tt production cross section measurement at ATLAS

Analysis strategy for top-antitop cross section measurement inside the ATLAS experiment at the LHC proton-proton collider at CERN

(all numbers and plots are for 200 pb^{-1} at 10 TeV)

Measuring the tar t production cross section is important:

- direct comparison with theoretical calculations
- \bullet $t\bar{t}$ events are background for new physics and Higgs
- understanding the experimental signatures of top events involves most parts of the ATLAS detector and is essential for claiming discoveries

10 TeV pp collisions $\rightarrow \sigma_{t\bar{t}} \simeq 400 \text{ pb}^{-1}$

 μ) with $p_T > 20$ GeV (with e or μ trigger)

• $E_T > 20$ GeV (associated to the two ν)

• at least 2 jets with $p_T > 20$ GeV (for $\mu\mu$)

or >35 GeV (for ee and $\mu\mu$) (associated

to the two b produced in t and \bar{t} decays)

 \bullet $|m_Z-m_{\ell\ell}| > 5$ GeV (for ee and $\mu\mu$

ground)

channels only, to reject the $Z \to \ell\ell$ back-

Event selection:

CERN

- 1 lepton (e or μ) with $p_T > 20$ GeV (which gives the isolated lepton trigger)
- $E_T > 20$ GeV (associated to ν coming from the leptonic W)
- \bullet at least 4 jets with $p_T > 20 \text{ GeV}$ (2 coming from the hadronic Wand 2 b-jets coming from t and \bar{t} decays)
- of which at least 3 jets with $p_T > 40 \text{ GeV}$
- at least one 2-jets combination with invariant mass in a 10 GeV m_W window

Expected distribution for the invariant mass of the 3-jet combination with the highest p_T defining the "top candidate" - in $t\bar{t} \rightarrow e+{\rm jets}$ events and the main backgrounds

M_{iii} [GeV] Likelihood fit on the "top candidate" mass dis-Work in progress to use b-tagging in $t\bar{t} \to \ell + jets$ for first 7 TeV data. tribution, to extract the $t\bar{t}$ cross section. The fit method is able to extract both signal and background from data, but needs more statistic.

Cut & Count Method

The total cross section is obtained counting the number of events surviving the selection and subtracting the expected number of background events:

$$\sigma = \frac{N_{sig}}{L \times \epsilon} = \frac{N_{obs} - N_{bkg}}{L \times \epsilon}$$

(L: integrated luminosity, ϵ : signal selection efficiency)

Expected numbers for different channels:

	e+jets	$\mu+\mathrm{jets}$	ee	$\mu\mu$	$e\mu$
	number of events				
S	1286	1584	214	327	683
В	598	799	54	87	123
S/B	2.1	2.0	3.9	3.8	5.6
	relative uncertainties $(\%)$				
			•		
	cut&coı		•	t&cou	nt
statistic			•	t&cour 6.6	nt 4.3
statistic systematic	cut&coi	ınt / fit	cu		
	cut&cou 3.0 / 14	int / fit 3.0 / 15	8.5	6.6	4.3
systematic	cut&cou 3.0 / 14 14.5 / 10.5	ant / fit 3.0 / 15 13.5 / 10.5	8.5 13.3	6.6 9.8	4.3 9.1

Using b-tagging for event selection:

For the di-lepton channel, no selection strategy includes b-tagging:

- the statistical uncertainty would increase too much
- di-lepton $t\bar{t}$ events will be used to calibrate b-tagging

For the single lepton channel, one can use the b-tagging requirement:

- the S/B ratio will increase: ~ 7 (1 b-tag), ~ 15 (2 b-tag)
- \bullet the error coming from W+jets will decrease significantly
- a new syst. uncertainty is introduced (b-tagging efficiency)

eµ-channel tt dilepton **ATLAS Simulation** tt other single top Z+jets 10^{2} W+jets <mark>−</mark> WW/WZ/ZZ 100 120 140 160 180 200 80 Missing transverse energy [GeV]

 E_T distribution for expected $t\bar{t} \rightarrow e\mu$ +jets signal and the main backgrounds, after requiring 2 opposite signed ℓ

Systematic Uncertainties

- Background estimation: shape only for likelihood fit, normalization & shape for cut&count (data-driven methods needed)
- Jet Energy Scale: important for all the channels and methods
- Initial and Final State QCD Radiation modelling: affects the predictions for jet energy and multiplicity
- LHC Luminosity: expected to be 20% in the initial period of LHC run

Drell-Yan with E_T^{miss} vs $m_{\ell\ell}$ regions:

 $A_{est} = G_d(\frac{A_{mc}}{G_{mc}})(\frac{B_d}{H_d})(\frac{H_{mc}}{B_{mc}})$

W/Z ratio method for W+jets:

Count the number of Z+ jets (easier to discriminate from $t\bar{t}$) and obtain the number of W+jets by rescaling it:

$$W_{4jets} \simeq Z_{4jets} \times \frac{W_{1jet}}{Z_{1jet}}$$

 W_{1jet} and Z_{1jet} are counted in the 1jet control region.

Data-Driven Background Estimation

Matrix Method for jets faking leptons rate:

Define a loose and a tight selection for leptons, with ϵ^{real} and ϵ^{real} = probability for a $loose \ \ell$ to pass the tight selection (for real and $fake \ \ell$), count N_{loose} and N_{tight} , and have 2 equations with 2 unknowns:

$$N_{loose} = N_{loose}^{fake} + N_{loose}^{real}$$
 $N_{tight} = \epsilon_{fake} N_{loose}^{fake} + \epsilon_{real} N_{loose}^{real}$

(same method for W+jets and single lepton $t\bar{t}$ background in di-lepton)

