 

Bunch

Mixer 
(used to mix 
the bunch and 
LO signals)

Low pass filter
(used to obtain the 
low-frequency 
content of the signal)

FPGA
(uses digital 
filters to shift 
the phase 
oscillation by 
-𝜋/2).

ADC
(conversion from 
analog to digital 
signal).

DAC
(conversion 
from digital to 
analog signal).

Beam orbit

❑ The phase oscillation is obtained when 
the low pass filter is applied.

❑ The shift of this oscillation by -𝜋/2 is 
done in the FPGA using a digital filter. 

❑ The shifted oscillation is converted back 
to analog and provided to the kicker.

Amplifier
Amplifier

Attenuator

Attenuator
Amplifier

Amplifier
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Longitudinal pickup: special-button BPM

❑ The Beam Position Monitors (BPMs) are the main diagnostic tools in DAFNE.
➢ They consist of four “button” electrodes mounted flush with the vacuum pipe.

❑ In each DAFNE ring, special-button BPMs can measure individual time offset on a bunch-by-bunch basis, i.e. without memory 
of the preceding bunch.

❑ These special-button BPMs must
➢ have a reasonably high transfer impedance 𝑍𝑏 and shouldn’t have narrow-band resonances in the frequency-range of 

interest:
• in DAFNE the frequencies of interest are between 4𝑓𝑟𝑓 = 1.47 GHz (~30 bunch operation) and 6𝑓𝑟𝑓 = 2.21 GHz 

(~120 bunch operation);
• the necessary design value of 𝑍𝑏 is 0.3 ÷ 0.4 Ω in the region 1.3 ÷ 2.2 GHz.

➢ keep the beam coupling impedance and parasitic losses within acceptably low values.
➢ NOTE: in general these two impedances grow together (e.g. with the increase of the button radius), so a compromise 

must be found.

❑ For the longitudinal feedback, one special-button BPM is chosen out of two available.
➢ this BPM measures the bunch current summing together the signals coming from the four button electrodes.
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Analytical formulae for the electrode impedances
❑ The transfer impedance of a button electrode is the complex ratio between the voltage induced by a centred beam at 

the external termination of the detector circuit and the beam current.

➢ where 𝜙 = 𝑟/4𝑏 is the so-called coverage factor, with 𝑟 and 𝑏 the button and beam-pipe radii;
➢ 𝑅0 is the characteristic impedance of the coaxial cable connecting the button to the detector circuit;
➢ 𝜔1 = 1/𝑅0𝐶𝑏, with 𝐶𝑏 the electrode capacitance; 𝜔2 = 𝑐/2𝑟 is the inverse of the electrode traversal time.

❑ The frequency response of 𝑍𝑏 is of the high-pass type since

❑ In first approximation, the coupling impedance is simply

𝑍𝑏 𝜔 =
𝑉𝑏 𝜔

𝐼𝑏 𝜔
= 𝜙𝑅0

𝜔1
𝜔2

𝑗𝜔/𝜔1
1 + 𝑗𝜔/𝜔1

𝑍𝑏(𝜔) =
𝜙𝑅0
𝜔2

𝑗𝜔

𝑍𝑏(𝜔) = 𝜙𝑅0
𝜔1
𝜔2

• Multiplication by 𝑗𝜔.
• The electrode acts like a time differentiator.

• The asymptotic response is purely resistive.
• The electrode voltage is in phase and 

proportional to the beam current.

➢ For low frequencies 𝜔 ≪ 𝜔1

➢ For high frequencies 𝜔 ≫ 𝜔2:

𝑍∥(𝜔) = 𝜙
𝜔1
𝜔2

𝑍𝑏(𝜔)
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Longitudinal pickup: transfer and coupling impedances

Frequency [GHz]

𝑍
𝑏

[Ω
]

❑ The coupling impedance is indeed roughly proportional to the transfer impedance.
❑ In the working region the button transfer impedance is sufficiently flat with a satisfactory value of 0.43 𝛀.
❑ The button low-frequency impedance is relatively small and is acceptable from the beam dynamics point of view.
❑ The first stronger HOM at 5.2 GHz is not dangerous to the multibunch instabilities due to its low 𝑅𝑠.

F. Marcellini 
et al. (1996)

Working 
region 

Button transfer impedance from the HFSS code

F. Marcellini 
et al. (1996)

Frequency [GHz]

R
e 
𝑍
∥

[Ω
]

BPM coupling impedance from the HFSS code

First 
stronger 
HOM

❑ Simulations were performed in 1996 to estimate the transfer and coupling impedances of the DAFNE special-button BPMs .
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Phase detection for a signal coming from the pickup
❑ The analog front-end of the longitudinal feedback is designed to measure 𝝉, which is the time of arrival of each bunch relative 

to the RF master oscillator clock.
➢ Equivalently, the goal is to measure 𝝋𝟎 = 𝜟𝝋 − 𝜟𝝋𝒓𝒇 = 𝝎𝒓𝒇𝝉, i.e. the difference between the bunch phase and the 

synchronous phase.

❑ The bunch-signal coming from the pickup is a short differentiated pulse.
➢ We can numerically reproduce the electrode transfer function and apply it to the typical DAFNE bunch current.

❑ If such a short pulse is used for phase detection, the obtained signal will be also a short baseband pulse.
➢ The sampling of this signal by the ADC clock will be very sensitive to pulse and clock timings.

𝑡𝑅𝐹∆𝑡𝑠0

Simulated 
Gaussian 
bunch with 
𝝈𝒛= 20 mm 

𝝀

𝝀𝑷𝑼 =
𝓕−𝟏(𝑺𝒁𝒃)

𝑡𝑅𝐹∆𝑡𝑠0

𝒁𝒃 = 𝟎. 𝟒𝟑
𝟐𝝅𝒇𝒋/𝝎𝟏

𝟏 + 𝟐𝝅𝒇𝒋/𝝎𝟏

𝝎𝟏 = 𝟓 Grad/s

𝑺 = |𝓕 𝝀 |

|𝒁𝒃| The low 
frequency regime 
(differentiation) 
dominates

|𝑺||𝒁𝒃|
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Stripline comb generator

Measured BPM signal (8 bunches) and comb output (8 
4-cycle tone bursts at 6𝒇𝒓𝒇) at PLS, South Korea

❑ To avoid this sampling sensitivity, the pickup signal is 
‘lengthened’ by feeding it into a comb generator.
➢ Planar stripline circuit made from a copper-clad teflon 

material and then gold plated to lower the losses.

❑ The comb generator converts the pickup signal of a bunch 
into a tone burst of a few cycles at an harmonic of 𝑓𝑟𝑓.

❑ When the bunch-spacing is 𝑇𝑟𝑓, 4-cycle tone bursts at 6𝑓𝑟𝑓
are often used (as in PEP-II, PLS).
➢ The tone burst must be shorter than the bunch 

spacing to minimize the interbunch crosstalk.
➢ Some margin is left since the actual bunch-spacing 

can be less than 𝑇𝑟𝑓: adjacent bunches 

• have non-zero bunch length;
• can oscillate not in phase.

❑ When a burst is phase-detected, the baseband phase-
signal has a rectangular envelope with duration equal to 
that of the input burst.
➢ The sampling of the phase-signal is less sensitive to 

pulse and clock timings.

J. D. Fox et 
al. (2007)

4-cycle comb generator at 6𝒇𝒓𝒇 used for PEP-II

Signal 
from PU

Comb 
output

J. Y. Huang, 
M. Kwon (2000)

Differentiated 
Gaussian bunch
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Stripline comb generator at 4𝑓𝑟𝑓: measurements (1/2)
❑ Measurements of the frequency response of DAFNE 

comb-generators were performed at INFN using a 
VNA (G. Franzini, D. Pellegrini, D. Quartullo).
➢ Considered frequencies between 300 kHz and 

8.5 GHz (maximum possible).

❑ First measured comb generator: 5-tone-burst at 4𝑓𝑟𝑓
= 1.47 GHz.

❑ The frequency response is made of sinc-like 
functions at 1.50 GHz (≈ 4𝑓𝑟𝑓), 4.47 GHz (≈ 12𝑓𝑟𝑓 = 

4.42 GHz), 7.44 GHz (≈ 20𝑓𝑟𝑓 = 7.37 GHz).

❑ We reproduce in simulation the comb-filter in time 
and frequency domain.
➢ We suppose that the comb-filter in time 

domain is ‘a smoothing’ of the derivative of a 
1.47 GHz square-wave.
• Sinc functions at 4(2𝑘+1)𝑓𝑟𝑓 (𝑘=0,…) in 

frequency domain.

❑ Good agreement between measurements and 
simulations.

5-cycle comb generator at 4𝒇𝒓𝒇 Measured frequency response

Simulated comb-filter 
in time domain at 4𝒇𝒓𝒇

Time [ns]

C
o

m
b

 f
ilt

er
 [

a.
u

.]

Frequency [GHz]

4𝒇𝒓𝒇

Simulated comb-filter in 
frequency domain at 4𝒇𝒓𝒇

12𝒇𝒓𝒇 20𝒇𝒓𝒇

C
o

m
b

 f
ilt

er
 [

a.
u

.]
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❑ Measurements of the response of the 
comb-generator in time domain were then 
performed.
➢ An impulse-generator and an 

oscilloscope were used.

❑ A pulse of 456 ps length was generated and 
sent to the comb-generator.
➢ It was not possible to have shorter 

pulses without decreasing the signal 
amplitude.

➢ The pulse length was 2/3 of the 
square-wave period (equal to 680 ps).

❑ The oscilloscope provides as output a sine-
like 5-cycle tone burst with period of 678 
ps or frequency of 4𝑓𝑟𝑓.

❑ This output is reproduced in simulation 
convolving the reconstructed pulse with 
the comb-filter in time domain.
➢ The pulse acts like a low-pass filter 

which keeps only the sinc at 4𝑓𝑟𝑓.

Impulse of 
length 456 ps

Setup with generator (down), 
comb (middle), oscilloscope (top) 

Zoom on the output of 
the oscilloscope

Time [ns]

P
u

ls
e 

[a
.u

.]
Simulated pulse with 

456 ps end-to-end length

Convolution between 
simulated pulse and comb 

filter in time domain
680 ps 

Time [ps]

P
u

ls
e 

sp
ec

tr
u

m
 [

a.
u

.]

456 ps 

Frequency [GHz]

4𝒇𝒓𝒇

12𝒇𝒓𝒇
20𝒇𝒓𝒇

C
o

m
b

 f
ilt

er
, p

ro
d

u
ct

[a
.u

.]

Simulated pulse 
spectrum, comb filter 

and their product

C
o

n
vo

lu
ti

o
n

 [
a.

u
.]

Stripline comb generator at 4𝑓𝑟𝑓: measurements (2/2)
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5-cycle comb generator at 6𝒇𝒓𝒇 Measured frequency response

❑ Measurements were then repeated for another 
comb generator: 5-tone-burst at 6𝑓𝑟𝑓 = 2.21 GHz.

❑ The frequency response is made of sinc-like 
functions with frequencies at 2.27 GHz (≈ 6𝑓𝑟𝑓), 

6.76 GHz (≈ 18𝑓𝑟𝑓 = 6.64 GHz).

❑ We reproduce in simulation the comb-filter in 
time and frequency domain.
➢ We suppose that the comb-filter in time 

domain is ‘a smoothing’ of the derivative of 
a 2.21 GHz square wave.
• Sinc functions at 6(2𝑘+1)𝑓𝑟𝑓 (𝑘=0,…) in 

frequency domain.

❑ Good agreement between measurements and 
simulations.

Simulated comb-filter 
in time domain at 6𝒇𝒓𝒇

Time [ns]

C
o

m
b

 f
ilt

er
 [

a.
u

.]

Frequency [GHz]

6𝒇𝒓𝒇

Simulated comb-filter in 
frequency domain at 6𝒇𝒓𝒇

18𝒇𝒓𝒇

C
o

m
b

 f
ilt

er
 [

a.
u

.]

Stripline comb generator at 6𝑓𝑟𝑓: measurements (1/2)
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Impulse of 
length 456 ps

Setup with generator (down), 
comb (middle), oscilloscope (top) 

Zoom on the output of 
the oscilloscope

Time [ns]

P
u

ls
e 

[a
.u

.]
Simulated pulse with 

456 ps end-to-end length

Convolution between 
simulated pulse and comb 

filter in time domain
453 ps 

Time [ps]

P
u
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e 

sp
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u

m
 [
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u

.]

456 ps 

Frequency [GHz]

4𝒇𝒓𝒇

12𝒇𝒓𝒇
20𝒇𝒓𝒇

C
o

m
b

 f
ilt
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d
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ct

[a
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Simulated pulse 
spectrum, comb filter 

and their product

6𝒇𝒓𝒇

18𝒇𝒓𝒇

C
o

n
vo

lu
ti

o
n

 [
a.

u
.]

❑ Measurements of the response of the 
comb-generator in time domain were 
then performed.

❑ A pulse of 456 ps length was generated 
and sent to the comb-generator.
➢ The pulse length was comparable 

to the square-wave period (equal 
to 452 ps).

❑ The oscilloscope provides as output a 
sine-like 5-cycle tone burst with period 
of 439 ps or frequency of 6𝑓𝑟𝑓.

❑ This output is reproduced in simulation 
convolving the reconstructed pulse with 
the comb-filter in time domain.
➢ The pulse acts like a low-pass filter 

which keeps only the sinc at 6𝑓𝑟𝑓.

❑ Good agreement between measurements 
and simulations, as for the case of the 
comb at 4𝑓𝑟𝑓.

Stripline comb generator at 6𝑓𝑟𝑓: measurements (2/2)
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Comb-generator as a filter

❑ The simulated comb-filter, confirmed 
by measurements (see before), was 
applied in simulation to the signal 
coming from the pickup.
➢ As an example, we considered a 

4-cycle comb-filter at 6𝑓𝑟𝑓.

❑ The bandwidth of a sinc is equal to 

Simulated comb-filter 
in time-domain

Simulated comb-filter in frequency-domain

4.5𝒇𝒓𝒇𝑼𝒄𝒐𝒎𝒃

❑ Therefore in DAFNE the actual bunch current (~ Gaussian) is filtered first by the pickup and then by the comb generator.

𝑽𝒄𝒐𝒎𝒃(𝒕) ∝ 𝓕−𝟏 𝑺 × 𝒁𝒃 × 𝑭𝒄𝒐𝒎𝒃

𝑭𝒄𝒐𝒎𝒃

7.5𝒇𝒓𝒇

𝜟𝒇𝑩𝑾 = 𝟐
𝟏

𝟒𝑻𝟔𝒇𝒓𝒇
= 3𝒇𝒓𝒇

6𝒇𝒓𝒇

|𝑺||𝒁𝒃| 𝑭𝒄𝒐𝒎𝒃

6𝒇𝒓𝒇6𝒇𝒓𝒇 1𝟖𝒇𝒓𝒇 1𝟖𝒇𝒓𝒇

1𝟖𝒇𝒓𝒇

|𝑺||𝒁𝒃|➢ The signal coming from the 
pickup acts as a band-pass 
filter which keeps only the 
sinc at 6𝑓𝑟𝑓.



❑ We consider one synchrotron period in DAFNE and we simulate the output-signal coming from the comb-generator. 
➢ Three different input-signals are used. 
➢ The macroparticle code is not used here. Synchrotron oscillations are obtained by simply shifting the input signal by

❑ First example:  We obtain 𝑉𝑐𝑜𝑚𝑏 by convolving the numerically reconstructed comb-filter in time domain with a delta signal 
arriving at time ∆𝑡𝑠 + 𝜏. 
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Time signal before and after the comb generator (1/3)

𝝀 𝒕 = 𝜹 𝒕 − ∆𝒕𝒔 − 𝝉 𝑽𝒄𝒐𝒎𝒃 𝒕 ∝ 𝝀 𝒕 ∗ 𝑼𝒄𝒐𝒎𝒃(𝒕) = න
𝟎

+∞

𝜹 𝒕 − 𝒂 − ∆𝒕𝒔 − 𝝉 𝑼𝒄𝒐𝒎𝒃(𝒂) 𝒅𝒂 = 𝑼𝒄𝒐𝒎𝒃(𝒕 − ∆𝒕𝒔 − 𝝉)

𝜆
[a

.u
.]

𝑉 𝑐
𝑜
𝑚
𝑏

[a
.u

.]

𝒕𝑹𝑭∆𝒕𝒔𝟎➢ The output from the comb generator is 
the filter itself shifted by ∆𝑡𝑠 + 𝜏.

➢ The relative phase between 𝜆 and 
𝑉𝑐𝑜𝑚𝑏 is preserved over time.
• Required for phase detection.

➢ This model is not realistic since the 
signal entering the comb-generator is 
not a delta function, as shown before.

𝝉 = 𝑨cos(𝝎𝒔𝒌𝑻𝟎)
𝑨: oscillation amplitude = 0.1 rad
𝒌: turn number



❑ Second example: The input signal is Gaussian with mean ∆𝑡𝑠 + 𝜏 and with 𝜎𝑧 = 20 mm or 30 mm.
➢ We obtain 𝑉𝑐𝑜𝑚𝑏 by convolving this signal with the comb-filter in time domain

➢ The output of the comb generator is sinusoidal with frequency 6𝑓𝑟𝑓.

• The filter sinc-functions at higher frequencies are made negligible by the Gaussian spectrum.
➢ The relative phase between 𝜆 and 𝑉𝑐𝑜𝑚𝑏 is preserved over time. This is essential for phase detection.

• With respect to the mean of 𝜆, this phase difference is equal to 6𝜔𝑟𝑓𝑡𝑎 and is larger for longer bunches. 

➢ For large 𝜎𝑧, 𝑉𝑐𝑜𝑚𝑏 is amplitude-modulated in correspondence of the first and fourth periods (amplitude 𝐴(𝑡) ).
➢ This better model is not realistic yet since the comb-generator input is not Gaussian, but a differentiated Gaussian.

91
𝜆

[a
.u

.]

𝒕𝑹𝑭

∆𝒕𝒔

𝑽𝒄𝒐𝒎𝒃 𝒕 ∝ 𝝀 𝒕 ∗ 𝑼𝒄𝒐𝒎𝒃(𝒕) = න
𝟎

+∞

𝒆
−
𝒕−𝒂−∆𝒕𝒔−𝝉

𝟐

𝟐𝝈𝒕
𝟐

𝑼𝒄𝒐𝒎𝒃 𝒂 𝒅𝒂 ≈ 𝑨(𝒕) 𝐬𝐢𝐧 𝟔𝝎𝒓𝒇 𝒕 + 𝒕𝒂 − ∆𝒕𝒔 − 𝝉

Time signal before and after the comb generator (2/3)

𝑉 𝑐
𝑜
𝑚
𝑏

[a
.u

.]

𝑉 𝑐
𝑜
𝑚
𝑏

[a
.u

.]

𝒕𝑹𝑭

∆𝒕𝒔(𝝈𝒛 = 20 mm) (𝝈𝒛 = 30 mm)

𝜆
[a

.u
.]

𝜆
[a

.u
.]



❑ Third example (realistic): The input signal is a differentiated Gaussian.
➢ This signal is obtained by applying 𝑍𝑏 to a Gaussian profile with mean ∆𝑡𝑠 + 𝜏 and with 𝜎𝑧 = 20 mm or 30 mm.
➢ We obtain 𝑉𝑐𝑜𝑚𝑏 by convolving the input signal with the comb-filter in time domain.

➢ 𝑉𝑐𝑜𝑚𝑏 has essentially the same features of the 𝑉𝑐𝑜𝑚𝑏 computed for Gaussian inputs (second example).
• It is sinusoidal with frequency 6𝑓𝑟𝑓.

• The phase difference between 𝑉𝑐𝑜𝑚𝑏 and the mean of the Gaussian profile is 6𝜔𝑟𝑓𝑡𝑎
′ and constant over time.

• 𝑉𝑐𝑜𝑚𝑏 extends to the adjacent bucket, leading to possible coupling between phases of consecutive bunches.
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Time signal before and after the comb generator (3/3)

𝑽𝒄𝒐𝒎𝒃 𝒕 ∝ 𝝀 𝒕 ∗ 𝑼𝒄𝒐𝒎𝒃(𝒕) = න
𝟎

+∞

𝝀 𝒕 − 𝒂 𝑼𝒄𝒐𝒎𝒃 𝒂 𝒅𝒂 ∝ 𝑩(𝒕) 𝐬𝐢𝐧 𝟔𝝎𝒓𝒇 𝒕 + 𝒕𝒂
′ − ∆𝒕𝒔 − 𝝉

𝑉 𝑐
𝑜
𝑚
𝑏

[a
.u

.]

𝑉 𝑐
𝑜
𝑚
𝑏

[a
.u

.]

𝜆
, 𝜆

𝑃
𝑈

[a
.u

.]

𝒕𝑹𝑭

∆𝒕𝒔 𝒕𝒓𝒇 + ∆𝒕𝒔 ∆𝒕𝒔 𝒕𝒓𝒇 + ∆𝒕𝒔

𝒕𝑹𝑭

𝝈𝒛 = 20 mm 𝝈𝒛 = 30 mm

𝜆
, 𝜆

𝑃
𝑈

[a
.u

.]
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Voltage from the comb generator

❑ The signal exiting the comb generator goes through an attenuator, which is followed by an amplifier.

❑ Characterizing better the proportionality factor, 𝑉𝑐𝑜𝑚𝑏 is equal to:

➢ 𝑉𝑐𝑜𝑚𝑏 is proportional to:

• the total bunch current 𝑸𝒃/𝑻𝟎;
• the magnitude of the button transfer impedance 𝒁𝒃 , which is constant (= 0.43 Ω) in the working region, i.e. 

around 4𝑓𝑟𝑓 or 6𝑓𝑟𝑓;

• the coefficient 𝒈𝒑, accounting for the attenuation provided by the pickup-attenuator, which is able to control the 

level of signal measured by the pickup;
• the coefficient 𝒈𝒄, which accounts for the attenuation-level provided by the comb-generator and the attenuator 

placed after it;
• the gain 𝒈𝒂 of the amplifier placed after the comb generator;
• the amplitude modulation 𝑩(𝒕) , which can be different from 1 in correspondence of the first and fourth periods 

of the sinusoidal tone burst.

𝑽𝒄𝒐𝒎𝒃 𝒕 =
𝑸𝒃

𝑻𝟎
𝒁𝒃 𝒈𝒑𝒈𝒄𝒈𝒂 𝑩(𝒕) 𝐬𝐢𝐧 𝟔𝝎𝒓𝒇 𝒕 + 𝒕𝒂

′ − ∆𝒕𝒔 − 𝝉
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Local oscillator and mixer

❑ The local oscillator is locked to the ring RF clock and produces a sinusoidal signal with frequency 6𝑓𝑟𝑓

➢ where 𝝓𝒍𝒐 = 𝝓𝒍𝒐𝟏 +𝝓𝒍𝒐𝟐 is adjusted by using a phase shifter (servo), so that
• 𝑉𝑙𝑜 is in quadrature with respect to the sinusoidal 𝑉𝑐𝑜𝑚𝑏;
• 𝝓𝒍𝒐𝟐 is the phase advance of the comb-voltage relative to the bunch centre of mass minus the synchronous phase

❑ Therefore 

❑ 𝑉𝑐𝑜𝑚𝑏 and 𝑉𝑙𝑜 are multiplied together in the mixer

𝑽𝒍𝒐 𝒕 = 𝐬𝐢𝐧 𝟔 𝝎𝒓𝒇𝒕 + 𝝓𝒍𝒐

𝑽𝒍𝒐 𝒕 = −𝐜𝐨𝐬 𝟔𝝎𝒓𝒇 𝒕 + 𝒕𝒂
′ − ∆𝒕𝒔

𝝓𝒍𝒐𝟐 = 𝝎𝒓𝒇 𝒕𝒂
′ − ∆𝒕𝒔𝟔𝝓𝒍𝒐𝟏 = −𝝅/𝟐

𝑽𝒎𝒊𝒙 𝒕 = −
𝑸𝒃

𝑻𝟎
𝒁𝒃 𝒈𝒑𝒈𝒄𝒈𝒂 𝑩(𝒕) 𝐬𝐢𝐧 𝟔𝝎𝒓𝒇 𝒕 + 𝒕𝒂

′ − ∆𝒕𝒔 − 𝝉 𝐜𝐨𝐬 𝟔𝝎𝒓𝒇 𝒕 + 𝒕𝒂
′ − ∆𝒕𝒔

= −
𝑸𝒃

𝟐𝑻𝟎
𝒁𝒃 𝒈𝒑𝒈𝒄𝒈𝒂 𝑩(𝒕) 𝐬𝐢𝐧 −𝟔𝝎𝒓𝒇𝝉 + 𝐬𝐢𝐧 𝟏𝟐𝝎𝒓𝒇 𝒕 + 𝒕𝒂

′ − ∆𝒕𝒔 − 𝟔𝝎𝒓𝒇𝝉
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Low-pass filter

❑ A low-pass filter is then applied to 𝑽𝒎𝒊𝒙 to eliminate the high-frequency component of the mixer output

❑ More in general we have

➢ where 𝒈𝒎 ≤ 𝟎. 𝟓 is the conversion efficiency of the mixer;
➢ where 𝒈𝒍 = 𝟒 or 6 depending on the DAFNE operation mode;
➢ where

• being 𝝋𝒄𝒍 an error phase accounting for the possible coupling between consecutive bunches when a tone burst 
reaches the adjacent bucket (as shown earlier);

• being 𝝋𝒆𝒓𝒓 an error phase present when the phase advance of the comb-voltage relative to the bunch centre of 
mass is not compensated (as shown earlier);

• being 𝝋𝒐𝒇𝒇 a phase offset which one can adjust to compensate the other phase errors.  

𝑽𝒍𝒑𝒇 𝒕 =
𝑸𝒃

𝟐𝑻𝟎
𝒁𝒃 𝒈𝒑𝒈𝒄𝒈𝒂 𝑩(𝒕) 𝐬𝐢𝐧 𝟔𝝋𝟎 ≈

𝟑𝑸𝒃

𝑻𝟎
𝒁𝒃 𝒈𝒑𝒈𝒄𝒈𝒂 𝑩(𝒕) 𝝋𝟎

𝑽𝒍𝒑𝒇 𝒕 =
𝑸𝒃

𝑻𝟎
𝒁𝒃 𝒈𝒎𝒈𝒑𝒈𝒄𝒈𝒂 𝑩(𝒕) 𝐬𝐢𝐧 𝒈𝒍෥𝝋𝟎

෥𝝋𝟎 = 𝝋𝟎 +𝝋𝒄𝒍 + 𝝋𝒆𝒓𝒓 + 𝝋𝒐𝒇𝒇

For small phases
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Example continued: mixer

=
𝑩(𝒕)

𝟐
𝐬𝐢𝐧 𝟔𝝎𝒓𝒇 𝝉 − 𝒕𝒂

′ −
𝑩(𝒕)

𝟐
𝐬𝐢𝐧 𝟏𝟐𝝎𝒓𝒇 𝒕 − ∆𝒕𝒔 + 𝟔𝝎𝒓𝒇 𝒕𝒂

′ − 𝝉

𝑽𝒎𝒊𝒙 𝒕 ∝ − 𝑩(𝒕) 𝐬𝐢𝐧 𝟔𝝎𝒓𝒇 𝒕 + 𝒕𝒂
′ − ∆𝒕𝒔 − 𝝉 𝐜𝐨𝐬 𝟔𝝎𝒓𝒇 𝒕 − ∆𝒕𝒔

DC component (signal average) High-frequency component at 1𝟐𝒇𝒓𝒇

6𝒇𝒓𝒇 1𝟐𝒇𝒓𝒇

➢ Qualitatively

ℱ
𝑉 𝑚

𝑖𝑥
[a

.u
.]

Frequency [GHz]

𝜆
, 𝑉

𝑐
𝑜
𝑚
𝑏

,𝑉
𝑚
𝑖𝑥

[a
.u

.]

❑ Third example continued: 𝑉𝑐𝑜𝑚𝑏 is the comb-generator output when the input is a differentiated Gaussian signal, 𝜎𝑧 = 20 mm. 
➢ We suppose first that the local oscillator can’t compensate for 𝑡𝑎

′ .
➢ We compute numerically 𝑉𝑚𝑖𝑥 and its Fourier transform along one synchrotron period.

∆𝑡 [ns]

DC component𝒕𝒓𝒇∆𝒕𝒔

3𝒇𝒓𝒇
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Example continued: low-pass filter

𝑽𝒍𝒑𝒇 𝒕 ∝
𝑩(𝒕)

𝟐
𝐬𝐢𝐧 𝟔𝝎𝒓𝒇 𝝉 − 𝒕𝒂

′

➢ Qualitatively

❑ We apply a Bessel low-pass filter 𝐵𝑙𝑝 to 𝑉𝑚𝑖𝑥 in order to obtain only the DC component of 𝑉𝑚𝑖𝑥.

➢ A baseband Bessel low-pass filter was used at PEP-II.
➢ In simulation the filter has order 4 and the gain magnitude is -3 dB at 3𝑓𝑟𝑓.

6𝒇𝒓𝒇

𝜆
, 𝑉

𝑐
𝑜
𝑚
𝑏

,𝑉
𝑚
𝑖𝑥

, 𝑉
𝑙𝑝
𝑓

[a
.u

.]

∆𝑡 [ns]

|𝐵
𝑙𝑝

|[
a.

u
.]

1𝟐𝒇𝒓𝒇3𝒇𝒓𝒇

1Frequency [GHz]

➢ 𝑉𝑙𝑝𝑓 doesn’t oscillate around zero due to the lack of compensation for 𝑡𝑎
′ .

➢ 𝑉𝑙𝑝𝑓 extends to the adjacent bucket, leading to potential coupling in phase detection.

𝒕𝒓𝒇∆𝒕𝒔

ℱ
𝑉 𝑚

𝑖𝑥
, 
ℱ
𝑉 𝑚

𝑖𝑥
𝐵
𝑙𝑝

[a
.u

.] DC component𝒕𝒓𝒇 + ∆𝒕𝒔𝟎



➢ Qualitatively

➢ At each turn, the time-span where 𝑉𝑙𝑝𝑓 is constant is relatively large thanks to the tone-burst technique.

• In this time-span 𝐵(𝑡) ≈ 1 (no amplitude modulation in 𝑉𝑐𝑜𝑚𝑏), therefore we assume that 𝐵(𝑡) = 1.
• The ADC clock could for instance sample in correspondence of the orange line at each turn.

➢ 𝑉𝑙𝑝𝑓 still extends to the adjacent bucket, leading to potential coupling in phase detection.
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Example continued: phase compensation
❑ If the reference signal from the local oscillator can compensate for the phase error 6𝜔𝑟𝑓𝑡𝑎

′ then 𝑉𝑙𝑝𝑓 oscillates around zero 

and consequently the phase detection is correct. 

6𝒇𝒓𝒇

𝜆
, 𝑉

𝑐
𝑜
𝑚
𝑏

,𝑉
𝑚
𝑖𝑥

, 𝑉
𝑙𝑝
𝑓

[a
.u

.]

∆𝑡 [ns]

1𝟐𝒇𝒓𝒇3𝒇𝒓𝒇

Frequency [GHz]
𝒕𝒓𝒇

∆𝒕𝒔

𝑽𝒍𝒑𝒇 𝒕 ∝ 𝐬𝐢𝐧 𝟔𝝎𝒓𝒇𝝉

DC component

ℱ
𝑉 𝑚

𝑖𝑥
, 
ℱ
𝑉 𝑚

𝑖𝑥
𝐵
𝑙𝑝

[a
.u

.]

|𝐵
𝑙𝑝

|[
a.

u
.]

𝒕𝒓𝒇 + ∆𝒕𝒔

ADC clock
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❑ In the macroparticle code 𝝋𝟎 = ∆𝝋 − ∆𝝋𝑺𝑹 is already known at each turn, 

➢ ∆𝝋 is known from the tracking and the constant ∆𝝋𝑺𝑹 can be easily computed.
➢ The signal manipulations shown in the last slides (Gaussian profile, button transfer impedance, comb-generator, etc.) 

can’t be directly applied in the code since each bunch is represented by just a macroparticle.
• However the Python routines able to perform these signal manipulations are available for separate analysis. 

❑ In the code we directly compute

➢ where phase errors can be included through 𝝋𝒄𝒍 (bunch coupling) and 𝝋𝒆𝒓𝒓 (phase advance of the comb-voltage).

❑ If intensity effects are large, then the synchronous phase is ∆𝝋𝑯𝑶𝑴 ≠ ∆𝝋𝑺𝑹 and this shift can’t be neglected. Therefore, from

➢ we see that, even when 𝝋𝒄𝒍 = 𝝋𝒆𝒓𝒓 = 𝟎, we have to compensate the synchronous-phase shift due to the HOMs.
• This can be done in the code since ∆𝝋𝑯𝑶𝑴 can be computed with the new Python routine;
• In operation, an input-offset can be set in the phase-servo-loop panel in order to obtain the desired compensation.

❑ Before entering into the ADC, 𝑽𝒍𝒑𝒇 passes through an amplifier with gain 𝒈𝒂𝟐.

➢ Noise can also be added in the code and the input voltage for the ADC is 𝑽𝑨𝑫𝑪 = 𝒈𝒂𝟐𝑽𝒍𝒑𝒇 +𝓝(𝟎, 𝝈𝑵), where 𝓝 is a 

sample from a Gaussian distribution with mean 0 and rms 𝝈𝑵.

𝑽𝒍𝒑𝒇 =
𝑸𝒃

𝑻𝟎
𝒁𝒃 𝒈𝒎𝒈𝒑𝒈𝒄𝒈𝒂 𝐬𝐢𝐧 𝒈𝒍 𝝋𝟎 + 𝝋𝒄𝒍 + 𝝋𝒆𝒓𝒓 + 𝝋𝒐𝒇𝒇

𝑽𝒍𝒑𝒇 =
𝑸𝒃

𝑻𝟎
𝒁𝒃 𝒈𝒎𝒈𝒑𝒈𝒄𝒈𝒂 𝐬𝐢𝐧 𝒈𝒍 ∆𝝋 − ∆𝝋𝑯𝑶𝑴 + (∆𝝋𝑯𝑶𝑴 − ∆𝝋𝑺𝑹) + 𝝋𝒄𝒍 +𝝋𝒆𝒓𝒓
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ADC processing
❑ Let’s suppose that the number of bits for the ADC is 𝒏𝒃𝒊𝒕,𝑨𝑫𝑪.

❑ With 𝒏𝒃𝒊𝒕,𝑨𝑫𝑪 we can represent the 𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪 signed numbers

❑ The ADC converts a mixer-voltage 𝑽𝑨𝑫𝑪 (real number) into an output 𝒏𝒐𝑨𝑫𝑪 (integer number) 

❑ Calling 𝑉𝑚𝑎𝑥,𝐴𝐷𝐶 the maximum input voltage for the ADC

❑ For other values of 𝑽𝑨𝑫𝑪, we divide the interval −𝑽𝒎𝒂𝒙,𝑨𝑫𝑪, 𝑽𝒎𝒂𝒙,𝑨𝑫𝑪 into sub-intervals with length ∆𝑽𝑨𝑫𝑪

− 𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏 − 𝟏 , − 𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏 − 𝟏 + 𝟏, …, − 𝟐, − 𝟏, 𝟎, 𝟏, 𝟐, …, 𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏 − 𝟏, 𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏

− 𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏 − 𝟏 , − 𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏 − 𝟏 + 𝟏, …, − 𝟐, − 𝟏, 𝟎, 𝟏, 𝟐, …, 𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏 − 𝟏, 𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏

∆𝑽𝑨𝑫𝑪 =
𝑽𝒎𝒂𝒙,𝑨𝑫𝑪 − −𝑽𝒎𝒂𝒙,𝑨𝑫𝑪

𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏 − − 𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏 − 𝟏
=

𝟐𝑽𝒎𝒂𝒙,𝑨𝑫𝑪

𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪 − 𝟏

𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏−∞,−𝑽𝒎𝒂𝒙,𝑨𝑫𝑪 ∋ 𝑽𝑨𝑫𝑪 − 𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏 − 𝟏

𝑽𝑨𝑫𝑪 ∈ −∞,+∞

𝒏𝒐𝑨𝑫𝑪∈

𝑽𝒎𝒂𝒙,𝑨𝑫𝑪, +∞ ∋ 𝑽𝑨𝑫𝑪
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❑ Therefore we have the correspondences

❑ The relations are

❑ If 𝑽𝑨𝑫𝑪 ≠ 𝑽𝑨𝑫𝑪,𝒏𝒐𝑨𝑫𝑪, then the above relation yields a non-integer number and we take the integer part of it

❑ In DAFNE 𝒏𝒃𝒊𝒕,𝑨𝑫𝑪 = 𝟖 and therefore the conversion formula is

−∆𝑽𝑨𝑫𝑪
𝟐

∆𝑽𝑨𝑫𝑪
𝟐

𝟑∆𝑽𝑨𝑫𝑪
𝟐

−𝟑∆𝑽𝑨𝑫𝑪
𝟐

𝑽𝒎𝒂𝒙,𝑨𝑫𝑪

𝑽𝒎𝒂𝒙,𝑨𝑫𝑪 − ∆𝑽𝑨𝑫𝑪

−𝟓∆𝑽𝑨𝑫𝑪
𝟐

−𝑽𝒎𝒂𝒙,𝑨𝑫𝑪

−𝑽𝒎𝒂𝒙,𝑨𝑫𝑪 + ∆𝑽𝑨𝑫𝑪

∆𝑽𝑨𝑫𝑪
𝟐

𝟐𝒏𝒐𝑨𝑫𝑪 − 𝟏 = 𝑽𝑨𝑫𝑪,𝒏𝒐𝑨𝑫𝑪 𝒏𝒐𝑨𝑫𝑪 =
𝑽𝑨𝑫𝑪,𝒏𝒐𝑨𝑫𝑪
∆𝑽𝑨𝑫𝑪

+
𝟏

𝟐

𝒏𝒐𝑨𝑫𝑪 = 𝐢𝐧𝐭
𝑽𝑨𝑫𝑪
∆𝑽𝑨𝑫𝑪

+
𝟏

𝟐
= 𝐢𝐧𝐭

𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪 − 𝟏

𝟐

𝑽𝑨𝑫𝑪
𝑽𝒎𝒂𝒙,𝑨𝑫𝑪

+
𝟏

𝟐

− 𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏 − 𝟏 , − 𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏 − 𝟏 + 𝟏, …, − 𝟐, − 𝟏, 𝟎, 𝟏, 𝟐, …, 𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏 − 𝟏, 𝟐𝒏𝒃𝒊𝒕,𝑨𝑫𝑪−𝟏

𝒏𝒐𝑨𝑫𝑪 = 𝐢𝐧𝐭 𝟏𝟐𝟕. 𝟓
𝑽𝑨𝑫𝑪

𝑽𝒎𝒂𝒙,𝑨𝑫𝑪
+ 𝟎. 𝟓

NOTE: bug in the Fortran code, the formula 
on the left is used even when 𝑛𝑏𝑖𝑡,𝐴𝐷𝐶 ≠ 8

ADC processing
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ADC processing: DAFNE examples
❑ Simulation of an oscillating bunch. Phase amplitude of 0.1 rad, no intensity effects, no action of the feedback.

➢ We plot the voltage signal entering the ADC and the ADC output (𝑉𝑚𝑎𝑥,𝐴𝐷𝐶 = 200 mV).

∆𝝋𝑺𝑹

Phase oscillations around ∆𝝋𝑺𝑹

∆
𝜑

[r
ad

]

Input voltage for ADC between ±200 mV

Turn [1]

Turn [1] Turn [1]
𝑉 𝐴

𝐷
𝐶

[V
]

𝑛
𝑜
𝐴
𝐷
𝐶

[1
]

ADC output between -127 and 128

𝑉 𝐴
𝐷
𝐶

[V
]

Turn [1]

𝑛
𝑜
𝐴
𝐷
𝐶

[1
] Saturated

Not 
saturated

Turn [1]

𝑽𝒎𝒂𝒙,𝑨𝑫𝑪

➢ Too high gains can lead to signal 
saturation in the ADC.
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FPGA: introduction
❑ The ADC output 𝑛𝑜𝐴𝐷𝐶 is processed by the FPGA (Field Programmable Gate 

Array), which is a configurable integrated circuit.

❑ The goal of the FPGA is to shift the 𝑛𝑜𝐴𝐷𝐶 signal by 𝜋/2, so that the output 
signal is in anti-phase with respect to the energy oscillation of the bunch.  

❑ The shift by 𝜋/2 is performed applying a FIR (Finite Impulse Response) filter 
to the 𝑛𝑜𝐴𝐷𝐶 signal.
➢ FIR: the filter is not recursive, i.e. the output is not used in the input.

❑ Different filters can be programmed in the FPGA, although the sinusoidal 
one is generally used in DAFNE operation.

Xilinx FPGA used in DAFNE

A. Drago 
(2007)

❑ Concerning the sinusoidal filter, a convolution is performed between the 𝑛𝑜𝐴𝐷𝐶 signal, evaluated along the last synchrotron 
period, and the sinusoidal function 𝑓𝐹𝐼𝑅 with angular frequency 𝜔𝑠0 and phase 𝜙2. At time 𝑡𝑘, the FPGA output is

𝑛𝑜𝐹𝑃𝐺𝐴 𝑡𝑘 = 𝑔𝐹𝑃𝐺𝐴𝑛𝑜𝐴𝐷𝐶 ∗ 𝑓𝐹𝐼𝑅 = 𝑔𝐹𝑃𝐺𝐴 ෍

𝑖=0

𝑁𝑡𝑎𝑝−1

𝑛𝑜𝐴𝐷𝐶 𝑡𝑘−𝑖 𝑓𝐹𝐼𝑅,𝑖 = 𝑔𝐹𝑃𝐺𝐴 ෍

𝑖=0

𝑁𝑡𝑎𝑝−1

𝑛𝑜𝐴𝐷𝐶 𝑡𝑘−𝑖 sin 𝜔𝑠0∆𝑡𝐷𝑆𝐹𝑖 + 𝜙2

➢ where 𝑔𝐹𝑃𝐺𝐴 is the gain of the FPGA;
➢ 𝑡𝑘−𝑁𝑡𝑎𝑝+1, … , 𝑡𝑘 are equidistant bunch arrival-times when the feedback operates (we call ∆𝑡𝐷𝑆𝐹 the time interval);

➢ 𝑁𝑡𝑎𝑝 is the number of filter taps and is such that 𝑛𝑜𝐴𝐷𝐶 𝑡𝑘 ≈ 𝑛𝑜𝐴𝐷𝐶 𝑡𝑘−𝑁𝑡𝑎𝑝 .
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FPGA: shift of the input-signal using a convolution
❑ Why this convolution is able to shift the 𝑛𝑜𝐴𝐷𝐶 signal by 𝜋/2? We start from the expression

❑ If ∆𝑡𝐷𝑆𝐹 is small, this expression can be approximated with an integral

➢ where 𝑘 ≥ 1 is the number of synchrotron periods along which 𝑛𝑜𝐴𝐷𝐶 and 𝑓𝐹𝐼𝑅 are evaluated;
➢ where 𝐴𝑜𝐴𝐷𝐶 and 𝜙1 are respectively the amplitude and phase of 𝑛𝑜𝐴𝐷𝐶.

❑ Therefore we have the transformation

➢ if 𝜙2 = 0, then 𝑛𝑜𝐴𝐷𝐶 is shifted by 𝜋/2 as desired.

𝑛𝑜𝐹𝑃𝐺𝐴 𝑡𝑘 =
𝑔𝐹𝑃𝐺𝐴
∆𝑡𝐷𝑆𝐹

෍

𝑖=0

𝑁𝑡𝑎𝑝−1

𝑛𝑜𝐴𝐷𝐶 𝑡𝑘−𝑖 sin 𝜔𝑠0∆𝑡𝐷𝑆𝐹𝑖 + 𝜙2 ∆𝑡𝐷𝑆𝐹

𝑛𝑜𝐹𝑃𝐺𝐴 𝑡 =
𝑔𝐹𝑃𝐺𝐴𝐴𝑜𝐴𝐷𝐶

∆𝑡𝐷𝑆𝐹
න
𝑡−𝑘𝑇𝑠0

𝑡

sin 𝜔𝑠0(𝑡 − 𝜏) + 𝜙1 sin 𝜔𝑠0𝜏 + 𝜙2 𝑑𝜏 =

=
𝑔𝐹𝑃𝐺𝐴𝐴𝑜𝐴𝐷𝐶
2∆𝑡𝐷𝑆𝐹

න
𝑡−𝑘𝑇𝑠0

𝑡

cos 𝜔𝑠0𝑡 − 2𝜔𝑠0𝜏 + 𝜙1 − 𝜙2 − cos 𝜔𝑠0𝑡 + 𝜙1 + 𝜙2 𝑑𝜏 = −
𝑔𝐹𝑃𝐺𝐴𝐴𝑜𝐴𝐷𝐶𝑘𝑇𝑠0

2∆𝑡𝐷𝑆𝐹
cos 𝜔𝑠0𝑡 + 𝜙1 + 𝜙2

𝑛𝑜𝐴𝐷𝐶 𝑡 = 𝐴𝑜𝐴𝐷𝐶 sin 𝜔𝑠0𝑡 + 𝜙1 𝑛𝑜𝐹𝑃𝐺𝐴 𝑡 =
𝑔𝐹𝑃𝐺𝐴𝐴𝑜𝐴𝐷𝐶𝑘𝑇𝑠0

2∆𝑡𝐷𝑆𝐹
sin 𝜔𝑠0𝑡 + 𝜙1 + 𝜙2 −

𝜋

2
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FPGA: frequency response of the sinusoidal filter
❑ We compute the frequency response of the filter, assuming an arbitrary small time-step.

➢ We take as an example DAFNE with 𝑓𝑠0 = 28.72 kHz. The filter has phase 𝜙2 = 0. 
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❑ The absolute value of the 
filter Fourier-transform is a 
sinc-like function.
➢ The maximum value 

occurs at 𝑓𝑚 < 𝑓𝑠0 and 
𝑓𝑚 approaches 𝑓𝑠0 as 𝑘
increases.

❑ The phase decreases linearly 
with frequency and has 
discontinuities where 
ℱ 𝑓𝐹𝐼𝑅 = 0. 
➢ The phase is - 𝜋/2 in 

correspondence of 𝑓𝑠0
as expected. 

❑ If the input signal has 𝑓𝑠 ≈
𝑓𝑠0, then the phase has to be 
as close as possible to - 𝜋/2.
➢ 𝑘 = 1 is preferable to 

𝑘 = 2 since the phase 
slope is higher.

- 𝜋/2

𝑓𝑚
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FPGA: down sampling factor (1/5)
❑ Let’s suppose that the feedback operates every 𝑑𝐷𝑆𝐹 turns. 𝑑𝐷𝑆𝐹 ≥ 1 is an integer called down-sampling factor.

❑ Using a down-sampling factor larger than 1 has pros and cons.

❑ Advantage: the number of operations per unit-time performed in the FPGA is reduced by factor 𝑑𝐷𝑆𝐹
2 . 

➢ Computations on 1/𝑑𝐷𝑆𝐹 of the original data, moreover the time available to do the computations is 𝑑𝐷𝑆𝐹 times longer.
➢ The saved computational time can be used to do more complicated filter-calculations and/or treat more bunches.

❑ Disadvantage: the feedback doesn’t provide the proper correction at each revolution turn, but just every 𝑑𝐷𝑆𝐹 turns. 
➢ The last computed correction is given until a new correction is evaluated.

❑ In theory, according to the Nyquist theorem, ∆𝑡𝐷𝑆𝐹 can be as low as 𝑇𝑠0/2 in order to properly reconstruct the sinusoidal 
synchrotron oscillation of the bunch.
➢ Two samples per period (𝑁𝑡𝑎𝑝 = 2) are sufficient to detect amplitude and phase of the synchrotron oscillation.

❑ In practice, the synchrotron oscillations are not perfectly sinusoidal, for instance when the bunch is far from the synchronous 
phase or when intensity effects are high.
➢ Moreover, the two samples are useless if they are close to zero.

• This can happen when the sampling times are close to the zero crossings of the sine function.

❑ Usually in operation 𝑁𝑡𝑎𝑝 ≥ 5.
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FPGA: down sampling factor (2/5)
❑ As seen earlier, 𝑛𝑜𝐴𝐷𝐶 is shifted by -𝜋/2 when convolved with 𝑓𝐹𝐼𝑅. 

➢ Both signals should extend over one synchrotron period and 𝜙2 should be zero. 

❑ Using 𝑁𝑡𝑎𝑝 taps means to divide the synchrotron period 𝑇𝑠0 into 𝑁𝑡𝑎𝑝 intervals, each with length ∆𝑡𝐷𝑆𝐹= 𝑑𝐷𝑆𝐹𝑇0.

❑ 1/𝑄𝑠 is the number of revolution turns necessary for a particle to perform one synchrotron period.
➢ Assuming that 1/𝑄𝑠 is an integer multiple of 𝑁𝑡𝑎𝑝, then

❑ Therefore the following three expressions are all equivalent

❑ When (as usual) 1/𝑄𝑠 isn’t an integer multiple of 𝑁𝑡𝑎𝑝, we use the first of these three expressions.

➢ The time step of 𝑓𝐹𝐼𝑅 is 𝑑𝐷𝑆𝐹𝑇0, which is also the time step of 𝑛𝑜𝐴𝐷𝐶. This is required to perform a proper convolution.
➢ However it’s usually not possible to cover exactly one 𝑇𝑠0 using this expression, as instead it occurs using the third one.

𝑛𝑜𝐹𝑃𝐺𝐴 𝑡𝑘 = 𝑔𝐹𝑃𝐺𝐴 ෍

𝑖=0

𝑁𝑡𝑎𝑝−1

𝑛𝑜𝐴𝐷𝐶 𝑡𝑘−𝑖 sin 𝜔𝑠0𝑖𝑑𝐷𝑆𝐹𝑇0 = 𝑔𝐹𝑃𝐺𝐴 ෍

𝑖=0

𝑁𝑡𝑎𝑝−1

𝑛𝑜𝐴𝐷𝐶 𝑡𝑘−𝑖 sin 2𝜋𝑖𝑑𝐷𝑆𝐹𝑄𝑠

1

𝑄𝑠
𝑇0 = 𝑇𝑠0 = 𝑁𝑡𝑎𝑝∆𝑡𝐷𝑆𝐹= 𝑁𝑡𝑎𝑝 𝑑𝐷𝑆𝐹𝑇0 𝑑𝐷𝑆𝐹𝑁𝑡𝑎𝑝 =

1

𝑄𝑠

= 𝑔𝐹𝑃𝐺𝐴 ෍

𝑖=0

𝑁𝑡𝑎𝑝−1

𝑛𝑜𝐴𝐷𝐶 𝑡𝑘−𝑖 sin
2𝜋𝑖

𝑁𝑡𝑎𝑝
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FPGA: down sampling factor (3/5)
❑ The previous formula doesn’t take into account the following two delays.

➢ Feedback delay: the feedback-correction computed at turn 𝑛 is not provided to the bunch at turn 𝑛.
• In the macroparticle code we assume that this correction is given at turn 𝑛 + 1.

➢ Hold-buffer delay: The feedback-correction computed at turn 𝑘𝑑𝐷𝑆𝐹𝑇0 is the one given to the bunch for all the times 
between 𝑘𝑑𝐷𝑆𝐹𝑇0 and 𝑘 + 1 𝑑𝐷𝑆𝐹𝑇0.
• The feedback-correction at turn 𝑘𝑑𝐷𝑆𝐹𝑇0 is computed as if the turn is not 𝑘𝑑𝐷𝑆𝐹𝑇0 but 𝑘𝑑𝐷𝑆𝐹𝑇0 + ∆𝑡𝐷𝑆𝐹/2.

❑ The filter sinusoidal function has to compensate these two delays with a constant phase offset 𝜙2

❑ The filter sinusoidal function is not supposed to add DC components to the output signal.
➢ Even if the integral of the sine function on one period is zero, discretizations can add a non-zero DC component.
➢ Therefore the average of the 𝑁𝑡𝑎𝑝 filter-coefficients is subtracted from each 𝑓𝐹𝐼𝑅,𝑖. 

❑ Therefore we have

𝑓𝐹𝐼𝑅,𝑖 = sin 𝜔𝑠0𝑖𝑑𝐷𝑆𝐹𝑇0 + 𝜙2 = sin 𝜔𝑠0𝑖𝑑𝐷𝑆𝐹𝑇0 + 𝜔𝑠0𝑇0 +𝜔𝑠0

𝑑𝐷𝑆𝐹𝑇0
2

Feedback delay Hold-buffer delay

𝑛𝑜𝐹𝑃𝐺𝐴 𝑡𝑘 = 𝑔𝐹𝑃𝐺𝐴 ෍

𝑖=0

𝑁𝑡𝑎𝑝−1

𝑛𝑜𝐴𝐷𝐶 𝑡𝑘−𝑖 sin 𝜔𝑠0𝑖𝑑𝐷𝑆𝐹𝑇0 + 𝜔𝑠0𝑇0 1+
𝑑𝐷𝑆𝐹
2

−
1

𝑁𝑡𝑎𝑝
෍

𝑗=0

𝑁𝑡𝑎𝑝−1

𝑓𝐹𝐼𝑅,𝑗



❑ There is still one correction to be added to 𝜙2.

❑ To see this, we compute again the frequency response of the sinusoidal filter.
➢ This time we take into account the two delays in 𝜙2 and the fact that the samples are taken every 𝑑𝐷𝑆𝐹 turns.

➢ Used parameters in this example: 𝑇0 from DAFNE, 𝑓𝑠0 = 28.7 kHz, 𝑑𝐷𝑆𝐹 = 6, 𝑁𝑡𝑎𝑝 = 16, 𝜙2 = 𝜔𝑠0𝑇0 1+
𝑑𝐷𝑆𝐹

2
.
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FPGA: down sampling factor (4/5)
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➢ 𝝓𝒆𝒓 is due to two independent reasons:
• the filter function can’t cover exactly one 𝑇𝑠0 ( 𝝓𝒆𝒓 > 0 even if ideally the time step is arbitrarily small);
• the time step is not arbitrarily small ( 𝝓𝒆𝒓 > 0 even if ideally one 𝑇𝑠0 is exactly covered).
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FPGA: down sampling factor (5/5)
❑ Iterative procedure in the new Python code to compensate for this phase error:

➢ Iteration 1: 𝝓𝒆𝒓 is subtracted from 𝜙2, i.e. the new 𝜙2 is ෩𝝓𝟐 = 𝝓𝟐 −𝝓𝒆𝒓.
• In this way the phase frequency-response at 𝑓𝑠0 becomes 𝜙2 as desired.
• However, since the time step is not arbitrarily small, changing 𝜙2 leads to a non-zero DC component.

➢ Iteration 2: the average of the filter coefficients is subtracted from the coefficients themselves.
• In this way the DC component is zero.
• However, this subtraction changes the phase frequency-response at 𝑓𝑠0 which is not 𝜙2 anymore.

➢ Iteration 3: the new 𝝓𝒆𝒓
′ is subtracted from ෩𝝓𝟐, i.e. the new 𝜙2 is ෩𝝓𝟐 = 𝝓𝟐 −𝝓𝒆𝒓 −𝝓𝒆𝒓

′ .
➢ Iteration 4: …

❑ The iterations repeat until the filter has zero DC component and the phase frequency-response at 𝑓𝑠0 is sufficiently close to 𝜙2.
➢ Usually few iterations are needed to reach convergence. 

• In our example 10 iterations diminish the phase error from 5.6 ∙ 10−2 rad to 1.3 ∙ 10−5.
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DAC processing and ideal voltage
❑ The DAC (digital-to-analog converter) converts the digital output of the FPGA into analog values.

➢ The inputs of the DAC must be integers between − 2𝑛𝑏𝑖𝑡,𝐷𝐴𝐶−1 − 1 and 2𝑛𝑏𝑖𝑡,𝐷𝐴𝐶−1, where 𝑛𝑏𝑖𝑡,𝐷𝐴𝐶 is the number of bit 
for the DAC (in DAFNE 𝑛𝑏𝑖𝑡,𝐷𝐴𝐶 = 8).

➢ As a function of time, the output of the DAC is a continuous piecewise-constant function.
• The discontinuities are located in correspondence of the bunch arrival-times when the feedback operates, i.e. those 

times which are multiple of 𝑑𝐷𝑆𝐹𝑇0.

❑ If 𝑉𝑀𝐴𝑋𝑘𝑖𝑐𝑘 represents the maximum voltage which the cavity-kicker can provide to the bunch, then the analog values given 
by the DAC represent the fractions of 𝑉𝑀𝐴𝑋𝑘𝑖𝑐𝑘 which the cavity-kicker should provide to the bunch to damp its oscillations.
➢ The feedback provides the values of the requested voltages, whereas the actual voltages are produced by the cavity 

kicker and its generator.
➢ We denote the voltage values requested by the feedback with 𝑉𝐹𝐵𝑘𝑖𝑐𝑘.

• As shown later, these values are ideal since the bunch can see in reality only approximations of them.  

❑ The output of the DAC and 𝑉𝐹𝐵𝑘𝑖𝑐𝑘 are given by

➢ where 𝑔𝐷𝐴𝐶 is the gain of the DAC and the operator int() takes the integer part of 𝑔𝐷𝐴𝐶𝑛𝑜𝐹𝑃𝐺𝐴;
➢ if int(𝑔𝐷𝐴𝐶𝑛𝑜𝐹𝑃𝐺𝐴) > 2𝑛𝑏𝑖𝑡,𝐷𝐴𝐶−1, then 𝑛𝑜𝐷𝐴𝐶 = 1;
➢ if int 𝑔𝐷𝐴𝐶𝑛𝑜𝐹𝑃𝐺𝐴 < − 2𝑛𝑏𝑖𝑡,𝐷𝐴𝐶−1 − 1 , then 𝑛𝑜𝐷𝐴𝐶 = −1 + 1/2𝑛𝑏𝑖𝑡,𝐷𝐴𝐶−1.

𝒏𝒐𝑫𝑨𝑪 =
𝐢𝐧𝐭(𝒈𝑫𝑨𝑪𝒏𝒐𝑭𝑷𝑮𝑨)

𝟐𝒏𝒃𝒊𝒕,𝑫𝑨𝑪−𝟏
𝑽𝑭𝑩𝒌𝒊𝒄𝒌 = 𝒏𝒐𝑫𝑨𝑪𝑽𝑴𝑨𝑿𝒌𝒊𝒄𝒌



❑ If we assume that the cavity-kicker can provide exactly the voltage requested by the feedback, the equations of motion are

Equations of motion in the code: RF+SR+HOM+FB (simplified)
112

➢ Small bug in the Fortran code: the 
kicker voltage applied to the last bunch 
is wrong if the first bucket is empty.

∆𝝋𝒌
(𝒏+𝟏)

= ∆𝝋𝒌
(𝒏)

+ 𝟐𝝅𝒉𝜶𝟎𝜹𝒌
(𝒏)

𝜹𝒌
(𝒏+𝟏)

= 𝜹𝒌
(𝒏)

−
𝑼𝟎

𝑬𝟎
𝟏 + 𝟐𝜹𝒌

𝒏 +
𝒆𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝒌

𝒏

𝑬𝟎
+
𝒆෡𝑽𝒓𝒇 𝐜𝐨𝐬∆𝝋𝒌

(𝒏+𝟏)

𝑬𝟎
+

𝒆

𝑬𝟎
෍

𝒋=𝟏

𝑵𝑯𝑶𝑴

𝑽𝒌,𝒋,𝑹𝑬𝑺
𝒏+𝟏 + 𝑽𝒌,𝒋,𝑰𝑵𝑫

Accelerating cavity 
(RF + HOMs)

Ideal kicker 
(correction)

➢ where 𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝒌
𝒏

is the voltage provided by the kicker to the bunch 𝑘 at turn (𝑛 + 1).

• 𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝒌
𝒏 usually changes from bunch to bunch and, for a given bunch, changes 

every 𝑑𝐷𝑆𝐹𝑇0 turns.

• If for instance 𝑑𝐷𝑆𝐹 = 1, then  𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝒌
𝒏

is evaluated using ∆𝝋𝒌
(𝒏)

and not 

∆𝝋𝒌
(𝒏+𝟏)

since the feedback-kicker system acts with a delay of one turn.

❑ The equations of motion assume that the two cavities are point-like and placed at the 
same spot in the ring. The bunch starts at the exit of the accelerating cavity and in order
➢ drifts along the ring (first equation of motion);
➢ loses energy by synchrotron radiation;
➢ receives the energy-kick from the cavity-kicker;
➢ receives the energy-kicks (accelerating and HOM-induced) from the accelerating 

cavity.

Synchrotron radiation
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Small amplitude synchrotron frequency with SR and FB (1/3)

❑ We neglect collective effects and we assume that
➢ 𝑑𝐷𝑆𝐹 = 1;
➢ the feedback-kicker system acts with no delay;
➢ 𝑇0 is small relative to 𝑇𝑠0.

❑ The discrete equations of motion can be made continuous as

❑ Deriving again with respect to time

❑ Expanding around ∆𝜑𝑆𝑅 we have

ሶ∆𝜑 = 𝜔𝑟𝑓𝛼0𝛿 ሶ𝛿 = −
𝑈0
𝐸0𝑇0

1 + 2𝛿 +
𝑒𝑉𝐹𝐵𝑘𝑖𝑐𝑘 ∆𝜑

𝐸0𝑇0
+
𝑒 ෠𝑉𝑟𝑓

𝐸0𝑇0
cos ∆𝜑

ሷ∆𝜑 = −
𝜔𝑟𝑓𝛼0𝑈0

𝐸0𝑇0
1 + 2𝛿 +

𝜔𝑟𝑓𝛼0𝑒𝑉𝐹𝐵𝑘𝑖𝑐𝑘 ∆𝜑

𝐸0𝑇0
+
𝜔𝑟𝑓𝛼0𝑒 ෠𝑉𝑟𝑓

𝐸0𝑇0
cos∆𝜑

ሷ𝜑0 = −
𝜔𝑟𝑓𝛼0𝑈0

𝐸0𝑇0
1 + 2

ሶ𝜑0
𝜔𝑟𝑓𝛼0

+
𝜔𝑟𝑓𝛼0𝑒𝑉𝐹𝐵𝑘𝑖𝑐𝑘 𝜑0

𝐸0𝑇0
+
𝜔𝑟𝑓𝛼0𝑒 ෠𝑉𝑟𝑓

𝐸0𝑇0
cos ∆𝜑𝑆𝑅 − sin ∆𝜑𝑆𝑅 𝜑0
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Small amplitude synchrotron frequency with SR and FB (2/3)

❑ Simplifying and rearranging the terms we obtain

❑ We assume that the feedback shifts 𝜑0 by −𝜋/2 as desired. 
➢ This requires that no saturation has to occur in the feedback, i.e.

• The input of the ADC is always in the range −𝑉𝑚𝑎𝑥,𝐴𝐷𝐶 , 𝑉𝑚𝑎𝑥,𝐴𝐷𝐶 .

• The input of the DAC is always in the range − 2𝑛𝑏𝑖𝑡,𝐷𝐴𝐶−1 − 1 , 2𝑛𝑏𝑖𝑡,𝐷𝐴𝐶−1 .
➢ Grouping all the feedback gains in one expression, we have

ሷ𝜑0 +
2𝑈0
𝐸0𝑇0

ሶ𝜑0 −
𝜔𝑟𝑓𝛼0𝑒𝑉𝐹𝐵𝑘𝑖𝑐𝑘 𝜑0

𝐸0𝑇0
+
𝜔𝑟𝑓𝛼0𝑒 ෠𝑉𝑟𝑓

𝐸0𝑇0
sin ∆𝜑𝑆𝑅 𝜑0 = 0

𝜑0(𝑡) = 𝐴 sin 𝜔𝑠0𝑡 + 𝜙1

𝑉𝐹𝐵𝑘𝑖𝑐𝑘(𝑡) = −𝐴
𝑄𝑏
𝑇0

𝑍𝑏 𝑔𝑚𝑔𝑝𝑔𝑐𝑔𝑎𝑔𝑙𝑔𝑎2
2𝑛𝑏𝑖𝑡,𝐴𝐷𝐶 − 1

2𝑉𝑚𝑎𝑥,𝐴𝐷𝐶

𝑔𝐹𝑃𝐺𝐴𝑇𝑠0
2𝑇0

𝑔𝐷𝐴𝐶
2𝑛𝑏𝑖𝑡,𝐷𝐴𝐶−1

𝑉𝑀𝐴𝑋𝑘𝑖𝑐𝑘 cos 𝜔𝑠0𝑡 + 𝜙1 = −
1

𝜔𝑠0
𝑔𝐹𝐵𝑡𝑜𝑡 ሶ𝜑0(𝑡)

𝑔𝐹𝐵𝑡𝑜𝑡 =
𝑄𝑏
𝑇0

𝑍𝑏 𝑔𝑚𝑔𝑝𝑔𝑐𝑔𝑎𝑔𝑙𝑔𝑎2
2𝑛𝑏𝑖𝑡,𝐴𝐷𝐶 − 1

2𝑉𝑚𝑎𝑥,𝐴𝐷𝐶

𝑔𝐹𝑃𝐺𝐴𝑇𝑠0
2𝑇0

𝑔𝐷𝐴𝐶
2𝑛𝑏𝑖𝑡,𝐷𝐴𝐶−1

𝑉𝑀𝐴𝑋𝑘𝑖𝑐𝑘
➢ where 𝑔𝐹𝐵𝑡𝑜𝑡 > 0 is the total gain of 

the feedback in volt units

Phase detection ADC FPGA DAC Kicker max 
voltage

• Note 1: although 𝐴 should have rad 
units, in this case 𝐴 is dimensionless 
since 𝜑0 derives from sin 𝜑0 ≈ 𝜑0

• Note 2: if 𝑑𝐷𝑆𝐹 > 1 then, at least in 
first approximation, the FPGA term 
should be divided by 𝑑𝐷𝑆𝐹 (∆𝑡𝐷𝑆𝐹 = 
𝑑𝐷𝑆𝐹 𝑇0 in the convolution)
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Small amplitude synchrotron frequency with SR and FB (3/3)

❑ The differential equation becomes

❑ As expected, the feedback affects the damping-rate of the bunch oscillations. This rate becomes

❑ On the contrary, the feedback doesn’t affect the frequency of the oscillations

❑ The solution of the differential equation is 

❑ If, for instance, 𝜑0 0 = 0 and 𝛿 0 = መ𝛿 then

ሷ𝜑0 +
2𝑈0
𝐸0𝑇0

+
𝜔𝑟𝑓𝛼0𝑒𝑔𝐹𝐵𝑡𝑜𝑡

𝐸0𝑇0𝜔𝑠0
ሶ𝜑0 +

𝜔𝑟𝑓𝛼0𝑒 ෠𝑉𝑟𝑓 sin ∆𝜑𝑆𝑅

𝐸0𝑇0
𝜑0 = 0

𝜶𝒓,𝑺𝑹𝑭𝑩 = 𝜶𝒓,𝑺𝑹 + 𝜶𝒓,𝑭𝑩 =
𝑼𝟎

𝑬𝟎𝑻𝟎
+
𝝅𝒉𝒇𝟎

𝟐𝜶𝟎𝒆𝒈𝑭𝑩𝒕𝒐𝒕
𝑬𝟎𝝎𝒔𝟎

𝜔𝑠0,𝑆𝑅𝐹𝐵 = 𝜔𝑠0,𝑆𝑅

𝜑0 𝑡 = 𝐴𝑒−𝛼𝑟,𝑆𝑅𝐹𝐵𝑡cos 𝜔𝑠0,𝑆𝑅𝑡 + 𝐵

𝜑0 𝑡 =
𝜔𝑟𝑓𝛼0 መ𝛿

𝜔𝑠0,𝑆𝑅
𝑒−𝛼𝑟,𝑆𝑅𝐹𝐵𝑡sin 𝜔𝑠0,𝑆𝑅𝑡
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❑ Assuming 𝑈0 = 8.88 keV, 𝐸0 = 510 MeV, ෠𝑉𝑟𝑓 = 130 kV and 𝛼0 = 0.018, then 1/𝑄𝑠 = 106.95.

❑ In DAFNE 𝑑𝐷𝑆𝐹 can vary from 1 to 32, whereas 𝑁𝑡𝑎𝑝 can vary from 1 to 16.

➢ We assume that the maximum number of taps is used, i.e. 𝑁𝑡𝑎𝑝 = 16.

➢ In principle the optimal 𝑑𝐷𝑆𝐹 can be either 6 or 7 since

❑ We do single-bunch simulations without intensity effects to find which 𝑑𝐷𝑆𝐹 leads to the most efficient feedback-response.
➢ At turn 0 the bunch-phase is displaced by 0.1 rad with respect to ∆𝜑𝑆𝑅. 100000 turns are simulated. 

FPGA: DAFNE example (1/5)

𝑑𝐷𝑆𝐹 = Τ1 𝑁𝑡𝑎𝑝𝑄𝑠 = 6.68.

𝑛
𝑜
𝐴
𝐷
𝐶

[1
]

∆𝒕𝑫𝑺𝑭= 𝟔𝑻𝟎

➢ When 𝒅𝑫𝑺𝑭 = 𝟔, then 𝑛𝑜𝐴𝐷𝐶 and 𝑓𝐹𝐼𝑅,𝑖 cover less than one synchrotron period (𝑁𝑡𝑎𝑝𝑑𝐷𝑆𝐹 = 96 < 1/𝑄𝑠).

➢ When 𝒅𝑫𝑺𝑭 = 𝟕, then 𝑛𝑜𝐴𝐷𝐶 and 𝑓𝐹𝐼𝑅,𝑖 cover more than one synchrotron period (𝑁𝑡𝑎𝑝𝑑𝐷𝑆𝐹 = 112 > 1/𝑄𝑠).

Turn [1] Turn [1]

𝑓 𝐹
𝐼𝑅
,𝑖

[1
]

𝑓 𝐹
𝐼𝑅
,𝑖

[1
]

∆𝒕𝑫𝑺𝑭= 𝟕𝑻𝟎

𝒅𝑫𝑺𝑭 = 𝟔: filter with 𝑵𝒕𝒂𝒑 = 16 and first 16 samples of 𝒏𝒐𝑨𝑫𝑪
(no feedback-correction applied to the bunch)

𝒅𝑫𝑺𝑭 = 𝟕: filter with 𝑵𝒕𝒂𝒑 = 16 and first 16 samples of 𝒏𝒐𝑨𝑫𝑪
(no feedback-correction applied to the bunch)

𝑛
𝑜
𝐴
𝐷
𝐶

[1
]
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FPGA: DAFNE example (2/5)
❑ We compare the frequency-response of the filter when 𝑑𝐷𝑆𝐹 = 6 and 𝑑𝐷𝑆𝐹 = 7. 

ℱ
𝑓 𝐹
𝐼𝑅
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𝑓 𝐹
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[r
ad

]

Frequency [kHz]
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𝐼𝑅
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 ℱ

𝑓 𝐹
𝐼𝑅

[r
ad

]

Frequency [kHz]

Frequency [kHz]

Frequency [kHz]

𝒇𝒔𝟎

𝒇𝒔𝟎

𝒇𝒔𝟎

𝒇𝒔𝟎

𝝓𝟐 𝝓𝟐

𝒅𝑫𝑺𝑭 = 𝟔: frequency response of the filter 𝒅𝑫𝑺𝑭 = 𝟕: frequency response of the filter

➢ 𝜙2 = 𝜔𝑠0𝑇0 1+𝑑𝐷𝑆𝐹/2 is equal to 0.235 rad when 𝑑𝐷𝑆𝐹 = 6, 0.264 rad when 𝑑𝐷𝑆𝐹 = 7.
➢ The modulus frequency-response around 𝑓𝑠0 is lower when 𝑑𝐷𝑆𝐹 = 7.

- 𝝅/𝟐 - 𝝅/𝟐
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𝑛
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Turn [1]

𝒅𝑫𝑺𝑭 = 𝟔: 𝒏𝒐𝑨𝑫𝑪 and 𝒏𝒐𝑭𝑷𝑮𝑨

❑ We analyse the evolution of 𝑛𝑜𝐴𝐷𝐶 and 𝑛𝑜𝐹𝑃𝐺𝐴 without applying the feedback-correction to the bunch. 
➢ The linear interpolations between consecutive points are plotted only to facilitate the visualization.
➢ The decay of the oscillations is due to synchrotron radiation.

Zoom 1 (0-150 turns) Zoom 2 (850-1000 turns)

➢ The shaded regions cover the first 𝑁𝑡𝑎𝑝 − 1 = 15 samples of 𝑛𝑜𝐴𝐷𝐶 . Here 𝑛𝑜𝐹𝑃𝐺𝐴 is in transient regime (hold-buffer not full yet).

➢ The 𝑛𝑜𝐹𝑃𝐺𝐴 amplitude is lower when 𝑑𝐷𝑆𝐹 = 7. This is due to the lower modulus of the frequency-response around 𝑓𝑠0.
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FPGA: DAFNE example (3/5)
𝑛
𝑜
𝐴
𝐷
𝐶
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]

𝒅𝑫𝑺𝑭 = 𝟕: 𝒏𝒐𝑨𝑫𝑪 and 𝒏𝒐𝑭𝑷𝑮𝑨

𝝓𝟐

𝝓𝟐

Zoom 1 (0-150 turns) Zoom 2 (850-1000 turns)
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❑ We analyse the evolution of 𝑛𝑜𝐴𝐷𝐶 , 𝑛𝑜𝐹𝑃𝐺𝐴 and 𝑉𝐹𝐵𝑘𝑖𝑐𝑘 when the feedback-correction is applied to the bunch.
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FPGA: DAFNE example (4/5)

𝒅𝑫𝑺𝑭 = 𝟔: evolution of 𝒏𝒐𝑨𝑫𝑪, 𝒏𝒐𝑭𝑷𝑮𝑨 and 𝑽𝑭𝑩𝒌𝒊𝒄𝒌
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𝒅𝑫𝑺𝑭 = 𝟕: evolution of 𝒏𝒐𝑨𝑫𝑪, 𝒏𝒐𝑭𝑷𝑮𝑨 and 𝑽𝑭𝑩𝒌𝒊𝒄𝒌

Turn [1]

Zoom 
(99500-100000 turns)

Zoom 
(99500-100000 turns)

➢ When 𝑑𝐷𝑆𝐹 = 6, faster exponential decay of 𝑛𝑜𝐴𝐷𝐶 (black and orange dashed lines) due to the larger amplitude of 𝑛𝑜𝐹𝑃𝐺𝐴 and 𝑉𝐹𝐵𝑘𝑖𝑐𝑘.
➢ At the end of the simulations, 𝑛𝑜𝐴𝐷𝐶 takes 0 and 1 values, whereas 𝑛𝑜𝐹𝑃𝐺𝐴 is sinusoidal like with 𝑛𝑜𝐹𝑃𝐺𝐴 < 0.4.
➢ In this example 𝑔𝐷𝐴𝐶 = 0.5, therefore 𝑉𝐹𝐵𝑘𝑖𝑐𝑘 = 0 if 𝑛𝑜𝐹𝑃𝐺𝐴 < 2, and this occurs after about 10000 turns. 
➢ There is a transient period of about 100 turns for 𝑉𝐹𝐵𝑘𝑖𝑐𝑘.
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FPGA: DAFNE example (5/5)

Turn [1]

Δ
𝜑
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ad

]

➢ The simulated damping-rates are 𝛼𝑟 = 1443 1/s if 𝑑𝐷𝑆𝐹 = 6, 𝛼𝑟 = 1270 1/s if 𝑑𝐷𝑆𝐹 = 7. 
➢ The analytical damping-rates are 𝛼𝑟,𝑆𝑅𝐹𝐵 = 1473 1/s if 𝑑𝐷𝑆𝐹 = 6, 𝛼𝑟,𝑆𝑅𝐹𝐵 = 1270 1/s if 𝑑𝐷𝑆𝐹 = 7 (good agreements with simulations). 

• The analytical damping-rate assuming 𝑑𝐷𝑆𝐹 = 1 is 𝛼𝑟,𝑆𝑅𝐹𝐵 = 8569 1/s (𝛼𝑟,𝑆𝑅 = 53 1/s, 𝛼𝑟,𝐹𝐵 = 8516 1/s).

❑ This example shows that 𝑑𝐷𝑆𝐹 = 6 should be preferred to 𝑑𝐷𝑆𝐹 = 7 (an equal 𝛼𝑟 is obtained by increasing 𝑔𝐷𝐴𝐶 by 14% when 𝑑𝐷𝑆𝐹 = 7).

❑ We analyse the evolution of the bunch-phase Δ𝜑 when the feedback-correction is applied to the bunch.

𝒅𝑫𝑺𝑭 = 𝟔 𝒅𝑫𝑺𝑭 = 𝟕
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Here the envelope is not exponential 
due to the transient period of 𝑽𝑭𝑩𝒌𝒊𝒄𝒌

Here the envelope is not exponential 
due to the transient period of 𝑽𝑭𝑩𝒌𝒊𝒄𝒌

ZoomZoom
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Cavity kicker in DAFNE: introduction
❑ The active element of the longitudinal feedback-system is the cavity-kicker.

➢ One kicker per DAFNE ring.

❑ The kicker is a special ‘overdamped’ pill-box cavity:
➢ The pill-box cavity is 72 mm long and has a diameter of 200 mm (the 

diameter of the beam-pipe is 88 mm).

❑ A large bandwidth is obtained by loading the pill-box cavity with 6 ridged 
waveguides followed by broadband transitions to standard coaxial cables.
➢ The 6 waveguides are placed symmetrically on the pill box, 120° apart from 

each other.

❑ 3 waveguides (ports) are used to inject power into the kicker, the other 3 are 
terminated onto 50 Ω termination loads.
➢ Thanks to the symmetry of the waveguides and the fact that the power 

dissipated on the loads is much larger than the one dissipated on the cavity 
walls, the system is in theory perfectly matched at the resonant frequency 
(zero reflected power by the input ports).

❑ There is no need to tune the kicker in operation due to the large bandwidth and 
no need to cool the kicker since most of the power is dissipated on the loads.

❑ The strong waveguide-coupling leads also, as a by-product, to a significant 
damping of all the kicker HOMs.

Cavity kicker for the DAFNE positron ring

A. Drago 
(2018)

CAD view of the cavity kicker

A. Gallo 
(1995)
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Kicker parameters (1/3)
❑ The kicker must be able to damp the coupled-bunch instabilities due to the HOMs (mostly those of the accelerating RF system).

❑ It was shown that, in the presence of coupled-bunch instabilities, the beam-spectrum lines which can be excited are situated at

➢ where 𝑙 ∈ −∞,+∞ , 𝑚 ∈ −∞,+∞ is the oscillation mode and 𝜇 = 0,… , 𝑁𝑏 is the coupled-bunch mode.

❑ We suppose that the machine is full, i.e. 𝑁𝑏 = ℎ, and that 𝑚 = 1, since the dipolar mode is usually the most critical for coupled-bunch 
instabilities. This leads to

➢ with 𝑓𝑠,𝐻𝑂𝑀 ≪ 𝑓0 (in DAFNE they differ by about factor 100).

❑ To be able to damp every coupled-bunch mode, it is sufficient that the kicker bandwidth covers for each ҧ𝜇 at least one line 𝑓𝑙,ഥ𝜇. 
➢ We want to find the minimum bandwidth able to do this: larger bandwidths would unnecessarily lower the kicker shunt 

impedance and this, as shown later, would decrease the available kicker-voltage for a given amplifier power.

❑ Neglecting in the analysis 𝑓𝑠,𝐻𝑂𝑀 which is relatively small, and considering that 𝑙 can be positive and negative, it can be easily verified 
that the minimum required bandwidth ∆𝑓𝐵𝑊,𝑚𝑖𝑛 is

➢ as long as the resonant frequency is placed at

𝑓𝑙,𝑚,𝜇 = 𝑙𝑁𝑏 −𝑚𝜇 𝑓0 −𝑚𝑓𝑠,𝐻𝑂𝑀

𝑓𝑙,𝜇 = 𝑙𝑓𝑟𝑓 − 𝜇𝑓0 − 𝑓𝑠,𝐻𝑂𝑀

∆𝑓𝐵𝑊,𝑚𝑖𝑛=
𝑓𝑟𝑓

2

𝑝 ± 0.25 𝑓𝑟𝑓0.25 𝑓𝑟𝑓 or 𝑝 ≥ 1



❑ In DAFNE the following resonant frequency was chosen

➢ Since the pillbox cavity is operated in the TM010

fundamental mode, the diameter of the pill box cavity 
can be estimated as

❑ The constraints on the kicker bandwidth ∆𝑓𝐵𝑊 and the 
quality factor 𝑄 are given by

➢ In DAFNE the measured and simulated kicker 
bandwidth and quality factor are

➢ Since each waveguide covers 11% of the available cavity 
surface, the number of waveguides could be increased 
to 8 leading to a larger bandwidth.
• This was not done since the constraints are already 

satisfied (with some margin) using 6 waveguides.
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𝑓𝑟 = 3.25𝑓𝑟𝑓 = 1198 MHz

𝑄 <
𝑓𝑟

∆𝑓𝐵𝑊,𝑚𝑖𝑛
= 6.5

Kicker parameters (2/3)

𝑑𝑝𝑖𝑙𝑙𝑏𝑜𝑥 =
2.405𝑐

𝜋𝑓𝑟
≈ 200 mm

∆𝑓𝐵𝑊> ∆𝑓𝐵𝑊,𝑚𝑖𝑛=
𝑓𝑟𝑓

2
= 184 MHz

∆𝑓𝐵𝑊 ≈ 220 MHz 𝑄 ≈ 5.4

Kicker shunt-impedance reproduced in simulation with some spectrum 
lines (see next slide for the definition of 𝑹𝒔,𝒔), 𝒇𝒔,𝑯𝑶𝑴 = 𝟑𝟎 kHz 

𝟑. 𝟐𝟓𝒇𝒓𝒇𝟑𝒇𝒓𝒇 𝟑. 𝟓𝒇𝒓𝒇

−𝟑. 𝟐𝟓𝒇𝒓𝒇−𝟑. 𝟓𝒇𝒓𝒇 −𝟑𝒇𝒓𝒇

𝒇𝟑,𝟎 𝒇𝟒,𝟔𝟎

𝒇𝟒,𝟗𝟎

𝒇𝟒,𝟑𝟎

𝒇𝟒,𝟎

𝒇𝟑,𝟑𝟎

𝒇−𝟑,𝟎

𝒇−𝟑,𝟑𝟎

𝒇−𝟑,𝟔𝟎𝒇−𝟑,𝟗𝟎 𝒇−𝟐,𝟗𝟎

𝒇−𝟐,𝟔𝟎

𝑅
𝑠,
𝑠
[Ω
]

𝑅
𝑠,
𝑠
[Ω
]

𝑅
𝑠,
𝑠
[Ω
]

𝑹𝒔,𝒔(𝒇𝒓)

𝟐

Zoom 1

Zoom 2

Bandwidth 
covers at least 
𝝁 = 60,…,119

Bandwidth 
covers at least 
𝝁 = 0,…,60

𝑹𝒔,𝒔(𝒇𝒓)

𝟐



❑ The frequency-dependent kicker shunt-impedance 𝑅𝑠,𝑠(𝑓) is defined as

➢ where 𝑉𝑔, 𝑃𝑓𝑤 and 𝐿 are respectively the kicker gap-voltage 

phasor, the forward-power at the kicker input and the gap length;
➢ where 𝐸𝑧 and 𝜙𝑧 are respectively the amplitude and phase of the 

longitudinal electric-field evaluated on the beam axis and 
expressed as a phasor:

❑ 𝑅𝑠,𝑠(𝑓) was computed by integrating on the beam-axis the 𝐸-field 
distribution given by a 3D electromagnetic simulation of the kicker.

❑ Simulations, and also measurement, showed that 𝑅𝑠,𝑠 𝑓𝑟 ≈ 750 Ω.
➢ The maximum power provided by the kicker amplifiers is 600 W.

➢ One 200 W power-amplifier for each input-waveguide.
➢ The available gap-voltage when the kicker-generator works at 𝑓𝑟 is
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Frequency [MHz]

𝑅
𝑠,
𝑠

[Ω
]

A. Gallo 
(1995)

𝑅𝑠,𝑠 𝑓 =
𝑉𝑔(𝑓)

2

2𝑃𝑓𝑤
=

1

2𝑃𝑓𝑤
න
−
𝐿
2

𝐿
2
𝐸𝑧(𝑧)𝑒

𝑗 2𝜋𝑓
𝑧
𝑐−𝜙𝑧(𝑧) 𝑑𝑧

2

𝒇𝒓

Shunt-impedance obtained from an 
electromagnetic simulation of the kicker model

𝐸𝑧 𝑧, 𝑡 = Re 𝐸𝑧 𝑧 𝑒𝑗 2𝜋𝑓𝑡−𝜙𝑧(𝑧)

𝑹𝒔,𝒔 𝒇𝒓

𝑉𝑀𝐴𝑋𝑘𝑖𝑐𝑘 = 𝑉𝑔(𝑓𝑟) = 2𝑃𝑓𝑤𝑅𝑠,𝑠 𝑓𝑟 ≈ 950 V

❑ It turns out that 𝑅𝑠,𝑠 𝑓 = 2 Re 𝑍(𝑓) , where 𝑍 is the 
beam-coupling impedance of the kicker.
➢ The kicker, in addition to providing the voltage-

correction to each bunch, contributes as a 
resonant impedance with parameters

➢ This impedance, not included in the Fortran code, 
was added in the new Python code.  

𝑓𝑟 = 3.25𝑓𝑟𝑓 𝑄 = 5.4 𝑅𝑠 = Τ𝑅𝑠,𝑠 𝑓𝑟 2 = 375 Ω

Kicker parameters (3/3)

∆𝒇𝑩𝑾



❑ As shown, the HOMs shunt-impedances were rescaled by an exponential factor to consider the Gaussian profile of the bunches. 
➢ We show now that this technique can’t be properly used for the kicker fundamental-mode due to its relatively small 𝑄.

❑ We consider the parameters of the kicker fundamental-mode 𝑓𝑟 = 3.25𝑓𝑟𝑓, 𝑄 = 5.4, 𝑅𝑠 = 375 Ω and a Gaussian profile of rms 𝜎𝑡.

❑ The kicker wake-potential induced by the Gaussian profile at distance 𝑧 = 𝑐𝑡 from its centre can be computed analytically as

➢ where erfc is the complementary error function and 

➢ This formula is obtained through profile and wake-function convolution using algebraic routines from the Mathematica software.
➢ This formula is valid for every resonator impedance.

• A plot of 𝑊1 has already been shown to verify that the HOM shunt-impedance rescaling was possible.

❑ As concerns the kicker impedance, we want to compare 𝑊1 with two rescaled wake-functions:
➢ 𝑊2: the rescaling is done by using the exponential factor already adopted for the HOMs;
➢ 𝑊3: the rescaling factor is such that 𝑊3 0 = 𝑊1 0 .
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Kicker coupling-impedance in the code (1/3)

𝑊1 𝑡 = −𝑅𝑠
Γ

𝜔𝑛
𝑒
1
2 Γ2−𝜔𝑛

2 𝜎𝑡
2−Γ𝑡

Re erfc 𝐴 𝜔𝑛 cos𝐵 + Γ sin𝐵 + Im erfc 𝐴 Γ cos𝐵 − 𝜔𝑛 sin𝐵

Γ =
𝜔𝑟
2𝑄

≈
𝜔𝑟
11

𝜔𝑛 = 𝜔𝑟
2 − Γ2 ≈ 𝜔𝑟 𝐴 =

Γ𝜎𝑡
2 − 𝑡 + 𝑗𝜔𝑛𝜎𝑡

2

2𝜎𝑡
𝐵 = Γ𝜔𝑛𝜎𝑡

2 − 𝜔𝑛𝑡

𝑡 ∈ −∞,+∞

𝑊2 𝑡 = 𝑒−
𝜔𝑟
2𝜎𝑡

2

2 𝑤∥ 𝑡 𝑊3 𝑡 =
𝑊1 0

𝑤∥ 0
𝑤∥ 𝑡 where 𝑤∥ 𝑡 = − sgn 𝑡 + 1

𝑅𝑠𝜔𝑟
2𝑄

𝑒
−
𝜔𝑟
2𝑄

𝑡
cos 𝜔𝑛𝑡 −

𝜔𝑟
2𝑄𝜔𝑛

sin 𝜔𝑛𝑡
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Kicker coupling-impedance in the code (2/3)
❑ We show the three potentials for the DAFNE case, using 𝜎𝑡 = 20 mm. 

Wake potentials and bunch profile 

Zoom 1

Zoom 2

Zoom 3

❑ 𝑊1 decays to zero after essentially 3 RF periods.
❑ At 0 ns the amplitudes of 𝑊1 and 𝑊2 differ by 7%.

After roughly 0.2 ns:
➢ there is a time-shift of 2.7 ps between 𝑊1 and 𝑊2;
➢ the amplitudes of 𝑊1 and 𝑊2 are the same.

❑ At 0 ns the 𝑊1 and 𝑊3 amplitudes coincide by construction.
After roughly 0.2 ns:
➢ there is a time-shift of 2.7 ps between 𝑊1 and 𝑊3;
➢ the amplitudes of 𝑊1 and 𝑊3 differ by 7%.

❑ As for the beam dynamics, we expect that the 
approximation using 𝑊2 is stronger than the one using 𝑊3.
➢ Error using 𝑊2: always 15 V/nC;
➢ Worst-case error using 𝑊3: 7% of 150 V/nC + 7% of 25 

V/nC = 12 V/nC.
➢ If the bunch distances are 𝑡𝑟𝑓 (e.g. in stable 

conditions), the error using 𝑊3 is just 7% of 10 V/nC. 
Indeed the bunch sees zero potential from the last 
bunch due to the fact that 𝜔𝑛 ≈ 𝜔𝑟 = 3.25 𝜔𝑟𝑓.

❑ 𝑊2 and 𝑊3 are among the best possible fits for 𝑊1.
➢ In any case the constant time-shifts can’t be 

compensated changing the resonator parameters.
➢ This proves that no resonator can properly fit 𝑊1.

𝒕𝒓𝒇
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2.7 ps 

0%

2.7 ps 

7%

𝑾𝟏

𝑾𝟐

𝑾𝟑
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𝑽
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𝒏𝑪

0 
𝑽

𝒏𝑪

10 
𝑽

𝒏𝑪
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Kicker coupling-impedance in the code (3/3)
❑ Being the resonator-fits unprecise, the kicker-impedance contribution was added in the energy equation of motion using directly 𝑊1.

• Here the phases aren’t meant mod 2𝜋, i.e.  𝑐 ∆𝜑𝑘
(𝑛+1)

− ∆𝜑𝑘−𝑖
(𝑛+1)

/𝜔𝑟𝑓 is the distance between the bunches 𝑘 and 𝑘 − 𝑖.

• As shown, the kicker induced-voltage decays after 3 RF periods, so the contributions from the last 3 bunches are enough.

𝛿𝑘
(𝑛+1)

= 𝛿𝑘
(𝑛)

−
𝑈0
𝐸0

1 + 2𝛿𝑘
𝑛

+
𝑒𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘

𝑛

𝐸0
+
𝑒 ෠𝑉𝑟𝑓 cos ∆𝜑𝑘

𝑛+1

𝐸0
+

𝑒

𝐸0
෍

𝑗=1

𝑁𝐻𝑂𝑀

𝑉𝑘,𝑗,𝑅𝐸𝑆
𝑛+1

+ 𝑉𝑘,𝑗,𝐼𝑁𝐷 +
𝑒𝑉𝑘𝑖𝑐𝑘𝑒𝑟,𝑘

𝑛+1

𝐸0

𝑉𝑘𝑖𝑐𝑘𝑒𝑟,𝑘
𝑛+1 = 𝑄𝑏 𝑊1 0 +𝑊1 ൗ∆𝜑𝑘

(𝑛+1)
− ∆𝜑𝑘−1

(𝑛+1)
𝜔𝑟𝑓 +𝑊1 ൗ∆𝜑𝑘

(𝑛+1)
− ∆𝜑𝑘−2

(𝑛+1)
𝜔𝑟𝑓 +𝑊1 ൗ∆𝜑𝑘

(𝑛+1)
− ∆𝜑𝑘−3

(𝑛+1)
𝜔𝑟𝑓

Oscillations of bunch 80,
matching with just HOMs

Initial amplitude  
20 mrad

Initial amplitude  
1 mrad

Initial amplitude  
0.03 mrad

❑ DAFNE example with 105 contiguous bunches, 
𝐼𝑏 = 15 mA, HOMs + kicker impedances during 
tracking, feedback off, bunch 𝑘 starts at ∆𝜑𝐻𝑂𝑀,𝑘.
➢ Although it’s an approximation, the 

matching with HOMs + 𝑊3 provides a 
negligible initial oscillation-amplitude for all 
bunches (as the number 80 here shown).

➢ The matching with HOMs + 𝑊2 provides less 
satisfying results, as expected from the 
observations given in the previous slide.

❑ Since the kicker induced-voltage isn’t negligible, it was also necessary to add the kicker-impedance in the beam-matching routine. 
➢ This was done by simply adding the resonator 𝑊3 to the HOMs during the matching procedure.

Oscillations of bunch 80,
matching with HOMs+𝑾𝟐

Oscillations of bunch 80,
matching with HOMs+𝑾𝟑

➢ where the kicker induced-voltage is given by the sum of the instantaneous voltage and the voltage induced by the last 3 bunches



❑ We now describe the second voltage-contribution of the kicker, i.e. the voltage-corrections given to the bunches.

❑ The final part of the feedback block-diagram shown earlier can be expanded (and simplified) as
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Kicker correction-voltage

Cavity-kicker
(it provides the actual 
correction-kicks to the bunches)

DAC (it provides the values of the ideal correction-voltages) 

Mixer or amplitude modulator
(it multiplies the QPSK signal with 
the values provided by the DAC)

QPSK
(it shifts the phase 
of the signal by 
90° every 𝑡𝑟𝑓) 

RF generator
(it produces a sine wave with 
frequency 𝑓𝑒 = 3.25𝑓𝑟𝑓, phase 

𝜑𝑒 = 0 and amplitude 1 V)

❑ The DAC provides the values 𝑉𝐹𝐵𝑘𝑖𝑐𝑘 of the voltages which should be given to the bunches to have optimal corrections.

❑ The generator produces a sine wave with frequency 𝑓𝑒 = 3.25𝑓𝑟𝑓, which is the resonant frequency of the kicker.

➢ If this signal is equal to 0 at 𝑡 = 0, then a bunch crossing the kicker at 𝑡 = 𝑡𝑟𝑓 sees the maximum of the sine wave, as desired.

➢ However, a second bunch crossing the kicker at 𝑡 = 2𝑡𝑟𝑓 sees zero voltage and therefore no correction is applied to that bunch.

➢ To solve this problem, the QPSK (Quadrature Phase-Shift Keying) modulation is used to shift the signal by 90° every 𝑡𝑟𝑓.

❑ The mixer multiplies the signal coming from the QPSK with the values 𝑉𝐹𝐵𝑘𝑖𝑐𝑘 provided by the DAC.
➢ The resulting signal is a piece-wise sinusoidal signal with amplitudes given by the values 𝑉𝐹𝐵𝑘𝑖𝑐𝑘.

❑ The cavity-kicker, being a resonator with its filling time, modifies the signal coming from the mixer.
➢ Because of this, even if everything is perfectly synchronized, the bunches can see just an approximation of the ideal kicks 𝑉𝐹𝐵𝑘𝑖𝑐𝑘.
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Example: voltage signal from generator to mixer
❑ Let’s suppose that the bunches 1, 2, 3 and 4 circulate in DAFNE (𝑡𝑟𝑓 = 2.71 ns).

➢ At a certain turn 𝑛 the values 𝑉𝐹𝐵𝑘𝑖𝑐𝑘 of the ideal correction-voltages are 2, -0.5, -2.5, 4 respectively for the bunches 1, 2, 3 and 4.
➢ The kicker is crossed by the bunch 𝑖 at 𝑖𝑡𝑟𝑓, 𝑖 = 1,… , 4.

❑ The mixer-signal is given by the QPSK-signal, which never changes along the turns, multiplied with the DAC signal, which changes every 𝑑𝐷𝑆𝐹 turns.
➢ The voltage from the mixer is discontinuous at the times which are multiple of 𝑡𝑟𝑓.

➢ As shown later, the voltage-signal from the kicker is continuous at all times and bunches arriving slightly late can still get a proper correction.

Voltage from the generator

V
o
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e 
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]

Time [ns]
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Time [ns]
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]

Time [ns]

Voltage from the QPSK

Signal from the DAC at turn 𝒏

Voltage from the mixer at turn 𝒏

𝑉 𝐹
𝐵
𝑘
𝑖𝑐
𝑘

[1
]

0 𝒕𝒓𝒇 2𝒕𝒓𝒇 3𝒕𝒓𝒇 4𝒕𝒓𝒇 0 𝒕𝒓𝒇 2𝒕𝒓𝒇 3𝒕𝒓𝒇 4𝒕𝒓𝒇
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Kicker correction-voltage in the code (1/6)
❑ The cavity-kicker is modelled as a parallel RLC resonant circuit. This allows to take into account the finite filling-time of the kicker.

❑ The kicker is excited by the circulating beam-current 𝑖𝑏(𝑡) and by the kicker RF-generator 𝑉𝑔(𝑡).

➢ The generator has angular frequency 𝜔𝑒 = 2𝜋𝑓𝑒 and is amplitude-modulated with the 𝑉𝐹𝐵𝑘𝑖𝑐𝑘 values coming from the DAC.
➢ The generator has inner resistance equal to the shunt impedance of the kicker divided by the coupling factor

➢ As observed earlier, we assume that the generator-kicker system is perfectly matched when the generator works at 𝑓𝑒, therefore 𝛽𝑐 = 1.

❑ Since we expect that the bunches cross the kicker at times 𝑘𝑡𝑟𝑓, after the passage of the bunch 𝑘 − 1 at (𝑘 − 1)𝑡𝑟𝑓 the generator-amplitude 

𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘−1 suddenly changes to the value 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘 pertaining to the bunch 𝑘. The QPSK shifts the generator-phase by 90° at times 𝑘𝑡𝑟𝑓.

Cavity-kickerGenerator Beam

𝑹𝒔 𝑳
𝑪

𝒊𝒃(𝒕)

𝑽(𝒕)

𝑹𝒔
𝜷𝒄

𝑽𝒈(𝒕)

𝑽𝒈(𝒕) = 𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝒌 𝐬𝐢𝐧 𝝎𝒆𝒕

𝒊𝒃 𝒕 = 𝑸𝒃෍

𝒌≥𝟏

𝜹(𝒕 − 𝒌𝒕𝒓𝒇)

𝑽(𝒕): voltage across the capacitance at time t

Sources

Unknown

𝛽𝑐 =
𝑃𝑒𝑥𝑡
𝑃𝑤𝑎𝑙𝑙 Ohmic power-losses due to the non-perfectly conductive walls of the kicker.

𝑘 = 1, 2,…

‘External’ power lost through the waveguides (power-couplers).

❑ In the following derivation we neglect the beam current (𝑖𝑏(𝑡) ≡ 0) since the corresponding (induced) voltage was already considered.

𝑡 ∈ 𝑘 − 1 𝑡𝑟𝑓 , 𝑘𝑡𝑟𝑓



❑ The generator-voltage in the time interval 𝑘 − 1 𝑡𝑟𝑓 ≤ 𝑡 < 𝑘𝑡𝑟𝑓 is given by

➢ where we consider the more general case with 𝜑𝑒 ≠ 0.

❑ Applying the Kirchhoff’s law for currents, we have

❑ Deriving one time

❑ The associated homogenous differential equation is 

❑ Its eigenvalues are

❑ Its solution is
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𝑉(𝑡)

𝑅𝑠
+
1

𝐿
න
0

𝑡

𝑉 𝑠 𝑑𝑠 + 𝐶
𝑑𝑉(𝑡)

𝑑𝑡
=
𝑉𝑔(𝑡)

𝑅𝑠
=
𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘

𝑅𝑠
sin 𝜔𝑒𝑡 + 𝜑𝑒

ሷ𝑉 + 2Γ ሶ𝑉 + 𝜔𝑟
2𝑉 = 𝐹𝑘 cos 𝜔𝑒𝑡 + 𝜑𝑒 Γ =

1

2𝐶𝑅𝑠
𝜔𝑟 =

1

𝐶𝐿

𝑉𝑔(𝑡) = 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘 sin 𝜔𝑒𝑡 + 𝜑𝑒

ሷ𝑉ℎ + 2Γ ሶ𝑉ℎ +𝜔𝑟
2𝑉ℎ = 0

𝜆1,2 = −Γ ± 𝑗 𝜔𝑟
2 − Γ2 = −Γ ± 𝑗𝜔𝑛 𝜔𝑛 = 𝜔𝑟

2 − Γ2

𝑉ℎ 𝑡 = 𝑒−Γ𝑡 𝐶1 cos 𝜔𝑛𝑡 + 𝐶2 sin 𝜔𝑛𝑡

Kicker correction-voltage in the code (2/6)

𝐹𝑘 = 2Γ𝜔𝑒𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘

➢ where the constant 𝐶1 and 𝐶2 depend on 𝑉 0 = 𝑉0 and ሶ𝑉 0 = ሶ𝑉0.
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❑ The forcing term of the inhomogeneous equation is

❑ Therefore we find a particular solution of the type

➢ where 𝑋 is a complex constant. 

❑ Inserting 𝐹𝑘𝑒
𝑗 𝜔𝑒𝑡+𝜑𝑒 and 𝑋𝑒𝑗 𝜔𝑒𝑡+𝜑𝑒 into the inhomogeneous differential equation we obtain

❑ Solving for 𝑋

➢ where

𝐹𝑘 cos 𝜔𝑒𝑡 + 𝜑𝑒 =Re 𝐹𝑘𝑒
𝑗 𝜔𝑒𝑡+𝜑𝑒

𝑉𝑝 𝑡 = Re 𝑋𝑒𝑗 𝜔𝑒𝑡+𝜑𝑒

−𝑋𝜔𝑒
2 + 2Γ𝑋𝜔𝑒𝑗 + 𝜔𝑟

2𝑋 = 𝐹𝑘

𝑋 =
2Γ𝜔𝑒𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘

𝜔𝑟
2 − 𝜔𝑒

2 + 2Γ𝜔𝑒𝑗
=

𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘

𝑄
𝜔𝑟
𝜔𝑒

−
𝜔𝑒
𝜔𝑟

+ 𝑗
=
𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘 𝑄

𝜔𝑟
𝜔𝑒

−
𝜔𝑒
𝜔𝑟

− 𝑗

𝑄2
𝜔𝑟
𝜔𝑒

−
𝜔𝑒
𝜔𝑟

2

+ 1

= 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘 𝐴 − 𝑗𝐵

𝑄 =
𝜔𝑟
2Γ

𝐴 =
𝑄

𝜔𝑟
𝜔𝑒

−
𝜔𝑒
𝜔𝑟

𝑄2
𝜔𝑟
𝜔𝑒

−
𝜔𝑒
𝜔𝑟

2

+ 1

𝐵 =
1

𝑄2
𝜔𝑟
𝜔𝑒

−
𝜔𝑒
𝜔𝑟

2

+ 1

Kicker correction-voltage in the code (3/6)
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❑ Substituting

❑ Therefore all the solutions of the inhomogeneous differential equation are given by

❑ 𝐶1 is determined by

❑ 𝐶2 is determined by

𝑉𝑝 𝑡 = 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘Re 𝐴 − 𝑗𝐵 𝑒𝑗 𝜔𝑒𝑡+𝜑𝑒 = 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘 𝐴 cos 𝜔𝑒𝑡 + 𝜑𝑒 + 𝐵 sin 𝜔𝑒𝑡 + 𝜑𝑒

𝑉 𝑡 = 𝑒−Γ𝑡 𝐶1 cos 𝜔𝑛𝑡 + 𝐶2 sin 𝜔𝑛𝑡 + 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘 𝐴 cos 𝜔𝑒𝑡 + 𝜑𝑒 + 𝐵 sin 𝜔𝑒𝑡 + 𝜑𝑒

𝑉0 = 𝐶1 + 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘 𝐴 cos𝜑𝑒 + 𝐵 sin𝜑𝑒 𝐶1 = 𝑉0 − 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘 𝐴 cos𝜑𝑒 + 𝐵 sin𝜑𝑒

ሶ𝑉0 = −Γ𝐶1 + 𝐶2𝜔𝑛 + 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘𝜔𝑒 𝐵 cos𝜑𝑒 − 𝐴 sin𝜑𝑒

𝐶2 =
1

𝜔𝑛
ሶ𝑉0 +

Γ

𝜔𝑛
𝑉0 −

Γ𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘
𝜔𝑛

𝐴 cos𝜑𝑒 + 𝐵 sin𝜑𝑒 −
𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘𝜔𝑒

𝜔𝑛
𝐵 cos𝜑𝑒 − 𝐴 sin𝜑𝑒

Kicker correction-voltage in the code (4/6)
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❑ Substituting we finally obtain

➢ where

❑ Deriving 𝑉 𝑡 we obtain

➢ where 

𝑉 𝑡 = 𝑒−Γ𝑡 cos 𝜔𝑛𝑡 +
Γ

𝜔𝑛
sin 𝜔𝑛𝑡 𝑉0 +

sin 𝜔𝑛𝑡

𝜔𝑛
ሶ𝑉0 + 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘𝑓(𝑡)

𝑓 𝑡 = 𝐴 cos 𝜔𝑒𝑡 + 𝜑𝑒 + 𝐵 sin 𝜔𝑒𝑡 + 𝜑𝑒 +

−𝑒−Γ𝑡 𝐴 cos𝜑𝑒 + 𝐵 sin𝜑𝑒 cos 𝜔𝑛𝑡 +
Γ𝐴 + 𝜔𝑒𝐵 cos𝜑𝑒 + Γ𝐵 − 𝜔𝑒𝐴 sin𝜑𝑒

𝜔𝑛
sin 𝜔𝑛𝑡

ሶ𝑉 𝑡 = 𝑒−Γ𝑡 −
𝜔𝑟
2

𝜔𝑛
sin 𝜔𝑛𝑡 𝑉0 + cos 𝜔𝑛𝑡 −

Γ

𝜔𝑛
sin 𝜔𝑛𝑡 ሶ𝑉0 + 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘 ሶ𝑓 (𝑡)

ሶ𝑓 𝑡 = −𝐴𝜔𝑒 sin 𝜔𝑒𝑡 + 𝜑𝑒 + 𝐵𝜔𝑒 cos 𝜔𝑒𝑡 + 𝜑𝑒 +

𝑒−Γ𝑡 𝜔𝑒 𝐴 sin𝜑𝑒 − 𝐵 cos𝜑𝑒 cos 𝜔𝑛𝑡 +
𝜔𝑟
2𝐴 + Γ𝜔𝑒𝐵 cos𝜑𝑒 + 𝜔𝑟

2𝐵 − Γ𝜔𝑒𝐴 sin𝜑𝑒
𝜔𝑛

sin 𝜔𝑛𝑡

Kicker correction-voltage in the code (5/6)
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𝑉 𝑡

ሶ𝑉 𝑡
= 𝑒

−
𝜔𝑟
2𝑄𝑡

cos 𝜔𝑛𝑡 +
𝜔𝑟

2𝑄𝜔𝑛
sin 𝜔𝑛𝑡

1

𝜔𝑛
sin 𝜔𝑛𝑡

−
𝜔𝑟
2

𝜔𝑛
sin 𝜔𝑛𝑡 cos 𝜔𝑛𝑡 −

𝜔𝑟

2𝑄𝜔𝑛
sin 𝜔𝑛𝑡

𝑉0
ሶ𝑉0

+ 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘
𝑓 𝑡
ሶ𝑓 𝑡

❑ Similar to what done for the RLC circuit for the HOMs discussed earlier, in the code 𝑉 and ሶ𝑉 are computed using the matrix expression

Kicker correction-voltage in the code (6/6)

It decays exponentially with time and accounts for the emptying-process of the kicker.
It oscillates with time and accounts for the generator-
voltage and the filling-process of the kicker.

❑ If the RF generator is perfectly synchronized with the synchronous arrival times of the bunches, then 𝜑𝑒 = 0 and

❑ If 𝜔𝑟 = 𝜔𝑒 = 3.25𝜔𝑟𝑓, as it occurs when the QPSK is active and there are no frequency errors, then 𝐴 = 0, 𝐵 = 1 and

❑ If 𝜑𝑒 = 0 and 𝜔𝑟 = 𝜔𝑒 = 3.25𝜔𝑟𝑓 (ideal case), then

𝑓 𝑡 = 𝐴 cos 𝜔𝑒𝑡 + 𝐵 sin 𝜔𝑒𝑡 − 𝑒−Γ𝑡 𝐴 cos 𝜔𝑛𝑡 +
Γ𝐴 + 𝜔𝑒𝐵

𝜔𝑛
sin 𝜔𝑛𝑡

for large 𝑡
𝐴 cos 𝜔𝑒𝑡 + 𝐵 sin 𝜔𝑒𝑡 ≠ sin 𝜔𝑒𝑡

𝑓 𝑡 = sin 𝜔𝑒𝑡 + 𝜑𝑒 − 𝑒−Γ𝑡 sin𝜑𝑒 cos 𝜔𝑛𝑡 +
𝜔𝑒 cos𝜑𝑒 + Γ sin𝜑𝑒

𝜔𝑛
sin 𝜔𝑛𝑡

for large 𝑡
sin 𝜔𝑒𝑡 + 𝜑𝑒 ≠ sin 𝜔𝑒𝑡

𝑓 𝑡 = sin 𝜔𝑒𝑡 − 𝑒−Γ𝑡
𝜔𝑒
𝜔𝑛

sin 𝜔𝑛𝑡

𝑉𝑔(𝑡)/𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘

=

Filling-process term decaying 
exponentially with time

𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘𝑓 𝑡𝑟𝑓 = 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘 − 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘𝑒
−Γ𝑡𝑟𝑓

𝜔𝑒
𝜔𝑛

sin 𝜔𝑛𝑡𝑟𝑓

0 ≤ 𝑡 < 𝑡𝑟𝑓

𝑉0 = 𝑉 𝑘 − 1 𝑡𝑟𝑓 , ሶ𝑉0 = ሶ𝑉 𝑘 − 1 𝑡𝑟𝑓

Desired voltage-kick
Error term due to filling-process

≈ 𝑒
−
3.25𝜋
𝑄 (since 𝜔𝑛 ≈ 𝜔𝑟)
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Example continued: voltage signal from mixer to kicker
V

o
lt

ag
e 

[V
]

Time [ns]

Voltage from the mixer at turn 𝒏

0 𝒕𝒓𝒇 2𝒕𝒓𝒇 3𝒕𝒓𝒇 4𝒕𝒓𝒇

Kicker voltage at turn 𝟏

0 𝒕𝒓𝒇 2𝒕𝒓𝒇 3𝒕𝒓𝒇 4𝒕𝒓𝒇

V
o

lt
ag

e 
[V

]

Time [ns]

❑ We assume that 𝜑𝑒 = 0 and 𝜔𝑟 = 𝜔𝑒 = 3.25𝜔𝑟𝑓. The voltage from the mixer and the actual kicker-voltage are given respectively by

𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝟏

𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝟐
𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝟑

𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝟒

➢ The voltage from the mixer coincides with the amplitude-modulated generator voltage 𝑉𝑔(𝑡) defined for the kicker circuit-model. 

➢ The kicker-voltage is a continuous function of time, as opposed to the mixer-voltage which is discontinuous at 𝑘𝑡𝑟𝑓.

➢ The kicker-voltages at 𝑡𝑟𝑓, 3𝑡𝑟𝑓 and 4𝑡𝑟𝑓 are visibly lower than the corresponding 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘.

➢ In this example, being at turn 1, there isn’t residual voltage in the kicker at 𝑡 = 0, therefore 𝑉 𝑡 = 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,1𝑓(𝑡) for 0 ≤ 𝑡 ≤ 𝑡𝑟𝑓.

𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝟏𝒇(𝒕)

V
o

lt
ag

e 
[V

]

Time [ns]

Kicker voltage at turn 𝒏 Τ𝝎𝒓 −𝝎𝒆 𝟑. 𝟐𝟓𝝎𝒓𝒇 = 𝟓%

V
o

lt
ag

e 
[V

]

Time [ns]

❑ At least for times 
close to 𝑘𝑡𝑟𝑓, a 

frequency error of 
5% is essentially 
equivalent to a shift 
of the phase by 𝜋/4.

Kicker voltage at turn 𝒏 𝝋𝒆 = 𝝅/𝟒
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Kicker-voltage evaluation for bunches
❑ The code takes into account the fact that bunches perform synchrotron oscillations around their corresponding synchronous phases.

➢ The times 𝑘𝑡𝑟𝑓, when the QPSK acts, correspond to the ∆𝜑𝑆𝑅 of the different buckets: a bunch arriving at 𝑘𝑡𝑟𝑓 has phase ∆𝜑𝑆𝑅.

❑ Given 𝜔𝑒, 𝜔𝑟, 𝜑𝑒 and 𝑄, the matrix equation previously derived can be expressed in functional and compact form as 

𝑉 𝑡
ሶ𝑉 𝑡

= 𝑒
−
𝜔𝑟
2𝑄

𝑡
cos 𝜔𝑛𝑡 +

𝜔𝑟
2𝑄𝜔𝑛

sin 𝜔𝑛𝑡
1

𝜔𝑛
sin 𝜔𝑛𝑡

−
𝜔𝑟
2

𝜔𝑛
sin 𝜔𝑛𝑡 cos 𝜔𝑛𝑡 −

𝜔𝑟
2𝑄𝜔𝑛

sin 𝜔𝑛𝑡

𝑉0,𝑘−1
ሶ𝑉0,𝑘−1

+ 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘
𝑓 𝑡
ሶ𝑓 𝑡

= 𝑝 𝑡, 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘 , 𝑉0,𝑘−1, ሶ𝑉0,𝑘−1

➢ where 𝑉0,𝑘−1 = 𝑉 𝑘 − 1 𝑡𝑟𝑓 , ሶ𝑉0,𝑘−1 = ሶ𝑉 𝑘 − 1 𝑡𝑟𝑓 , 0 ≤ 𝑡 ≤ 𝑡𝑟𝑓 and 𝑝 is the ‘propagation’ function.

❑ If the bunch 𝑘 is in advance with respect to ∆𝜑𝑆𝑅 ∆𝜑𝑘 < ∆𝜑𝑆𝑅 , then the kicker-voltage seen by the bunch 𝑘 is given by

❑ If the bunch 𝑘 is late with respect to ∆𝜑𝑆𝑅 ∆𝜑𝑘 > ∆𝜑𝑆𝑅 , then we need first to update the initial conditions and then compute 𝑉 𝑡𝑘

𝑉 𝑡𝑘 = ቚ𝑝 𝑡𝑘 , 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘 , 𝑉0,𝑘−1, ሶ𝑉0,𝑘−1
1° element

𝑡𝑘 = 𝑡𝑟𝑓 +
∆𝜑𝑘 − ∆𝜑𝑆𝑅

𝜔𝑟𝑓
< 𝑡𝑟𝑓

𝑉0,𝑘
ሶ𝑉0,𝑘

= 𝑝 𝑡𝑟𝑓, 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘 , 𝑉0,𝑘−1, ሶ𝑉0,𝑘−1 𝑉 𝑡𝑘 = ቚ𝑝 𝑡𝑘 , 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘+1, 𝑉0,𝑘, ሶ𝑉0,𝑘
1° element

𝑡𝑘 =
∆𝜑𝑘 − ∆𝜑𝑆𝑅

𝜔𝑟𝑓
> 0

❑ If there are empty buckets between two bunches, then the initial conditions must be updated iteratively before computing 𝑉 𝑡𝑘 . 
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Example continued: kicker-voltage seen by bunches
❑ We consider again the case 𝜑𝑒 = 0, 𝜔𝑟 = 𝜔𝑒 = 3.25𝜔𝑟𝑓 and we assume that the four bunches traverse the kicker respectively at 

times 𝑡1 (in advance), 2𝑡𝑟𝑓 + 𝑡2 (late), 3𝑡𝑟𝑓 + 𝑡3 (late), 3𝑡𝑟𝑓 + 𝑡4 (in advance), with 0 < 𝑡𝑘 < 𝑡𝑟𝑓.

Kicker voltage at turn 𝟏

0 𝒕𝒓𝒇 2𝒕𝒓𝒇 3𝒕𝒓𝒇 4𝒕𝒓𝒇

V
o

lt
ag

e 
[V

]

Time [ns]

𝒕𝟏 2𝒕𝒓𝒇+𝒕𝟐

➢ Being the first turn, the kicker residual-voltage is zero at 𝑡 = 0

𝑉 0
ሶ𝑉 0

=
𝑉0,0
ሶ𝑉0,0

=
0

0

𝑉 𝑡1 = ቚ𝑝 𝑡1, 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,1, 𝑉0,0, ሶ𝑉0,0
1°

𝑡1 = 𝑡𝑟𝑓 +
∆𝜑1 − ∆𝜑𝑆𝑅

𝜔𝑟𝑓

➢ 𝑉 𝑡1 can be computes as

➢ To compute 𝑉 𝑡2 we need to update the initial conditions twice 

𝑉0,1
ሶ𝑉0,1

= 𝑝 𝑡𝑟𝑓 , 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,1, 𝑉0,0, ሶ𝑉0,0
𝑉0,2
ሶ𝑉0,2

= 𝑝 𝑡𝑟𝑓 , 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,2, 𝑉0,1, ሶ𝑉0,1 𝑉 𝑡2 = ቚ𝑝 𝑡2, 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,3, 𝑉0,2, ሶ𝑉0,2
1°

𝑡2 =
∆𝜑2 − ∆𝜑𝑆𝑅

𝜔𝑟𝑓

3𝒕𝒓𝒇+𝒕𝟑

3𝒕𝒓𝒇+𝒕𝟒

➢ To compute 𝑉 𝑡3 and 𝑉 𝑡4 we need to update the initial conditions one time more 

𝑉0,3
ሶ𝑉0,3

= 𝑝 𝑡𝑟𝑓 , 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,3, 𝑉0,2, ሶ𝑉0,2

𝑉 𝑡3 = ቚ𝑝 𝑡3, 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,4, 𝑉0,3, ሶ𝑉0,3
1°

𝑡3 =
∆𝜑3 − ∆𝜑𝑆𝑅

𝜔𝑟𝑓

𝑉 𝑡4 = ቚ𝑝 𝑡4, 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,4, 𝑉0,3, ሶ𝑉0,3
1°

𝑡4 = 𝑡𝑟𝑓 +
∆𝜑4 − ∆𝜑𝑆𝑅

𝜔𝑟𝑓
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Another example: residual voltage and kicker efficiency (1/3)
❑ Let’s suppose that

➢ 120 bunches in DAFNE perform coupled-bunch motion with 𝜇 = 30;
➢ the phase-shift between consecutive bunches is ∆𝜙30 = 𝜋/2;

➢ the oscillation-amplitudes ෢∆𝜑 and መ𝛿 are the same for all the bunches

• at turn 𝑛, the bunches 1, 5, 9, … have coordinates (0, መ𝛿), the bunches 
2, 6, 10, … have coordinates (𝜑𝑆𝑅+ ෢∆𝜑, 0) etc.;

• the feedback ideal-corrections are 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,(1,5,… ) = −2 V, 

𝑉𝐹𝐵𝑘𝑖𝑐𝑘,(2,6,… ) = 0 V, 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,(3,7,… ) = 2 V, 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,(4,8,… ) = 0 V. 

∆𝝋 mod 2𝝅

𝜹

1,5,…

2,6,…

3,7,…

4,8,…

0,෡𝜹

0, − ෡𝜹

(𝝋𝑺𝑹+෢∆𝝋, 𝟎)(𝝋𝑺𝑹-෢∆𝝋, 𝟎)

At turn 𝒏
(𝝁 = 𝟑𝟎)

V
o

lt
ag

e 
[V

]

Time [ns]

Kicker voltage at turn 𝒏 (𝝁 = 𝟑𝟎)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

❑ We assume that ෢∆𝜑 and መ𝛿 are small so that each bunch 𝑘
sees essentially the corresponding 𝑉(𝑘𝑡𝑟𝑓).

➢ The bunches 1, 5, … see -1.733 V instead of -2 V.
• Error 14.3%.

➢ The bunches 2, 6, … see -0.05 V instead of 0 V.
• Error 0.05 V.

➢ The bunches 3, 7, … see 1.733 V instead of 2 V.
• Error 14.3%.

➢ The bunches 4, 8, … see 0.05 V instead of 0 V.
• Error 0.05 V.𝒕𝒓𝒇
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Another example: residual voltage and kicker efficiency (2/3)
❑ Let’s now suppose that 

➢ the 120 bunches perform coupled-bunch oscillations with 𝜇 = 0 (∆𝜙0 = 0) and that at turn 𝑛 the coordinates of all bunches are (0, መ𝛿);
➢ the feedback ideal-corrections are all 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘 = −2 V.

∆𝝋 mod 2𝝅

𝜹

1,2,… 𝟎, ෡𝜹

At turn 𝒏
(𝝁 = 𝟎)

Kicker voltage at turn 𝒏 (𝝁 = 𝟎)

V
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e 
[V

]

Time [ns]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝒕𝒓𝒇

❑ We assume again that ෢∆𝜑 are መ𝛿 are small so that each bunch 𝑘 sees the corresponding 𝑉(𝑘𝑡𝑟𝑓).

➢ All the bunches see -1.70 V instead of -2 V.
• Error 16.2% (instead of 14.3% obtained for 𝜇 = 30).

❑ This example indicates that the kicker is more efficient (smaller differences between ideal and actual kicks) when 𝜇 = 30. Why?  



❑ Second explanation (time domain): let’s suppose that 𝑓(𝑡) ≡ 0
after the bunch 9 traverses the kicker, so that we can examine the 
evolution of the residual voltage as a function of time.

➢ 𝑉𝑟𝑒𝑠 is zero when the bunches 10 and 12 cross the kicker, 
whereas 𝑉𝑟𝑒𝑠 is a local maximum when the bunch 11 arrives.

• 𝝁 = 30: agreements with 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,(10,12)=0, 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,11=2.

• 𝝁 = 0: disagreements with 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,(10,11,12) = -2.

141

Another example: residual voltage and kicker efficiency (3/3)

−𝟑. 𝟐𝟓𝒇𝒓𝒇−𝟑. 𝟓𝒇𝒓𝒇 −𝟑𝒇𝒓𝒇

𝒇−𝟑,𝟎

𝒇−𝟑,𝟑𝟎

𝒇−𝟑,𝟔𝟎𝒇−𝟑,𝟗𝟎 𝒇−𝟐,𝟗𝟎

𝒇−𝟐,𝟔𝟎

𝑅
𝑠,
𝑠
[Ω
]

𝑹𝒔,𝒔(𝒇𝒓)

𝟐

❑ First explanation (frequency domain): the resonant frequency of 
the kicker is 3.25𝑓𝑟𝑓, therefore the shunt-impedance (kicker-

efficiency) has its maximum at 3.25𝑓𝑟𝑓.

➢ As already seen, if we consider negative frequencies,            
-3.25𝑓𝑟𝑓 corresponds to 𝜇 = 30, so we expect a better 

kicker-efficiency for 𝜇 = 30.
➢ 𝑅𝑠,𝑠 decreases as the distance from the resonant frequency 

increases, so we expect a worse kicker-efficiency for 𝜇 = 0.

Kicker shunt-impedance

𝑉𝑟𝑒𝑠 𝑡 = 𝑒−Γ𝑡 cos 𝜔𝑛𝑡 +
Γ

𝜔𝑛
sin 𝜔𝑛𝑡 𝑉0 +

sin 𝜔𝑛𝑡

𝜔𝑛
ሶ𝑉0

9
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e 
[V

]

Time [ns]

Frequency [GHz]

9

V
o

lt
ag

e 
[V

]

Time [ns]

Residual voltage after the bunch 9 transit, 𝝁=30 (top), 𝝁=0 (bottom)  

≈0, it AGREES 
with 𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝟏𝟎

max, it AGREES 
with 𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝟏𝟏

≈0, it AGREES 
with 𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝟏𝟐

≈0, it DISAGREES 
with 𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝟏𝟎

max, it DISAGREES 
with 𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝟏𝟏

≈0, it DISAGREES 
with 𝑽𝑭𝑩𝒌𝒊𝒄𝒌,𝟏𝟐

≈ 𝑉0𝑒
−Γ𝑡 cos 𝜔𝑟𝑡
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❑ Including the actual corrections given by the kicker, the equations of motion become

Equations of motion in the code: RF+SR+HOM+FB+BBZ

∆𝜑𝑘
(𝑛+1)

= ∆𝜑𝑘
(𝑛)

+ 2𝜋ℎ𝛼0𝛿𝑘
(𝑛)

𝛿𝑘
(𝑛+1)

= 𝛿𝑘
(𝑛)

−
𝑈0
𝐸0

1 + 2𝛿𝑘
𝑛 +

𝑒𝑉𝐹𝐵,𝑘
𝑛+1

𝐸0
+
𝑒 ෠𝑉𝑟𝑓 cos∆𝜑𝑘

𝑛+1

𝐸0
+

𝑒

𝐸0
෍

𝑗=1

𝑁𝐻𝑂𝑀

𝑉𝑘,𝑗,𝑅𝐸𝑆
𝑛+1 + 𝑉𝑘,𝑗,𝐼𝑁𝐷 +

𝑒𝑉𝑘𝑖𝑐𝑘𝑒𝑟,𝑘
𝑛+1

𝐸0
+
𝑒𝑉𝑏𝑏𝑍,𝑘
𝐸0

Accelerating cavity 
(RF + HOMs)

Kicker (correction 
+ impedance)

Synchrotron radiation + 
broad-band impedances

➢ where 𝑉𝐹𝐵,𝑘
𝑛+1

is the actual voltage provided by the kicker to the bunch 𝑘 at turn 

(𝑛 + 1).  As we saw, 𝑉𝐹𝐵,𝑘
𝑛+1

depend on

• the ideal voltage-correction 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘
𝑛 evaluated at turn 𝑛;

• the kicker parameters 𝜔𝑟, 𝑄 and 𝑅𝑠,𝑠;
• the frequency 𝜔𝑒 and phase 𝜑𝑒 of the kicker-generator;

• the arrival time of the bunch 𝑘 at turn 𝑛 + 1, or ∆𝜑𝑘
(𝑛+1)

.

❑ The effects of broad-band impedances which don’t couple consecutive bunches can be 
simply included in the energy equation of motion as instantaneous voltages 𝑉𝑏𝑏𝑍,𝑘.
➢ Usually these impedances (e.g. resistive wall) are due to non-resonant devices and 

are spread all along the ring.
➢ 𝑉𝑏𝑏𝑍,𝑘 depend on the bunch charge 𝑄𝑏,𝑘.

• If all the charges are equal, then 𝑉𝑏𝑏𝑍 is constant for all bunches and all turns.
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Example 1: coupled-bunch instability damped by the kicker (1/2)
❑ We assume the DAFNE parameters 𝑈0 = 8.88 keV, 𝐸0 = 510 MeV, ෠𝑉𝑟𝑓 = 130 kV and 𝛼0 = 0.018. 

❑ Moreover we assume that

➢ three equally-spaced bunches with I𝑏 = 15 mA, 𝜎𝑧 = 10 mm circulate in the machine.
• At turn 0 the bunches are displaced by 0.25 mrad with respect to ∆𝜑𝐻𝑂𝑀 (equal for all the bunches due to symmetry).

➢ an HOM excites the coupled-bunch mode 𝜇 = 1, ∆𝜑1 = 2π/3.
• 𝑅𝑠 = 4000 Ω, 𝑄 = 40000;
• An instability is obtained if 𝑓𝑟 = 3𝑙 − 2 𝑓0 + 𝑓𝑠0, 𝑙 > 1. We choose 𝑙 = 100, therefore 𝑓𝑟 = 915.5 MHz.

❑ We first simulate the three bunches without the feedback correction for 200000 turns. The kicker impedance is added to the HOM.
➢ The oscillation-amplitudes are essentially the same for the three bunches. 

• The grow-rate computed analytically is 247.4 1/s which is in very good agreement with the one computed numerically.
➢ As expected, the phase changes by 120° for consecutive bunches.

Phase evolution of bunch 1 and grow-rate from the exponential fit

𝜶𝒓 = 𝟐𝟒𝟗. 𝟗
𝟏

𝒔

Zoom on the phase evolutions of the three bunches

Bunch 1
Bunch 41
Bunch 81
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Example 1: coupled-bunch instability damped by the kicker (2/2)
❑ We then include the voltage corrections of the kicker, first assuming that the bunches see the ideal kicks 𝑉𝐹𝐵𝑘𝑖𝑐𝑘,𝑘.

➢ The feedback acts only from turn 40000 onwards and produces essentially the same damping behaviour for the three bunches.
• 𝑁𝑡𝑎𝑝 = 16, 𝑑𝐷𝑆𝐹 = 6. The total feedback gain isn’t too high, so that enough phase oscillations can be used to perform a proper fit.

➢ The analytical damping rate of the feedback is 4536 1/s.
• The total analytical damping rate is (4536-247) 1/s = 4289 1/s, which is in very good agreement with the numerical one.

❑ As expected, the damping rate decreases when the bunches see the real voltage-corrections, which in general are lower than the ideal ones.

𝜶𝒓 = 𝟒𝟐𝟗𝟗
𝟏

𝒔

Phase evolution of bunch 1 and grow-rate from the exponential fit. Voltage kicks for the bunch 1.

𝜶𝒓 = 𝟑𝟕𝟎𝟔
𝟏

𝒔

The bunch sees ideal kicks

The bunch sees real kicks

Ideal kicks

Real kicks
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Example 2: coupled-bunch instability damped by the feedback (1/2)

Main beam and machine parameters

❑ As a second example we use operational/expected parameters for a DAFNE typical run.
➢ Bunch current, length and peak RF voltage are taken from 2014 measurements.

Measurements of bunch length vs intensity

C. Milardi 
(2014)

We choose 
for instance 
this point in 
simulations 

Parameters Values

Harmonic number 𝐡 120

Ring circumference 𝐂𝐫 97.587 m

Mom. compaction factor 𝛂𝟎 0.018

Nominal energy 𝐄𝟎 510 MeV

Revolution frequency 𝐟𝟎 3.07 MHz

RF frequency 𝒇𝒓𝒇 368.65 MHz

Synchr. radiation energy loss 𝐔𝟎 8.88 keV

Peak RF voltage 𝐕𝐫𝐟 130 kV

Zero-amplitude synchr. freq. 𝐟𝐬𝟎 28.72 kHz

Beam filling pattern 105 contiguous 
bunches

RMS bunch length 𝛔𝐳 19 mm

Bunch current 𝑰𝒃 19.5 mA

Parameters Values

ADC number of bits 𝒏𝒃𝒊𝒕,𝑨𝑫𝑪 8

Max. ADC voltage 𝑽𝒎𝒂𝒙,𝑨𝑫𝑪 200 mV

Number of taps 𝑵𝒕𝒂𝒑 16

Down sampling factor 𝒅𝑫𝑺𝑭 6

Kicker resonant frequency 𝒇𝒓 3.25𝑓𝑟𝑓

Kicker quality factor 𝑸 5.45

Kicker shunt impedance 𝑹𝒔,𝒔(𝒇𝒓) 750 Ω

Max. kicker voltage 𝑽𝑴𝑨𝑿𝒌𝒊𝒄𝒌 950 V

Some important feedback parameters

Beam-coupling impedances (HOMs + kicker)

𝒇𝒓 [MHz] 𝑹𝒔 [𝛀] 𝑸

1 746 1120 70

2 797 105 210

3 1024 81 90

4 1121 90 300

5 1176 54 90

6 1201 36 180

7 1369 340 170

8 1432 550 550

Parameters of waveguide-damped HOMs

Kicker

HOMs𝒇𝒓𝒇

Bunch current [mA] 

R
M

S 
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Min, mean and max bunch 
phase along 100000 turns 

❑ 100000 turns are simulated, the maximum running time is just 16 minutes.

❑ The simulation outcomes depend on the bunches initial conditions.
➢ Here the bunches start in (∆𝜑𝐻𝑂𝑀,𝑘,0), so very small initial 

displacements due to non-perfect matching routine.

❑ Without feedback all the bunches are unstable and the maximum oscillation 
amplitude is essentially an increasing function of the bunch number.
➢ The oscillation amplitude of the most unstable bunch (105) is half 

bucket at turn 17000, then non-linearities damp the growth. 

❑ With feedback the oscillations are damped for all the bunches.
➢ The feedback responds differently with different bunches.

Min, mean and max bunch 
phase along 100000 turns 

Phase evolution for 
the bunch 105

Kicker voltage evolution for 
the bunches 1 and 105

𝑽𝑴𝑨𝑿𝒌𝒊𝒄𝒌

−𝑽𝑴𝑨𝑿𝒌𝒊𝒄𝒌

Without feedback

Without feedback

With feedback

Phase evolution for 
the bunch 105

The mean corresponds 
essentially to ∆𝝋𝑯𝑶𝑴,𝒌.  

~ half bucket

Example 2: coupled-bunch instability damped by the feedback (2/2)

Much more 
voltage is needed 
for bunch 1 than
bunch 105.

Phase evolution for 
the bunch 1

Very small initial 
oscillations damped 
after 500 turns.

Larger initial 
oscillations damped 
after 600 turns.

With feedback With feedback

With feedback
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Conclusions
❑ The new Python code is ready to be used for longitudinal beam-dynamics simulations of the DAFNE accelerator.

➢ The current version is able to simulate coupled-bunch instabilities and the effects of the bunch-by-bunch feedback.
➢ Some important improvements to the code can still be done (see next slide).

❑ This presentation covered in detail all the features of the code.
➢ The theoretical principles required to fully understand the code were explained in depth.
➢ Numerous examples with plots and animations were provided to demonstrate the code capabilities.

❑ Several benchmarks between simulations and analytical formulas were performed to prove the code reliability.
➢ In particular we found good agreements concerning grow-rates of coupled-bunch instabilities and feedback damping-rates.

❑ Some additional functionalities were added to the new code, for instance
➢ Computation of the synchronous phases taking into account the beam-induced voltages. This allows for instance 

• the matching of the beam with respect to the induced voltages; 
• the feedback compensation of the synchronous-phase shifts due to induced-voltages.

➢ Inclusion of the cavity-kicker beam-coupling impedance in simulation.

❑ Some new studies were performed, for example
➢ Accurate models of the signal manipulations performed by the feedback-system (pickup, comb generator, mixer, …).

• In particular, measurements of the comb-generator transfer-function were needed to properly model the bursts generation. 
➢ Optimized design of the FPGA sinusoidal filter and determination of the optimal down-sampling-factor.

❑ Preliminary simulations of DAFNE operational scenarios were performed confirming the importance of the feedback for beam stability.
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Suggested next steps
❑ The work presented here isn’t definitive, in particular the following next steps can be done.

❑ Implementation in the Python code of the RF feedback for the compensation of beam-loading in the accelerating cavity.
➢ This feedback is required to reduce the significant beam-coupling impedance of the fundamental mode.
➢ This feedback is already implemented in the Fortran code and its effects have already been studied in simulation in the past.

• Simulations without this feedback assume that the beam-loading is perfectly compensated.
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]

❑ Extension of the code to represent each bunch with millions of 
macroparticles so that more realistic simulations can be performed. 
➢ The effects of arbitrary beam-coupling impedances could be studied. 
➢ Other types of instabilities, already observed in measurements, could 

be seen also in simulation, for instance
• Microwave: it’s caused by short-range wakefields with wave-

lengths much shorter than the bunch length. It leads to bunch-
lengthening and beam-quality degradation.

• Longitudinal quadrupole (q-pole): it’s probably caused by the 
broadband machine-impedance and can be cured delaying the 
kicker correction signal with respect to the bunch passage.

➢ However multi-bunch simulations with 105 bunches are cumbersome.
• The code must be optimized and parallelized following for 

instance the example of the CERN BLonD code.

A. Drago
et al. (2003)

Feedback-timing versus bunch-passage in the kicker

Optimal bunch 
phasing for 
dipole instability

Optimal bunch phasing 
for q-pole instability

❑ Benchmarks between simulations and beam measurements taken during the next 2021 DAFNE run.
➢ This would confirm that the models and assumptions used in the code are accurate enough.
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Computation of the decay rate of an oscillating function (1/3)
❑ Python is used to evaluate the grow-rate of an oscillating increasing or decreasing function

➢ The first used routine scipy.signal.find_peaks is able to find all the local maxima of a given signal. 
➢ The second used routine scipy.optimize.curve_fit is able to fit the local maxima with an exponential function.

❑ Example: our original signal 𝑦(𝑥) is made of samples from

➢ The envelope traversing the local maxima of 𝑌(𝑥) has equation

𝑌 𝑥 = 0.004𝑒−1.1𝑥 cos 10𝑥 + 10000 𝑥 ∈ [0,10]

𝐿 𝑥 = 𝐴𝑒𝐵𝑥 + 𝐶 = 0.004𝑒−1.1𝑥 + 10000

❑ The first step is to find the local maxima of 𝒚(𝒙) with the find_peaks routine. The output arrays are 𝑥𝑚 and 𝑦𝑚 (length 𝑁).
➢ A check has to be done on 𝑥 0 , 𝑦 0 which can belong to the envelope or not depending on the specific case. 

• If 𝑦 0 > 𝑦 1 and 𝑦 0 > 𝑦𝑚 1 , then 𝑥 0 , 𝑦 0 belongs to the envelope (as in our example).

𝑥

𝑦

Original signal 
with local 
maxima detected

𝑥𝑚 0 , 𝑦𝑚 0

𝑥𝑚 1 , 𝑦𝑚 1

❑ The second step is to fit the points 𝒙𝒎[𝒊], 𝒚𝒎[𝒊] with the curve_fit routine, aiming at finding 𝑨, 𝑩 and 𝑪 of 𝑳(𝒙).
➢ The exponential function to be used for the fit is

• where 𝑎, 𝑏 and 𝑐 are the three parameters to be determined.

𝑀 𝑥 = 𝑎𝑒𝑏𝑥 + 𝑐

❑ We assume that 𝑌(𝑥) and 𝐿(𝑥) aren’t known. The goal is to find the 
decay rate of the signal, i.e. the value 𝐵 = -1.1.



𝑎0 =
𝑦𝑚 0 − 𝑦𝑚 1

𝑒𝑏0 𝑥𝑚 0 −𝑥𝑚 1

❑ The curve_fit routine needs as input the initial guesses for 𝒂, 𝒃 and 𝒄, which we call 𝒂𝟎, 𝒃𝟎 and 𝒄𝟎.
➢ If these guesses are too far from 𝐴, 𝐵 and 𝐶, then the routine provides unacceptable results.
➢ First method to find 𝒂𝟎, 𝒃𝟎 and 𝒄𝟎:

• 𝑐0 = 𝑦 , where 𝑦 is the mean of the 𝑦 array. Indeed, for large 𝑥, 𝐿 𝑥 ≈ 𝐶 and also 𝐿 𝑥 ≈ 𝑦 .
• 𝑎0 and 𝑏0 are easily found solving the system

➢ Second method to find 𝒂𝟎, 𝒃𝟎 and 𝒄𝟎 (from Jacquelin J. “Regressions et equations integrals”, 2014):
• More general method which doesn’t need the 𝑦 array but only 𝑥𝑚 and 𝑦𝑚. 
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൝
𝑦𝑚 0 = 𝑎0𝑒

𝑏0𝑥𝑚 0 + 𝑐0
𝑦𝑚 1 = 𝑎0𝑒

𝑏0𝑥𝑚 1 + 𝑐0
𝑏0 =

ln
𝑦𝑚 0 − 𝑐0
𝑦𝑚 1 − 𝑐0

𝑥𝑚 0 − 𝑥𝑚 1
𝑎0 = 𝑦𝑚 0 − 𝑐0 𝑒−𝑏0𝑥𝑚 0

Computation of the decay rate of an oscillating function (2/3)

𝑆1 = 0, 𝑘 = 2,… ,𝑁

𝑆𝑘 = 𝑆𝑘−1 +
1

2
𝑦𝑚 𝑘 − 1 + 𝑦𝑚 𝑘 − 2 𝑥𝑚 𝑘 − 1 − 𝑥𝑚 𝑘 − 2

1)

𝐷 =

෍

𝑘=1

𝑁

𝑥𝑚 𝑘 − 1 − 𝑥𝑚 0 2 ෍

𝑘=1

𝑁

𝑥𝑚 𝑘 − 1 − 𝑥𝑚 0 𝑆𝑘

෍

𝑘=1

𝑁

𝑥𝑚 𝑘 − 1 − 𝑥𝑚 0 𝑆𝑘 ෍

𝑘=1

𝑁

𝑆𝑘
2

−1

2)

𝑏0 = 𝐷[1,0]෍

𝑘=1

𝑁

𝑦𝑚 𝑘 − 1 − 𝑦𝑚 0 𝑥𝑚 𝑘 − 1 − 𝑥𝑚 03)

4)

𝑏0 = 𝐷[1,0]෍

𝑘=1

𝑁

𝑦𝑚 𝑘 − 1 − 𝑦𝑚 0 𝑥𝑚 𝑘 − 1 − 𝑥𝑚 0

+𝐷[1,1]෍

𝑘=1

𝑁

𝑦𝑚 𝑘 − 1 − 𝑦𝑚 0 𝑆𝑘

൝
𝑦𝑚 0 = 𝑎0𝑒

𝑏0𝑥𝑚 0 + 𝑐0
𝑦𝑚 1 = 𝑎0𝑒

𝑏0𝑥𝑚 1 + 𝑐0 𝑐0 = 𝑦𝑚 0 − 𝑎0𝑒
𝑏0𝑥𝑚 0
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𝑥

𝑦

Original signal
Local maxima
Envelope
Fit (𝟏𝐬𝐭 method)

Computation of the decay rate of an oscillating function (3/3)

𝑥

𝑦

𝑥

𝑦

Zoom on 
𝒙𝒎 𝟏 , 𝒚𝒎 𝟏

Zoom on 
𝒙𝒎 𝟐 , 𝒚𝒎 𝟐

❑ Aiming at finding 𝑨 = 𝟎. 𝟎𝟎𝟒, 𝑩 = −𝟏. 𝟏, 𝑪 = 𝟏𝟎𝟎𝟎𝟎, the curve_fit routine provides as results

➢ 𝟏𝐬𝐭 method: 𝑎0 = 3.996 ∙ 10−3, 𝑏0 = −1.111, 𝑐0 = 1.000 ∙ 104

➢ 𝟐𝐧𝐝 method: 𝑎0 = 1.105 ∙ 10−3, 𝑏0 = −0.949, 𝑐0 = 1.000 ∙ 104

❑ Both methods provide initial guesses relatively close to 𝐴, 𝐵 and 𝐶.
➢ This allows the curve_fit routine to work properly and provide results very close to 𝐴, 𝐵 and 𝐶.

❑ Note that the envelope 𝐿(𝑥) doesn’t cross the local maxima but it crosses points at the right of them.
➢ The fit, which tends to be close to the local maxima, is below the envelope. This explains why 𝑎 is slightly smaller than 𝐴. 

𝑎 = 3.998 ∙ 10−3, 𝑏 = −1.106, 𝑐 = 1.000 ∙ 104

𝑎 = 3.998 ∙ 10−3, 𝑏 = −1.102, 𝑐 = 1.000 ∙ 104
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❑ The open-source Anaconda Python distribution with its Spyder editor can be used. The following instructions are for Windows 10, 64 
bit.

❑ Go to https://www.anaconda.com/products/individual.

❑ In the ‘Anaconda Installers’ section, in the ‘Windows’ column, click on ’64-Bit Graphical Installer’ and download the executable of 
around 500 MB.

❑ During the installation procedure 
➢ Select the ‘Destination Folder’, e.g. ‘ProgramData\Anaconda3’.
➢ In ‘Advanced Options’, mark only ‘Register Anaconda…’ and click Install.

Python code: download and installation of the Anaconda distribution

https://www.anaconda.com/products/individual
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Python code: creation of a new Spyder project and import
❑ After the Anaconda installation, the Spyder editor is available.

❑ Search for Spyder in your PC typing ‘Spyder (Anaconda 3)’ into the search box.
➢ When found, you can also pin it to the Taskbar with a right click for an easier access.

❑ Open Spyder and go to ‘Projects -> New Project…’.
➢ Mark ‘Existing directory’.
➢ Click on the folder icon in the field ‘Location’ and select the ‘python_code’ folder.

• The ‘python_code’ folder can be anywhere.
➢ Leave ‘Empty project’ in the ‘Project type’ field and click on Create.

❑ All the files of the Python code are now accessible inside Spyder from the Management panel on the left.
➢ In general Python files can be easily run clicking on the green-triangle icon.

Management panel

Button to run 
Python files
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Python code: structure
❑ The folder ‘analysis’ contains several Python files useful to perform analyses and 

computations.
➢ Example of file: signal manipulations from the longitudinal pick-up to the mixer.
➢ Each file can be run independently of the others.
➢ All these files are like ‘add-ons’ with respect to the main code: they aren’t essential 

to launch simulations with the main code and they don’t affect the main code.

❑ The folder ‘saved_main_files’ contains main-files which the user saved in order to be able 
to relaunch the corresponding simulations later on.
➢ Example of saved main-file: simulation of a certain coupled-bunch instability for 

three equally-spaced bunches in DAFNE.

❑ The file ‘functions.py’ contains several essential routines which are called and used in the 
main files and also in the files contained in the ‘analysis’ folder.
➢ Examples of functions: generation of beam matched with collective effects, 

computation of kicker voltage-corrections and of voltages due to the HOMs.
➢ All these functions aren’t supposed to be run directly.

❑ The file ‘main.py’ is the main-file which should be run to perform a simulation.
➢ Once a simulation is well set up, the user can decide to copy this file into the 

‘saved_main_files’ folder and rename the copied file with a more significant name.
➢ The input-parameters for the simulation should be specified directly in this main-file.
➢ This main-file directly provides all the simulation outputs.
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Python code: example of input-parameters in the main file
❑ Essentially four types of input-parameters must be set in the main file:

➢ Machine parameters: harmonic number, circumference, momentum compaction, nominal energy, peak RF voltage, …
➢ Beam properties: filling scheme, bunch charge and standard-deviation, initial displacements with respect to the synchronous phases.
➢ Impedance parameters: boolean variables to include HOMs and kicker impedances in simulation, parameters of the HOMs, possibility to 

match with collective effects either the entire beam or all the bunches except one for injection-transient studies, …
➢ Bunch-by-bunch feedback parameters: boolean variable to turn the feedback on, how many turns to wait for the feedback action, 

different gains, computation of optimal filter coefficients, possibility to apply the ideal or the real voltage-corrections to the bunches, …  



Fortran code: download of Code Blocks
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❑ The open-source Code Blocks can be used as editor. The following instructions are for Windows 10, 64 bit.

❑ Go to http://www.codeblocks.org/, click on ‘Downloads’, then on ‘Download the binary release’.

❑ We need a version which contains the compiler MinGW, i.e. 
‘codeblocks-20.03mingw-setup.exe’. 

❑ Click on FossHUB and download the ‘Code Blocks Windows 64 bit 
(including compiler)’ version.

http://www.codeblocks.org/
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Fortran code: installation of Code Blocks
❑ Now we need to install Code Blocks. Click on the downloaded executable of around 150 MB.

❑ If possible, install all the components (Full).

❑ Choose the destination folder (Program Files is OK)

❑ Open Code Blocks at the end of the installation.



❑ Inside Code Blocks, go to ‘Settings -> Compiler…’.

❑ Choose ‘GNU GCC Compiler’ in ‘Selected compiler’.

❑ Go to ‘Toolchain executables’.

❑ In ‘Compiler’s installation directory’, type the path of the ‘MinGW’ subfolder present in the Code Blocks installation directory.

❑ Click on ‘Auto-detect’. A window appears reporting that the ‘GNU GCC Compiler’ has been found. Click OK.

160

Fortran code: setting of the GNU GCC compiler
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Fortran code: setting of the GNU Fortran compiler
❑ Choose ‘GNU Fortran Compiler’ in ‘Selected compiler’.

❑ Save the applied changes when asked.

❑ Go to ‘Toolchain executables’.

❑ In ‘Compiler’s installation directory’, type the path of the ‘MinGW’ subfolder present in the Code Blocks installation directory.

❑ Click on ‘Auto-detect’. A window appears reporting that the ‘GNU Fortran Compiler’ has been found. Click OK and again OK.



❑ Inside Code Blocks, go to ‘File -> New -> Project…’

❑ In ‘Category’ select Fortran and click on Fortran application.

❑ In the ‘Fortran application’ window, 
➢ choose the name of the project in ‘Project title’, e.g. ‘fortran_code’.
➢ choose the folder where to store the project and click Next.
➢ In ‘Compiler’ select ‘GNU Fortran Compiler’ and mark ‘Create “Debug” configuration’. Click on Finish.
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Fortran code: creation of a new project
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Fortran code: import, build-targets and simulation run
1. Copy all the files from the folder ‘fortran_code_original’ into 

the folder ‘fortran_code’ just created.
➢ Delete the file main.f90 from the folder ‘fortran_code’.

2. Inside Code Blocks, in the Management panel -> Projects, 
➢ Right click on main.f90 and ‘Remove file from project’.
➢ Right click on ‘fortran_code’ and ‘Add files recursively…’.
➢ Select the folder ‘fortran_code’.
➢ Select all the files and click OK.

‘fortran_code’ folder

3. Inside Code Blocks, in the Management panel -> Projects, 
➢ Right click on ‘fortran_code’ and ‘Properties…’.
➢ Go to the tab ‘Build targets’.
➢ In the ‘Build target files’ part, select only ‘simul2.f’.
➢ Click OK.

4. Open ‘simul2.f’ from the Workspace in the Management 
panel and click on the icon ‘Build and run’.
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