tt production cross section measurement at ATLAS Analysis strategy for top-antitop cross section measurement inside the ATLAS experiment at the LHC proton-proton collider at CERN (all numbers and plots are for 200 pb^{-1} at 10 TeV) ### Measuring the tar t production cross section is important: - direct comparison with theoretical calculations - \bullet $t\bar{t}$ events are background for new physics and Higgs - understanding the experimental signatures of top events involves most parts of the ATLAS detector and is essential for claiming discoveries 10 TeV pp collisions $\rightarrow \sigma_{t\bar{t}} \simeq 400 \text{ pb}^{-1}$ μ) with $p_T > 20$ GeV (with e or μ trigger) • $E_T > 20$ GeV (associated to the two ν) • at least 2 jets with $p_T > 20$ GeV (for $\mu\mu$) or >35 GeV (for ee and $\mu\mu$) (associated to the two b produced in t and \bar{t} decays) \bullet $|m_Z-m_{\ell\ell}| > 5$ GeV (for ee and $\mu\mu$ ground) channels only, to reject the $Z \to \ell\ell$ back- Event selection: CERN - 1 lepton (e or μ) with $p_T > 20$ GeV (which gives the isolated lepton trigger) - $E_T > 20$ GeV (associated to ν coming from the leptonic W) - \bullet at least 4 jets with $p_T > 20 \text{ GeV}$ (2 coming from the hadronic Wand 2 b-jets coming from t and \bar{t} decays) - of which at least 3 jets with $p_T > 40 \text{ GeV}$ - at least one 2-jets combination with invariant mass in a 10 GeV m_W window Expected distribution for the invariant mass of the 3-jet combination with the highest p_T defining the "top candidate" - in $t\bar{t} \rightarrow e+{\rm jets}$ events and the main backgrounds M_{iii} [GeV] Likelihood fit on the "top candidate" mass dis-Work in progress to use b-tagging in $t\bar{t} \to \ell + jets$ for first 7 TeV data. tribution, to extract the $t\bar{t}$ cross section. The fit method is able to extract both signal and background from data, but needs more statistic. ## **Cut & Count Method** The total cross section is obtained counting the number of events surviving the selection and subtracting the expected number of background events: $$\sigma = \frac{N_{sig}}{L \times \epsilon} = \frac{N_{obs} - N_{bkg}}{L \times \epsilon}$$ (L: integrated luminosity, ϵ : signal selection efficiency) Expected numbers for different channels: | | e+jets | $\mu+\mathrm{jets}$ | ee | $\mu\mu$ | $e\mu$ | |-------------------------|------------------------------------|--------------------------------|-------------|---------------|---------------------| | | number of events | | | | | | S | 1286 | 1584 | 214 | 327 | 683 | | В | 598 | 799 | 54 | 87 | 123 | | S/B | 2.1 | 2.0 | 3.9 | 3.8 | 5.6 | | | relative uncertainties $(\%)$ | | | | | | | | | • | | | | | cut&coı | | • | t&cou | nt | | statistic | | | • | t&cour
6.6 | nt
4.3 | | statistic
systematic | cut&coi | ınt / fit | cu | | | | | cut&cou
3.0 / 14 | int / fit 3.0 / 15 | 8.5 | 6.6 | 4.3 | | systematic | cut&cou
3.0 / 14
14.5 / 10.5 | ant / fit 3.0 / 15 13.5 / 10.5 | 8.5
13.3 | 6.6
9.8 | 4.3
9.1 | #### Using b-tagging for event selection: For the di-lepton channel, no selection strategy includes b-tagging: - the statistical uncertainty would increase too much - di-lepton $t\bar{t}$ events will be used to calibrate b-tagging For the single lepton channel, one can use the b-tagging requirement: - the S/B ratio will increase: ~ 7 (1 b-tag), ~ 15 (2 b-tag) - \bullet the error coming from W+jets will decrease significantly - a new syst. uncertainty is introduced (b-tagging efficiency) #### eµ-channel tt dilepton **ATLAS Simulation** tt other single top Z+jets 10^{2} W+jets <mark>−</mark> WW/WZ/ZZ 100 120 140 160 180 200 80 Missing transverse energy [GeV] E_T distribution for expected $t\bar{t} \rightarrow e\mu$ +jets signal and the main backgrounds, after requiring 2 opposite signed ℓ ## Systematic Uncertainties - Background estimation: shape only for likelihood fit, normalization & shape for cut&count (data-driven methods needed) - Jet Energy Scale: important for all the channels and methods - Initial and Final State QCD Radiation modelling: affects the predictions for jet energy and multiplicity - LHC Luminosity: expected to be 20% in the initial period of LHC run Drell-Yan with E_T^{miss} vs $m_{\ell\ell}$ regions: $A_{est} = G_d(\frac{A_{mc}}{G_{mc}})(\frac{B_d}{H_d})(\frac{H_{mc}}{B_{mc}})$ # W/Z ratio method for W+jets: Count the number of Z+ jets (easier to discriminate from $t\bar{t}$) and obtain the number of W+jets by rescaling it: $$W_{4jets} \simeq Z_{4jets} \times \frac{W_{1jet}}{Z_{1jet}}$$ W_{1jet} and Z_{1jet} are counted in the 1jet control region. ## Data-Driven Background Estimation #### Matrix Method for jets faking leptons rate: Define a loose and a tight selection for leptons, with ϵ^{real} and ϵ^{real} = probability for a $loose \ \ell$ to pass the tight selection (for real and $fake \ \ell$), count N_{loose} and N_{tight} , and have 2 equations with 2 unknowns: $$N_{loose} = N_{loose}^{fake} + N_{loose}^{real}$$ $N_{tight} = \epsilon_{fake} N_{loose}^{fake} + \epsilon_{real} N_{loose}^{real}$ (same method for W+jets and single lepton $t\bar{t}$ background in di-lepton)