Missing Tranverse Energy in first ATLAS data

Donatella Cavalli, <u>Caterina Pizio</u>, Silvia Resconi, Rosa Simoniello

On behalf of ATLAS Collaboration

07.04.2010

E^{miss} Reconstruction in ATLAS

Transverse Missing Energy:

$$E_T^{miss} = \sqrt{E_x miss^2 + E_y miss^2}$$

$$E_x miss = -\Sigma Ex$$

 $\mathsf{SumE}_{\mathsf{T}} = \Sigma \ \mathsf{E}_{\mathsf{T}}$

Sum of energy of all $E_y miss = -\Sigma Ey \{ particles seen in the latential sector of the secto$ detector

E_{τ}^{miss} is a complex event quantity:

- It is calculated adding all significant signals from all detectors:
 - Calorimeter input signals (Cells, TopoClusters):
 - used for physics objects
 - not used for physics objects
 - Muon signals
 - Tracks in regions where Calorimeter/Muon Spectrometer are inefficient
 - Correction for energy lost in dead material

E_{T}^{miss} importance in ATLAS physics

 E_{T}^{miss} is the signature for many physics channels

A very good E_{T}^{miss} measurement is a crucial requirement for the study of many physics channels in ATLAS:

- MSSM Higgs (A/H ${\rightarrow}\!\!\tau$ τ , H^{\pm}\!\rightarrow\!\!\!\tau ν)

 $^{\scriptscriptstyle >}$ reconstruct the invariant $\tau\tau$ mass from the two $\text{E}_{_{T}}^{_{miss}}$ components

• SUSY \rightarrow Large E_T^{miss} signature (lsp)

A bad measurement of E_T^{miss} could fake a nonzero reconstructed E_T^{miss} in events with no physical E_T^{miss}

- QCD with fake E^{miss} background for inclusive no-lepton SUSY events
- Z+jets with fake E_{T}^{miss} background for

 $H \to I I \nu \nu$

Caterina Pizio

From Basic to Calibrated E_T^{miss}

- Basic E_T^{miss} from all Calorimeter cells with two possible noise suppression approaches (see below)
- Final E_T^{miss} :
 - Different calibrations approaches
 - Correction for energy lost in cryostat between EM and Had calorimeters
 - Contribution from muons

Basic E_{τ}^{miss}

- First data $\rightarrow E_{T}^{miss}$ is calculated only from the calorimeters (few muons)
- All cells in Topo-Clusters are used

Topo-Clusters are groups of calorimeter cells topologically connected

Noise suppression via noise-driven clustering thresholds: Seed, Neighbour, Perimeter cells (S,N,P) = (4,2,0)

- seed cells with $|E_{cell}| > S\sigma_{noise}$ (S = 4)
- expand in 3D; add neighbours with $|E_{cell}| > N\sigma_{noise}$ (N = 2)
 - merge clusters with common neighbours
- add perimeter cells with $|E_{cell}| > P\sigma_{noise}$ (P = 0)

$$\begin{split} E_{\rm x}^{\rm miss} &= -\sum_{i=1}^{N_{\rm cell}} E_i \sin \theta_i \cos \phi_i, \\ E_{\rm y}^{\rm miss} &= -\sum_{i=1}^{N_{\rm cell}} E_i \sin \theta_i \sin \phi_i, \\ E_{\rm T}^{\rm miss} &= \sqrt{(E_{\rm x}^{\rm miss})^2 + (E_{\rm y}^{\rm miss})^2}, \end{split}$$

The sum is done on all cells in TopoClusters

EM scale calculation, no calibration applied

Data samples and event selection

- Data (stable beam, nominal magnetic field, good calorimeters):
 - 900 GeV data and 2.3 TeV data
- MonteCarlo:
 - PYTHIA/Geant4 Minbias events: 1 Mevts at 900 GeV (200 Kevts at 2TeV)
 - Non diffractive(ND) + Single/Double diffractive(SD/DD) DD/SD/ND = 6.4 / 11.7 / 34.4 mb
- Collision Candidates selection (on data and MC):
 - Evts triggered by at least 1 hit per side in Minimum Bias Trigger Scintillators (MBTS_1_1)
 - Signals coincident in a time window observed in both sides of end-cap calo or MBTS (MBTS timing (Δt_{A-c} <10 ns) .OR. LAr timing (Δt_{A-c} <5 ns))
 - Event Cleaning vs fake jets (Antikt R=0.6 jets (EM scale) p_T >7GeV):
 - Known problematic cells, energy estimated from neighbours jet energy coming from such cells must be <20%
 - Jet energy not concentrated in less than 3 cells (noisy cells)
 - Few per mill events rejected

\rightarrow data ~600kevts at 900 GeV (20kevts at 2TeV)

Caterina Pizio

Random trigger events

- Useful to understand the noise contribution
- Distribution centered on zero with RMS 0.43 GeV
- No tails in E_{T}^{miss} distribution as expected

Caterina Pizio

6

pp collision events $\sqrt{s} = 900 \text{ GeV}$

- In minbias events \rightarrow no true E_T^{miss}
- $\rightarrow E_{x/y}$ distributions peaked at 0
- RMS 1.4 GeV → higher than in randomly trigger evts because of
 - real ΣE_{T}
 - finite calorimeter resolution
- Very few events in tails
- Good agreement DATA-MC

pp collision events $\sqrt{s} = 2.36 \text{ TeV}$

(8)

- In minbias events \rightarrow no true $E_T^{\text{miss}} \rightarrow E_{x/y}$ distributions peaked at 0
- RMS 1.8 GeV
- No events in tails!
- Very good agreement DATA-MC

E_{τ}^{miss} Tails

- New physics may produce $E_{\!\!\!\!T}^{\rm miss}$ Tails
 - Need to control fake Etmiss at a very high level
- Main sources of Fake E^{miss}
 - Hardware (noisy cells, problems linked to DAQ, ...)
 - Software (corrections for "bad" calorimeter regions)
 - Physics (Cosmic background, beam halo, beam gas...)
- Strategy up to now: remove ANY noisy jet events
- Work started on alternative solutions:
 - Detect fake Tile TopoCluster, use cluster timing
- After cleaning (with detector/jets)
 - 2 events in data
 - Due to out of time signal superposed to the event (use timing cuts)
 - > 1 event in MC
 - One jet lost because in crack (use angular correlation cut between $E_{\!\!T}^{\rm miss}$ and jets)

20

ATLAS Preliminarv

\s=900 GeV

Data

MC MinBias

[GeV]

Events / 1 Ge\

10²

10

0

5

10

15

Caterina Pizio

9

E^{miss} Resolution

- E_x^{miss} and E_v^{miss} as a function of ΣE_T
- Plot done in $\Sigma \, \operatorname{\mathsf{E}}_{_{\! T}}$ bins
- Good agreement data-MC

(10)

Refined E_T^{miss}

- Separate contributions of reconstructed physics objects (e/ γ , τ , b-jet, jet, μ , ...)
- Most **complex schema** to apply after validation of reconstructed objects:
 - After particle identification, decomposition of each object into constituent Calorimeter Cells

CellOut & RefJet Contributions

In minimum bias events E_T^{miss} is due to :

- cells in topoclusters not associated to any reconstructed object (CellOut) —
- cells belonging to jets (**RefJet**) → Jet Energy measured at EM Scale, jet p_T >4GeV |

Data in very good agreement with MC $\rightarrow E_{T}^{miss}$ is well understood in ATLAS!

Conclusions and Outlook

- Minbias evts at 0.9 (2.36) TeV provide a first test of E_{T}^{miss}
- \rightarrow The algorithms in MET package work well and are robust.
 - > Work at EMscale with cells from TopoClusters : MET_Topo
 - > Missing transverse energy (E_x^{miss} , E_v^{miss} , E_T^{miss}):
 - Good agreement data-MC for distribution and performance
 - With good calorimeter + event cleaning, E_{T}^{miss} tails compatible with MC

- > A look at different terms entering final $E_{\tau}^{miss} \rightarrow Encouraging results$
- Plans for 7 TeV
 - ~10 pb⁻¹: QCD di-jets $\rightarrow E_T^{miss}$ calibration
 - 10-100pb⁻¹: W production \rightarrow set $E_{_T}^{_{miss}}$ scale with $W \rightarrow e\nu/\mu\nu$
 - 100-200pb⁻¹: Z production
 - diagnostic plot in Z \rightarrow II (sensible to CellOut)
 - E_{τ}^{miss} scale with $Z \rightarrow \tau \tau$

Backup

Time stability

